Spaces:
Running
Running
update
Browse files- .gitignore +2 -1
- app.py +97 -24
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
app_backup.py
|
|
|
|
1 |
+
app_backup.py
|
2 |
+
app_backup_original.py
|
app.py
CHANGED
@@ -69,7 +69,8 @@ st.markdown("""
|
|
69 |
@st.cache_resource
|
70 |
def load_model():
|
71 |
REVISION = 'refs/pr/6'
|
72 |
-
MODEL_NAME = "
|
|
|
73 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
74 |
|
75 |
config_model = AutoConfig.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
|
@@ -155,10 +156,12 @@ with col2:
|
|
155 |
|
156 |
st.subheader("β οΈ Warning:")
|
157 |
st.write("""
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
162 |
|
163 |
st.markdown("</div>", unsafe_allow_html=True)
|
164 |
|
@@ -182,10 +185,45 @@ if st.button("Run Inference on Example", key="example"):
|
|
182 |
inputs = processor(text=[prompt], images=[np_image], return_tensors="pt", padding=True).to(DEVICE)
|
183 |
|
184 |
with st.spinner("Processing... β³"):
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
predictions = processor.post_process_generation(generated_text, task="<CAPTION_TO_PHRASE_GROUNDING>", image_size=np_image.shape[:2])
|
190 |
|
191 |
detection = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, predictions, resolution_wh=np_image.shape[:2])
|
@@ -221,18 +259,6 @@ with col2:
|
|
221 |
|
222 |
uploaded_file = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"])
|
223 |
|
224 |
-
# if uploaded_file:
|
225 |
-
# image = Image.open(uploaded_file).convert("RGB")
|
226 |
-
# image = apply_transform(image) # Ensure the uploaded image is transformed correctly
|
227 |
-
# st.image(image, caption="Uploaded Image", width=400)
|
228 |
-
|
229 |
-
# # Let user select dataset and disease dynamically
|
230 |
-
# disease_choice = disease_choice if disease_choice else example_diseases[0]
|
231 |
-
|
232 |
-
# # Get Definition Priority: Dataset -> User Input
|
233 |
-
# definition = vindr_definitions.get(disease_choice, padchest_definitions.get(disease_choice, ""))
|
234 |
-
# if not definition:
|
235 |
-
# definition = st.text_input("Enter Definition Manually π", value="")
|
236 |
|
237 |
col1, col2 = st.columns([1, 2])
|
238 |
|
@@ -264,10 +290,11 @@ with col2:
|
|
264 |
|
265 |
st.subheader("β οΈ Warning:")
|
266 |
st.write("""
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
|
|
271 |
|
272 |
# Run inference after upload
|
273 |
if st.button("Run Inference πββοΈ"):
|
@@ -285,9 +312,52 @@ if st.button("Run Inference πββοΈ"):
|
|
285 |
inputs = processor(text=[prompt], images=[np_image], return_tensors="pt", padding=True).to(DEVICE)
|
286 |
|
287 |
with st.spinner("Processing... β³"):
|
288 |
-
generated_ids = model.generate(input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
290 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
predictions = processor.post_process_generation(generated_text, task="<CAPTION_TO_PHRASE_GROUNDING>", image_size=np_image.shape[:2])
|
292 |
|
293 |
detection = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, predictions, resolution_wh=np_image.shape[:2])
|
@@ -311,3 +381,6 @@ if st.button("Run Inference πββοΈ"):
|
|
311 |
|
312 |
# Display the generated text
|
313 |
st.write("**Generated Text:**", generated_text)
|
|
|
|
|
|
|
|
69 |
@st.cache_resource
|
70 |
def load_model():
|
71 |
REVISION = 'refs/pr/6'
|
72 |
+
# MODEL_NAME = "RioJune/AD-KD-MICCAI25"
|
73 |
+
MODEL_NAME = '/u/home/lj0/Checkpoints/AD-KD-MICCAI25'
|
74 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
75 |
|
76 |
config_model = AutoConfig.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
|
|
|
156 |
|
157 |
st.subheader("β οΈ Warning:")
|
158 |
st.write("""
|
159 |
+
- **π« Please avoid uploading non-frontal chest X-ray images.** Our model has been specifically trained on **frontal chest X-ray images** only.
|
160 |
+
- This demo is intended for **π¬ research purposes only** and should **β not be used for medical diagnoses**.
|
161 |
+
- The modelβs responses may contain **<span style='color:#dc3545; font-weight:bold;'>π€ hallucinations or incorrect information</span>**.
|
162 |
+
- Always consult a **<span style='color:#dc3545; font-weight:bold;'>π¨ββοΈ medical professional</span>** for accurate diagnosis and advice.
