import os,time os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" from options.test_options import TestOptions from dataloader.data_loader import dataloader from model import create_model from itertools import islice from util.visualizer import save_images from util import html if __name__=='__main__': opt = TestOptions().parse() # get test options opt.name = 'imagenet' opt.img_file='../../tmp/img/' opt.mask_file='../../tmp/mask/' opt.results_dir='../../results' opt.model='tc' opt.coarse_or_refine='refine' opt.gpu_id=0 opt.no_shuffle=True opt.batch_size=1 opt.preprocess='scale_shortside' opt.mask_type=3 opt.load_size=512 opt.attn_G=True opt.add_noise=True dataset = dataloader(opt) # create a dataset dataset_size = len(dataset) * opt.batch_size print('testing images = %d' % dataset_size) model = create_model(opt) # create a model # create a website opt.epoch = '%d' % opt.which_iter if opt.which_iter > 0 else opt.epoch web_dir = os.path.join(opt.results_dir, opt.name, '{}_{}'.format(opt.phase, opt.epoch)) # define the website directory print('creating web directory', web_dir) opt.save_dir = web_dir webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch)) opt.how_many = dataset_size if opt.how_many == float("inf") else opt.how_many iter_data_time = time.time() for i, data in enumerate(islice(dataset, opt.how_many)): if i == 0: model.setup(opt) model.parallelize() model.eval() model.set_input(data) model.test() visuals = model.get_current_visuals() img_path = model.get_image_paths() save_images(webpage, visuals, img_path, width=opt.display_winsize) if i % 5 == 0: print('processing (%04d)-th image... %s' % (i, img_path)) total_time = time.time() - iter_data_time print('the total evaluation time %f' % (total_time)) webpage.save()