Spaces:
Running
Running
update
Browse files- app.py +313 -0
- configs/experiment.yaml +36 -0
- configs/padchest_definition.yaml +24 -0
- configs/vindr_definition.yaml +22 -0
- examples/26746130963764173994750391023442607773-2_mukhp1.png +0 -0
- examples/f1eb2216d773ced6330b1f31e18f04f8.png +0 -0
- examples/fb4dfacc089f4b5550f03f52e706b6f2.png +0 -0
- examples/prompt.yaml +8 -0
- requirements.txt +11 -0
app.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
5 |
+
import numpy as np
|
6 |
+
import supervision as sv
|
7 |
+
import albumentations as A
|
8 |
+
import cv2
|
9 |
+
from transformers import AutoConfig
|
10 |
+
import yaml
|
11 |
+
|
12 |
+
# Set Streamlit page configuration for a wide layout
|
13 |
+
st.set_page_config(layout="wide")
|
14 |
+
|
15 |
+
# Custom CSS for better layout and mobile responsiveness
|
16 |
+
st.markdown("""
|
17 |
+
<style>
|
18 |
+
.main {
|
19 |
+
max-width: 1200px; /* Max width for content */
|
20 |
+
margin: 0 auto;
|
21 |
+
}
|
22 |
+
.block-container {
|
23 |
+
padding-top: 2rem;
|
24 |
+
padding-bottom: 2rem;
|
25 |
+
padding-left: 3rem;
|
26 |
+
padding-right: 3rem;
|
27 |
+
}
|
28 |
+
.title {
|
29 |
+
font-size: 2.5rem;
|
30 |
+
text-align: center;
|
31 |
+
color: #FF6347;
|
32 |
+
}
|
33 |
+
.subheader {
|
34 |
+
font-size: 1.5rem;
|
35 |
+
margin-bottom: 20px;
|
36 |
+
}
|
37 |
+
.btn {
|
38 |
+
font-size: 1.1rem;
|
39 |
+
padding: 10px 20px;
|
40 |
+
background-color: #FF6347;
|
41 |
+
color: white;
|
42 |
+
border-radius: 5px;
|
43 |
+
border: none;
|
44 |
+
cursor: pointer;
|
45 |
+
}
|
46 |
+
.btn:hover {
|
47 |
+
background-color: #FF4500;
|
48 |
+
}
|
49 |
+
.column-spacing {
|
50 |
+
display: flex;
|
51 |
+
justify-content: space-between;
|
52 |
+
}
|
53 |
+
.col-half {
|
54 |
+
width: 48%;
|
55 |
+
}
|
56 |
+
.col-full {
|
57 |
+
width: 100%;
|
58 |
+
}
|
59 |
+
.instructions {
|
60 |
+
padding: 20px;
|
61 |
+
background-color: #f9f9f9;
|
62 |
+
border-radius: 8px;
|
63 |
+
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
|
64 |
+
}
|
65 |
+
</style>
|
66 |
+
""", unsafe_allow_html=True)
|
67 |
+
|
68 |
+
# Load Model and Processor
|
69 |
+
@st.cache_resource
|
70 |
+
def load_model():
|
71 |
+
REVISION = 'refs/pr/6'
|
72 |
+
MODEL_NAME = "RioJune/AD-KD-MICCAI25"
|
73 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
74 |
+
|
75 |
+
config_model = AutoConfig.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
|
76 |
+
config_model.vision_config.model_type = "davit"
|
77 |
+
|
78 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True, config=config_model).to(DEVICE)
|
79 |
+
|
80 |
+
BASE_PROCESSOR = "microsoft/Florence-2-base-ft"
|
81 |
+
processor = AutoProcessor.from_pretrained(BASE_PROCESSOR, trust_remote_code=True)
|
82 |
+
processor.image_processor.size = 512
|
83 |
+
processor.image_processor.crop_size = 512
|
84 |
+
|
85 |
+
return model, processor, DEVICE
|
86 |
+
|
87 |
+
model, processor, DEVICE = load_model()
|
88 |
+
|
89 |
+
# Load Definitions
|
90 |
+
@st.cache_resource
|
91 |
+
def load_definitions():
|
92 |
+
vindr_path = 'configs/vindr_definition.yaml'
|
93 |
+
padchest_path = 'configs/padchest_definition.yaml'
|
94 |
+
prompt_path = 'examples/prompt.yaml'
|
95 |
+
|
96 |
+
with open(vindr_path, 'r') as file:
|
97 |
+
vindr_definitions = yaml.safe_load(file)