|
163 |
+
""", unsafe_allow_html=True)
|
164 |
+
|
165 |
|
166 |
st.markdown("</div>", unsafe_allow_html=True)
|
167 |
|
|
|
185 |
inputs = processor(text=[prompt], images=[np_image], return_tensors="pt", padding=True).to(DEVICE)
|
186 |
|
187 |
with st.spinner("Processing... β³"):
|
188 |
+
outputs = model.generate(
|
189 |
+
input_ids=inputs["input_ids"],
|
190 |
+
pixel_values=inputs["pixel_values"],
|
191 |
+
max_new_tokens=1024,
|
192 |
+
num_beams=3,
|
193 |
+
output_scores=True, # Make sure we get the scores/logits
|
194 |
+
return_dict_in_generate=True # Ensures you get both sequences and scores in the output
|
195 |
+
)
|
196 |
+
|
197 |
+
|
198 |
+
# Ensure transition_scores is properly extracted
|
199 |
+
transition_scores = model.compute_transition_scores(
|
200 |
+
outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False
|
201 |
+
)
|
202 |
+
|
203 |
+
# Get the generated token IDs (ignoring the input tokens part)
|
204 |
+
generated_ids = outputs.sequences
|
205 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
206 |
|
207 |
+
# Get input length
|
208 |
+
input_length = inputs.input_ids.shape[1]
|
209 |
+
generated_tokens = outputs.sequences
|
210 |
+
|
211 |
+
# Calculate output length (number of generated tokens)
|
212 |
+
output_length = np.sum(transition_scores.cpu().numpy() < 0, axis=1)
|
213 |
+
|
214 |
+
# Get length penalty
|
215 |
+
length_penalty = model.generation_config.length_penalty
|
216 |
+
|
217 |
+
# Calculate total score for the generated sentence
|
218 |
+
reconstructed_scores = transition_scores.cpu().sum(axis=1) / (output_length**length_penalty)
|
219 |
+
|
220 |
+
# Convert log-probability to probability (0-1 range)
|
221 |
+
probabilities = np.exp(reconstructed_scores.cpu().numpy())
|
222 |
+
|
223 |
+
# Streamlit UI to display the result
|
224 |
+
st.markdown(f"**π― Probability of the Results:** <span style='color:#28a745; font-size:24px; font-weight:bold;'>{probabilities[0] * 100:.2f}%</span>", unsafe_allow_html=True)
|
225 |
+
|
226 |
+
|
227 |
predictions = processor.post_process_generation(generated_text, task="<CAPTION_TO_PHRASE_GROUNDING>", image_size=np_image.shape[:2])
|
228 |
|
229 |
detection = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, predictions, resolution_wh=np_image.shape[:2])
|
|
|
259 |
|
260 |
uploaded_file = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"])
|
261 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
col1, col2 = st.columns([1, 2])
|
264 |
|
|
|
290 |
|
291 |
st.subheader("β οΈ Warning:")
|
292 |
st.write("""
|
293 |
+
- **π« Please avoid uploading non-frontal chest X-ray images.** Our model has been specifically trained on **frontal chest X-ray images** only.
|
294 |
+
- This demo is intended for **π¬ research purposes only** and should **β not be used for medical diagnoses**.
|
295 |
+
- The modelβs responses may contain **<span style='color:#dc3545; font-weight:bold;'>π€ hallucinations or incorrect information</span>**.
|
296 |
+
- Always consult a **<span style='color:#dc3545; font-weight:bold;'>π¨ββοΈ medical professional</span>** for accurate diagnosis and advice.
|
297 |
+
""", unsafe_allow_html=True)
|
298 |
|
299 |
# Run inference after upload
|
300 |
if st.button("Run Inference πββοΈ"):
|
|
|
312 |
inputs = processor(text=[prompt], images=[np_image], return_tensors="pt", padding=True).to(DEVICE)
|
313 |
|
314 |
with st.spinner("Processing... β³"):
|
315 |
+
# generated_ids = model.generate(input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3)
|
316 |
+
# generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
317 |
+
|
318 |
+
outputs = model.generate(
|
319 |
+
input_ids=inputs["input_ids"],
|
320 |
+
pixel_values=inputs["pixel_values"],
|
321 |
+
max_new_tokens=1024,
|
322 |
+
num_beams=3,
|
323 |
+
output_scores=True, # Make sure we get the scores/logits
|
324 |
+
return_dict_in_generate=True # Ensures you get both sequences and scores in the output
|
325 |
+
)
|
326 |
+
|
327 |
+
transition_scores = model.compute_transition_scores(
|
328 |
+
outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False
|
329 |
+
)
|
330 |
+
|
331 |
+
# Get the generated token IDs (ignoring the input tokens part)
|
332 |
+
generated_ids = outputs.sequences
|
333 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
334 |
|
335 |
+
# Get input length
|
336 |
+
input_length = inputs.input_ids.shape[1]
|
337 |
+
|
338 |
+
# Extract generated tokens (ignoring the input tokens)
|
339 |
+
# generated_tokens = outputs.sequences[:, input_length:]
|
340 |
+
generated_tokens = outputs.sequences
|
341 |
+
|
342 |
+
# Calculate output length (number of generated tokens)
|
343 |
+
output_length = np.sum(transition_scores.cpu().numpy() < 0, axis=1)
|
344 |
+
|
345 |
+
# Get length penalty
|
346 |
+
length_penalty = model.generation_config.length_penalty
|
347 |
+
|
348 |
+
# Calculate total score for the generated sentence
|
349 |
+
reconstructed_scores = transition_scores.cpu().sum(axis=1) / (output_length**length_penalty)
|
350 |
+
|
351 |
+
# Convert log-probability to probability (0-1 range)
|
352 |
+
probabilities = np.exp(reconstructed_scores.cpu().numpy())
|
353 |
+
|
354 |
+
# Streamlit UI to display the result
|
355 |
+
|
356 |
+
# st.write(f"**Probability of the Results (0-1):** {probabilities[0]:.4f}")
|
357 |
+
st.markdown(f"**π― Probability of the Results:** <span style='color:green; font-size:24px; font-weight:bold;'>{probabilities[0] * 100:.2f}%</span>", unsafe_allow_html=True)
|
358 |
+
|
359 |
+
|
360 |
+
|
361 |
predictions = processor.post_process_generation(generated_text, task="<CAPTION_TO_PHRASE_GROUNDING>", image_size=np_image.shape[:2])
|
362 |
|
363 |
detection = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, predictions, resolution_wh=np_image.shape[:2])
|
|
|
381 |
|
382 |
# Display the generated text
|
383 |
st.write("**Generated Text:**", generated_text)
|
384 |
+
|
385 |
+
|
386 |
+
|