Anonymous-AC commited on
Commit
5bd459b
Β·
verified Β·
1 Parent(s): 73131e4

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +410 -25
app.py CHANGED
@@ -1,12 +1,399 @@
1
- # import os
2
- # import shutil
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- # # Clean and recreate HF cache directory
5
- # cache_dir = "/tmp/hf_cache"
6
- # if os.path.exists(cache_dir):
7
- # shutil.rmtree(cache_dir)
8
- # os.makedirs(cache_dir, exist_ok=True)
9
- # os.environ["HF_HOME"] = cache_dir
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  import streamlit as st
12
  from PIL import Image
@@ -36,18 +423,9 @@ st.markdown("""
36
  padding-right: 3rem;
37
  }
38
  .title {
39
- font-size: 3.2rem;
40
  text-align: center;
41
- background: linear-gradient(135deg, #0575e6 0%, #ff0080 50%, #7928ca 100%);
42
- -webkit-background-clip: text;
43
- -webkit-text-fill-color: transparent;
44
- background-clip: text;
45
- }
46
-
47
- @keyframes gradientShift {
48
- 0% { background-position: 0% 50%; }
49
- 50% { background-position: 100% 50%; }
50
- 100% { background-position: 0% 50%; }
51
  }
52
  .subheader {
53
  font-size: 1.5rem;
@@ -87,10 +465,18 @@ st.markdown("""
87
  # Load Model and Processor
88
  @st.cache_resource
89
  def load_model():
90
- MODEL_NAME = 'Anonymous-AC/K2Sight-Lite'
 
 
91
  DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
92
- model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True).to(DEVICE)
93
- processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
 
 
 
 
 
 
94
  processor.image_processor.size = 512
95
  processor.image_processor.crop_size = 512
96
 
@@ -134,9 +520,7 @@ def apply_transform(image, size_mode=512):
134
  return transformed["image"]
135
 
136
  # Streamlit UI with Colorful Title and Emojis
137
- # st.markdown("<div style='text-align: center;'><span style='font-size: 3rem;'>🩺</span></div>", unsafe_allow_html=True)
138
- st.markdown("<h1 class='title'>Knowledge to Sight: Reasoning over Visual Attributes via Knowledge Decomposition for Abnormality Grounding</h1>", unsafe_allow_html=True)
139
- # st.markdown("<div style='text-align: center;'><span style='font-size: 3rem;'>πŸš€</span></div>", unsafe_allow_html=True)
140
  st.markdown(
141
  "<p style='text-align: center; font-size: 18px;'>Welcome to a simple demo of our work! πŸŽ‰ Choose an example or upload your own image to get started! πŸ‘‡</p>",
142
  unsafe_allow_html=True
@@ -397,3 +781,4 @@ if st.button("Run Inference πŸƒβ€β™‚οΈ"):
397
 
398
 
399
 
 
 