|
98 |
+
with open(padchest_path, 'r') as file:
|
99 |
+
padchest_definitions = yaml.safe_load(file)
|
100 |
+
with open(prompt_path, 'r') as file:
|
101 |
+
prompt_definitions = yaml.safe_load(file)
|
102 |
+
|
103 |
+
return vindr_definitions, padchest_definitions, prompt_definitions
|
104 |
+
|
105 |
+
vindr_definitions, padchest_definitions, prompt_definitions = load_definitions()
|
106 |
+
|
107 |
+
dataset_options = {"Vindr": vindr_definitions, "PadChest": padchest_definitions}
|
108 |
+
|
109 |
+
def load_example_images():
|
110 |
+
return list(prompt_definitions.keys())
|
111 |
+
|
112 |
+
example_images = load_example_images()
|
113 |
+
|
114 |
+
def apply_transform(image, size_mode=512):
|
115 |
+
pad_resize_transform = A.Compose([
|
116 |
+
A.LongestMaxSize(max_size=size_mode, interpolation=cv2.INTER_AREA),
|
117 |
+
A.PadIfNeeded(min_height=size_mode, min_width=size_mode, border_mode=cv2.BORDER_CONSTANT, value=(0, 0, 0)),
|
118 |
+
A.Resize(height=512, width=512, interpolation=cv2.INTER_AREA),
|
119 |
+
])
|
120 |
+
image_np = np.array(image)
|
121 |
+
transformed = pad_resize_transform(image=image_np)
|
122 |
+
return transformed["image"]
|
123 |
+
|
124 |
+
# Streamlit UI with Colorful Title and Emojis
|
125 |
+
st.markdown("<h1 class='title'>🩺 Enhancing Abnormality Grounding for Vision Language Models with Knowledge Descriptions 🚀</h1>", unsafe_allow_html=True)
|
126 |
+
st.markdown(
|
127 |
+
"<p style='text-align: center; font-size: 18px;'>Welcome to a simple demo of our work! 🎉 Choose an example or upload your own image to get started! 👇</p>",
|
128 |
+
unsafe_allow_html=True
|
129 |
+
)
|
130 |
+
|
131 |
+
# Display Example Images First
|
132 |
+
st.subheader("🌄 Example Images")
|
133 |
+
selected_example = st.selectbox("Choose an example", example_images)
|
134 |
+
image = Image.open(selected_example).convert("RGB")
|
135 |
+
example_diseases = prompt_definitions.get(selected_example, [])
|
136 |
+
st.write("**Associated Diseases:**", ", ".join(example_diseases))
|
137 |
+
|
138 |
+
# Layout for Original Image and Instructions
|
139 |
+
col1, col2 = st.columns([1, 2])
|
140 |
+
|
141 |
+
# Left column for original image
|
142 |
+
with col1:
|
143 |
+
st.image(image, caption=f"Original Example Image: {selected_example}", width=400)
|
144 |
+
|
145 |
+
# Right column for Instructions and Run Inference Button
|
146 |
+
with col2:
|
147 |
+
st.subheader("⚙️ Instructions to Get Started:")
|
148 |
+
st.write("""
|
149 |
+
- **Run Inference**: Click the "Run Inference on Example" button to process the image and display the results.
|
150 |
+
- **Choose an Example**: 🌄 Select an example image from the dataset to view its associated diseases.
|
151 |
+
- **Upload Your Own Image**: 📤 Upload an image of your choice to analyze it for diseases.
|
152 |
+
- **Select Dataset**: 📚 Choose between available datasets (Vindr or PadChest) for disease information.
|
153 |
+
- **Select Disease**: 🦠 Pick the disease to be analyzed from the list of diseases in the selected dataset.
|
154 |
+
""")
|
155 |
+
|
156 |
+
st.subheader("⚠️ Warning:")
|
157 |
+
st.write("""
|
158 |
+
- **🚫 Please avoid uploading non-frontal chest X-ray images**. Our model has been specifically trained on **frontal chest X-ray images**.
|
159 |
+
- This demo is intended for **🔬 research purposes only** and should **❌ not be used for medical diagnoses**.
|
160 |
+
- The model’s responses may contain **🤖 hallucinations or incorrect information**. Always consult a **👨⚕️ medical professional** for accurate diagnosis and advice.
|
161 |
+
""")
|
162 |
+
|
163 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
164 |
+
|
165 |
+
# Run Inference Button
|
166 |
+
if st.button("Run Inference on Example", key="example"):
|
167 |
+
if image is None:
|
168 |
+
st.error("❌ Please select an example image first.")
|
169 |
+
else:
|
170 |
+
# Use the selected example's disease and definition for inference
|
171 |
+
disease_choice = example_diseases[0] if example_diseases else ""
|
172 |
+
definition = vindr_definitions.get(disease_choice, padchest_definitions.get(disease_choice, ""))
|
173 |
+
|
174 |
+
# Generate the prompt for the model
|
175 |
+
det_obj = f"{disease_choice} means {definition}."
|
176 |
+
st.write(f"**Definition:** {definition}")
|
177 |
+
prompt = f"Locate the phrases in the caption: {det_obj}."
|
178 |
+
prompt = f"<CAPTION_TO_PHRASE_GROUNDING>{prompt}"
|
179 |
+
|
180 |
+
# Prepare the image and input
|
181 |
+
np_image = np.array(image)
|
182 |
+
inputs = processor(text=[prompt], images=[np_image], return_tensors="pt", padding=True).to(DEVICE)
|
183 |
+
|
184 |
+
with st.spinner("Processing... ⏳"):
|
185 |
+
# Generate the result
|
186 |
+
generated_ids = model.generate(input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3)
|
187 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
188 |
+
|
189 |
+
predictions = processor.post_process_generation(generated_text, task="<CAPTION_TO_PHRASE_GROUNDING>", image_size=np_image.shape[:2])
|
190 |
+
|
191 |
+
detection = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, predictions, resolution_wh=np_image.shape[:2])
|
192 |
+
|
193 |
+
# Annotate the image with bounding boxes and labels
|
194 |
+
bounding_box_annotator = sv.BoundingBoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
195 |
+
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
196 |
+
image_with_predictions = bounding_box_annotator.annotate(np_image.copy(), detection)
|
197 |
+
image_with_predictions = label_annotator.annotate(image_with_predictions, detection)
|
198 |
+
annotated_image = Image.fromarray(image_with_predictions.astype(np.uint8))
|
199 |
+
|
200 |
+
# Display the original and result images side by side
|
201 |
+
col1, col2 = st.columns([1, 1])
|
202 |
+
|
203 |
+
with col1:
|
204 |
+
st.image(image, caption=f"Original Image: {selected_example}", width=400)
|
205 |
+
|
206 |
+
with col2:
|
207 |
+
st.image(annotated_image, caption="Inference Results 🖼️", width=400)
|
208 |
+
|
209 |
+
# Display the generated text
|
210 |
+
st.write("**Generated Text:**", generated_text)
|
211 |
+
|
212 |
+
# Upload Image section
|
213 |
+
st.subheader("📤 Upload Your Own Image")
|
214 |
+
|
215 |
+
col1, col2 = st.columns([1, 1])
|
216 |
+
with col1:
|
217 |
+
dataset_choice = st.selectbox("Select Dataset 📚", options=list(dataset_options.keys()))
|
218 |
+
disease_options = list(dataset_options[dataset_choice].keys())
|
219 |
+
with col2:
|
220 |
+
disease_choice = st.selectbox("Select Disease 🦠", options=disease_options)
|
221 |
+
|
222 |
+
uploaded_file = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"])
|
223 |
+
|
224 |
+
# if uploaded_file:
|
225 |
+
# image = Image.open(uploaded_file).convert("RGB")
|
226 |
+
# image = apply_transform(image) # Ensure the uploaded image is transformed correctly
|
227 |
+
# st.image(image, caption="Uploaded Image", width=400)
|
228 |
+
|
229 |
+
# # Let user select dataset and disease dynamically
|
230 |
+
# disease_choice = disease_choice if disease_choice else example_diseases[0]
|
231 |
+
|
232 |
+
# # Get Definition Priority: Dataset -> User Input
|
233 |
+
# definition = vindr_definitions.get(disease_choice, padchest_definitions.get(disease_choice, ""))
|
234 |
+
# if not definition:
|
235 |
+
# definition = st.text_input("Enter Definition Manually 📝", value="")
|
236 |
+
|
237 |
+
col1, col2 = st.columns([1, 2])
|
238 |
+
|
239 |
+
with col1:
|
240 |
+
# Handle file upload
|
241 |
+
if uploaded_file:
|
242 |
+
image = Image.open(uploaded_file).convert("RGB")
|
243 |
+
image = apply_transform(image) # Ensure the uploaded image is transformed correctly
|
244 |
+
st.image(image, caption="Uploaded Image", width=400)
|
245 |
+
|
246 |
+
# Let user select dataset and disease dynamically
|
247 |
+
disease_choice = disease_choice if disease_choice else example_diseases[0]
|
248 |
+
|
249 |
+
# Get Definition Priority: Dataset -> User Input
|
250 |
+
definition = vindr_definitions.get(disease_choice, padchest_definitions.get(disease_choice, ""))
|
251 |
+
if not definition:
|
252 |
+
definition = st.text_input("Enter Definition Manually 📝", value="")
|
253 |
+
|
254 |
+
with col2:
|
255 |
+
# Instructions and warnings
|
256 |
+
st.subheader("⚙️ Instructions to Get Started:")
|
257 |
+
st.write("""
|
258 |
+
- **Run Inference**: Click the "Run Inference on Example" button to process the image and display the results.
|
259 |
+
- **Choose an Example**: 🌄 Select an example image from the dataset to view its associated diseases.
|
260 |
+
- **Upload Your Own Image**: 📤 Upload an image of your choice to analyze it for diseases.
|
261 |
+
- **Select Dataset**: 📚 Choose between available datasets (Vindr or PadChest) for disease information.
|
262 |
+
- **Select Disease**: 🦠 Pick the disease to be analyzed from the list of diseases in the selected dataset.
|
263 |
+
""")
|
264 |
+
|
265 |
+
st.subheader("⚠️ Warning:")
|
266 |
+
st.write("""
|
267 |
+
- **🚫 Please avoid uploading non-frontal chest X-ray images**. Our model has been specifically trained on **frontal chest X-ray images**.
|
268 |
+
- This demo is intended for **🔬 research purposes only** and should **❌ not be used for medical diagnoses**.
|
269 |
+
- The model’s responses may contain **🤖 hallucinations or incorrect information**. Always consult a **👨⚕️ medical professional** for accurate diagnosis and advice.
|
270 |
+
""")
|
271 |
+
|
272 |
+
# Run inference after upload
|
273 |
+
if st.button("Run Inference 🏃♂️"):
|
274 |
+
if image is None:
|
275 |
+
st.error("❌ Please upload an image or select an example.")
|
276 |
+
else:
|
277 |
+
det_obj = f"{disease_choice} means {definition}."
|
278 |
+
st.write(f"**Definition:** {definition}")
|
279 |
+
|
280 |
+
# Construct Prompt with Disease Definition
|
281 |
+
prompt = f"Locate the phrases in the caption: {det_obj}."
|
282 |
+
prompt = f"<CAPTION_TO_PHRASE_GROUNDING>{prompt}"
|
283 |
+
|
284 |
+
np_image = np.array(image)
|
285 |
+
inputs = processor(text=[prompt], images=[np_image], return_tensors="pt", padding=True).to(DEVICE)
|
286 |
+
|
287 |
+
with st.spinner("Processing... ⏳"):
|
288 |
+
generated_ids = model.generate(input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3)
|
289 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
290 |
+
|
291 |
+
predictions = processor.post_process_generation(generated_text, task="<CAPTION_TO_PHRASE_GROUNDING>", image_size=np_image.shape[:2])
|
292 |
+
|
293 |
+
detection = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, predictions, resolution_wh=np_image.shape[:2])
|
294 |
+
|
295 |
+
bounding_box_annotator = sv.BoundingBoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
296 |
+
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
297 |
+
image_with_predictions = bounding_box_annotator.annotate(np_image.copy(), detection)
|
298 |
+
image_with_predictions = label_annotator.annotate(image_with_predictions, detection)
|
299 |
+
annotated_image = Image.fromarray(image_with_predictions.astype(np.uint8))
|
300 |
+
|
301 |
+
# Create two columns to display the original and the results side by side
|
302 |
+
col1, col2 = st.columns([1, 1])
|
303 |
+
|
304 |
+
# Left column for original image
|
305 |
+
with col1:
|
306 |
+
st.image(image, caption="Uploaded Image", width=400)
|
307 |
+
|
308 |
+
# Right column for result image
|
309 |
+
with col2:
|
310 |
+
st.image(annotated_image, caption="Inference Results 🖼️", width=400)
|
311 |
+
|
312 |
+
# Display the generated text
|
313 |
+
st.write("**Generated Text:**", generated_text)
|
configs/experiment.yaml
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Experiment 1 Configuration
|
2 |
+
|
3 |
+
model:
|
4 |
+
model_type: "microsoft/Florence-2-base-ft"
|
5 |
+
lora_config: "configs/lora_config.yaml"
|
6 |
+
init_checkpoint: "checkpoints/mimic_model_init.pt"
|
7 |
+
processor:
|
8 |
+
image_size: 512
|
9 |
+
crop_size: 512
|
10 |
+
peft:
|
11 |
+
use_peft: False
|
12 |
+
lora_checkpoint: None
|
13 |
+
finetune: true # true
|
14 |
+
|
15 |
+
trainer:
|
16 |
+
checkpoint_dir: "../outputs"
|
17 |
+
project_name: "Knowledge-AG" # change to your own wandb project name
|
18 |
+
entity_name: "compai" # change to your own wandb entity name
|
19 |
+
max_epochs: 50
|
20 |
+
train_batch_size: 16
|
21 |
+
valid_batch_size: 16
|
22 |
+
num_workers: 28
|
23 |
+
log_every_n_steps: 100
|
24 |
+
gpu: 0
|
25 |
+
ddp: true
|
26 |
+
optimizer: "adamw"
|
27 |
+
learning_rate: 3e-6 #5e-6
|
28 |
+
weight_decay: 0.01
|
29 |
+
|
30 |
+
dataset:
|
31 |
+
vindr:
|
32 |
+
img_root: "/vol/ciamspace/datasets/X-ray/vindr-cxr/processed/images_512/"
|
33 |
+
annotation_csv: "/u/home/lj0/Code/AG-KD-miccai25/annotations/vindr_dataset.csv"
|
34 |
+
data_pct: 1.0
|
35 |
+
|
36 |
+
|
configs/padchest_definition.yaml
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pleural thickening: "Increased thickness of the pleura seen as a dense layer around the lung."
|
2 |
+
atelectasis: "Collapsed lung tissue causing darkened or shrunken areas in the lung."
|
3 |
+
pleural effusion: "Excess fluid in the pleural space appearing as a shadow around the lungs."
|
4 |
+
cardiomegaly: "Enlargement of the heart seen when the heart appears larger than normal."
|
5 |
+
aortic elongation: "Lengthened and tortuous aorta, visible as an elongated curving structure."
|
6 |
+
vertebral degenerative changes: "Irregular vertebral margins with bony sclerosis and osteophytes."
|
7 |
+
aortic atheromatosis: "Calcified deposits in the aortic wall appearing as bright, irregular opacities."
|
8 |
+
nodule: "A growth or lump in the lung which may appear as a well-defined or irregular shape."
|
9 |
+
alveolar pattern: "Cloud-like, patchy opacities representing fluid or cellular accumulation in alveoli."
|
10 |
+
hiatal hernia: "A soft-tissue mass or air-fluid level above the diaphragm, near the midline."
|
11 |
+
scoliosis: "Sideways curvature of the spine causing misalignment of vertebral bodies."
|
12 |
+
hemidiaphragm elevation: "One side of the diaphragm appearing higher than the other, with convex shape."
|
13 |
+
hyperinflated lung: "Abnormally increased lung volume with expanded air spaces."
|
14 |
+
interstitial pattern: "Fine reticular or nodular opacities spread across the lung, indicating interstitial involvement."
|
15 |
+
fracture: "A break in the bone appearing as a radiolucent line or displacement."
|
16 |
+
vascular hilar enlargement: "Increased prominence of the pulmonary vessels near the lung hila."
|
17 |
+
nsg tube: "A thin radiopaque tube extending from the nasal cavity into the stomach."
|
18 |
+
endotracheal tube: "A thin or opaque line in the middle of the trachea. "
|
19 |
+
hypoexpansion: "Reduced lung inflation with increased density and narrow intercostal spaces."
|
20 |
+
central venous catheter: "A visible line inside large vein."
|
21 |
+
electrical device: "A dense, well-defined metallic opacity, typically a pacemaker or defibrillator."
|
22 |
+
bronchiectasis: "Dilated bronchi with thick walls, appearing as tubular or cystic opacities."
|
23 |
+
goiter: "A soft tissue mass in the anterior neck, sometimes displacing the trachea."
|
24 |
+
other entities: "An unusual mass or area in the lung with irregular borders or density."
|
configs/vindr_definition.yaml
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
lung opacity: "An area of increased density in the lung fields typically appearing as a white or grayish patch."
|
2 |
+
infiltration: "Accumulation of substances or cells in the lung tissue visible as increased density or nodules."
|
3 |
+
consolidation: "Lung tissue filled with fluid or cells causing dense solid areas on imaging."
|
4 |
+
nodule or mass: "A growth or lump in the lung which may appear as a well-defined or irregular shape."
|
5 |
+
pleural thickening: "Increased thickness of the pleura seen as a dense layer around the lung."
|
6 |
+
aortic enlargement: "Widening of the aorta visible as an enlarged artery on imaging."
|
7 |
+
pulmonary fibrosis: "Scarring of the lung tissue creating a dense fibrous appearance."
|
8 |
+
ild: "Scarring or inflammation of the lung’s interstitial tissue creating a reticular or nodular pattern."
|
9 |
+
cardiomegaly: "Enlargement of the heart seen when the heart appears larger than normal."
|
10 |
+
other lesion: "An unusual mass or area in the lung with irregular borders or density."
|
11 |
+
pleural effusion: "Excess fluid in the pleural space appearing as a shadow around the lungs."
|
12 |
+
calcification: "Calcium deposits in lung tissue visible as bright white spots."
|
13 |
+
enlarged pa: "Widening of the pulmonary artery seen as an enlarged artery in the chest."
|
14 |
+
lung cavity: "Air-filled spaces within the lung often surrounded by dense tissue."
|
15 |
+
atelectasis: "Collapsed lung tissue causing darkened or shrunken areas in the lung."
|
16 |
+
mediastinal shift: "Displacement of central chest structures like the heart to one side."
|
17 |
+
lung cyst: "Fluid-filled spaces in the lung often round with thin walls."
|
18 |
+
pneumothorax: "Air trapped in the pleural space creating a gap or absence of lung tissue."
|
19 |
+
emphysema: "Enlarged air spaces in the lungs appearing over-expanded or damaged."
|
20 |
+
clavicle fracture: "A break in the collarbone seen as a gap or irregularity in the bone."
|
21 |
+
rib fracture: "A break in one or more ribs appearing as a visible crack or displacement."
|
22 |
+
edema: "Fluid accumulation in the lungs creating a hazy or clouded area."
|
examples/26746130963764173994750391023442607773-2_mukhp1.png
ADDED
![]() |
examples/f1eb2216d773ced6330b1f31e18f04f8.png
ADDED
![]() |
examples/fb4dfacc089f4b5550f03f52e706b6f2.png
ADDED
![]() |
examples/prompt.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
./examples/26746130963764173994750391023442607773-2_mukhp1.png:
|
2 |
+
- electrical device
|
3 |
+
|
4 |
+
./examples/f1eb2216d773ced6330b1f31e18f04f8.png:
|
5 |
+
- pulmonary fibrosis
|
6 |
+
|
7 |
+
./examples/fb4dfacc089f4b5550f03f52e706b6f2.png:
|
8 |
+
- cardiomegaly
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
pillow
|
5 |
+
numpy
|
6 |
+
supervision
|
7 |
+
albumentations
|
8 |
+
opencv-python
|
9 |
+
pyyaml
|
10 |
+
einops
|
11 |
+
timm
|