1
+ # # import os
2
+ # # import shutil
3
+
4
+ # # # Clean and recreate HF cache directory
5
+ # # cache_dir = "/tmp/hf_cache"
6
+ # # if os.path.exists(cache_dir):
7
+ # # shutil.rmtree(cache_dir)
8
+ # # os.makedirs(cache_dir, exist_ok=True)
9
+ # # os.environ["HF_HOME"] = cache_dir
10
+
11
+ # import streamlit as st
12
+ # from PIL import Image
13
+ # import torch
14
+ # from transformers import AutoModelForCausalLM, AutoProcessor
15
+ # import numpy as np
16
+ # import supervision as sv
17
+ # import albumentations as A
18
+ # import cv2
19
+ # from transformers import AutoConfig
20
+ # import yaml
21
+
22
+ # # Set Streamlit page configuration for a wide layout
23
+ # st.set_page_config(layout="wide")
24
+
25
+ # # Custom CSS for better layout and mobile responsiveness
26
+ # st.markdown("""
27
+ # <style>
28
+ # .main {
29
+ # max-width: 1200px; /* Max width for content */
30
+ # margin: 0 auto;
31
+ # }
32
+ # .block-container {
33
+ # padding-top: 2rem;
34
+ # padding-bottom: 2rem;
35
+ # padding-left: 3rem;
36
+ # padding-right: 3rem;
37
+ # }
38
+ # .title {
39
+ # font-size: 3.2rem;
40
+ # text-align: center;
41
+ # background: linear-gradient(135deg, #0575e6 0%, #ff0080 50%, #7928ca 100%);
42
+ # -webkit-background-clip: text;
43
+ # -webkit-text-fill-color: transparent;
44
+ # background-clip: text;
45
+ # }
46
+
47
+ # @keyframes gradientShift {
48
+ # 0% { background-position: 0% 50%; }
49
+ # 50% { background-position: 100% 50%; }
50
+ # 100% { background-position: 0% 50%; }
51
+ # }
52
+ # .subheader {
53
+ # font-size: 1.5rem;
54
+ # margin-bottom: 20px;
55
+ # }
56
+ # .btn {
57
+ # font-size: 1.1rem;
58
+ # padding: 10px 20px;
59
+ # background-color: #FF6347;
60
+ # color: white;
61
+ # border-radius: 5px;
62
+ # border: none;
63
+ # cursor: pointer;
64
+ # }
65
+ # .btn:hover {
66
+ # background-color: #FF4500;
67
+ # }
68
+ # .column-spacing {
69
+ # display: flex;
70
+ # justify-content: space-between;
71
+ # }
72
+ # .col-half {
73
+ # width: 48%;
74
+ # }
75
+ # .col-full {
76
+ # width: 100%;
77
+ # }
78
+ # .instructions {
79
+ # padding: 20px;
80
+ # background-color: #f9f9f9;
81
+ # border-radius: 8px;
82
+ # box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
83
+ # }
84
+ # </style>
85
+ # """, unsafe_allow_html=True)
86
+
87
+ # # Load Model and Processor
88
+ # @st.cache_resource
89
+ # def load_model():
90
+ # MODEL_NAME = 'Anonymous-AC/K2Sight-Lite'
91
+ # DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
92
+ # model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True).to(DEVICE)
93
+ # processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
94
+ # processor.image_processor.size = 512
95
+ # processor.image_processor.crop_size = 512
96
+
97
+ # return model, processor, DEVICE
98
+
99
+ # model, processor, DEVICE = load_model()
100
+
101
+ # # Load Definitions
102
+ # @st.cache_resource
103
+ # def load_definitions():
104
+ # vindr_path = 'configs/vindr_definition.yaml'
105
+ # padchest_path = 'configs/padchest_definition.yaml'
106
+ # prompt_path = 'examples/prompt.yaml'
107
+
108
+ # with open(vindr_path, 'r') as file:
109
+ # vindr_definitions = yaml.safe_load(file)
110
+ # with open(padchest_path, 'r') as file:
111
+ # padchest_definitions = yaml.safe_load(file)
112
+ # with open(prompt_path, 'r') as file:
113
+ # prompt_definitions = yaml.safe_load(file)
114
+
115
+ # return vindr_definitions, padchest_definitions, prompt_definitions
116
+
117
+ # vindr_definitions, padchest_definitions, prompt_definitions = load_definitions()
118
+
119
+ # dataset_options = {"Vindr": vindr_definitions, "PadChest": padchest_definitions}
120
+
121
+ # def load_example_images():
122
+ # return list(prompt_definitions.keys())
123
+
124
+ # example_images = load_example_images()
125
+
126
+ # def apply_transform(image, size_mode=512):
127
+ # pad_resize_transform = A.Compose([
128
+ # A.LongestMaxSize(max_size=size_mode, interpolation=cv2.INTER_AREA),
129
+ # A.PadIfNeeded(min_height=size_mode, min_width=size_mode, border_mode=cv2.BORDER_CONSTANT, value=(0, 0, 0)),
130
+ # A.Resize(height=512, width=512, interpolation=cv2.INTER_AREA),
131
+ # ])
132
+ # image_np = np.array(image)
133
+ # transformed = pad_resize_transform(image=image_np)
134
+ # return transformed["image"]
135
+
136
+ # # Streamlit UI with Colorful Title and Emojis
137
+ # # st.markdown("<div style='text-align: center;'><span style='font-size: 3rem;'>🩺</span></div>", unsafe_allow_html=True)
138
+ # st.markdown("<h1 class='title'>Knowledge to Sight: Reasoning over Visual Attributes via Knowledge Decomposition for Abnormality Grounding</h1>", unsafe_allow_html=True)
139
+ # # st.markdown("<div style='text-align: center;'><span style='font-size: 3rem;'>πŸš€</span></div>", unsafe_allow_html=True)
140
+ # st.markdown(
141
+ # "<p style='text-align: center; font-size: 18px;'>Welcome to a simple demo of our work! πŸŽ‰ Choose an example or upload your own image to get started! πŸ‘‡</p>",
142
+ # unsafe_allow_html=True
143
+ # )
144
+
145
+ # # Display Example Images First
146
+ # st.subheader("πŸŒ„ Example Images")
147
+ # selected_example = st.selectbox("Choose an example", example_images)
148
+ # image = Image.open(selected_example).convert("RGB")
149
+ # example_diseases = prompt_definitions.get(selected_example, [])
150
+ # st.write("**Associated Diseases:**", ", ".join(example_diseases))
151
+
152
+ # # Layout for Original Image and Instructions
153
+ # col1, col2 = st.columns([1, 2])
154
+
155
+ # # Left column for original image
156
+ # with col1:
157
+ # st.image(image, caption=f"Original Example Image: {selected_example}", width=400)
158
+
159
+ # # Right column for Instructions and Run Inference Button
160
+ # with col2:
161
+ # st.subheader("βš™οΈ Instructions to Get Started:")
162
+ # st.write("""
163
+ # - **Run Inference**: Click the "Run Inference on Example" button to process the image and display the results.
164
+ # - **Choose an Example**: πŸŒ„ Select an example image from the dataset to view its associated diseases.
165
+ # - **Upload Your Own Image**: πŸ“€ Upload an image of your choice to analyze it for diseases.
166
+ # - **Select Dataset**: πŸ“š Choose between available datasets (Vindr or PadChest) for disease information.
167
+ # - **Select Disease**: 🦠 Pick the disease to be analyzed from the list of diseases in the selected dataset.
168
+ # """)
169
+
170
+ # st.subheader("⚠️ Warning:")
171
+ # st.write("""
172
+ # - **🚫 Please avoid uploading non-frontal chest X-ray images.** Our model has been specifically trained on **frontal chest X-ray images** only.
173
+ # - This demo is intended for **πŸ”¬ research purposes only** and should **❌ not be used for medical diagnoses**.
174
+ # - The model’s responses may contain **<span style='color:#dc3545; font-weight:bold;'>πŸ€– hallucinations or incorrect information</span>**.
175
+ # - Always consult a **<span style='color:#dc3545; font-weight:bold;'>πŸ‘¨β€βš•οΈ medical professional</span>** for accurate diagnosis and advice.
176
+ # """, unsafe_allow_html=True)
177
+
178
+
179
+ # st.markdown("</div>", unsafe_allow_html=True)
180
+
181
+ # # Run Inference Button
182
+ # if st.button("Run Inference on Example", key="example"):
183
+ # if image is None:
184
+ # st.error("❌ Please select an example image first.")
185
+ # else:
186
+ # # Use the selected example's disease and definition for inference
187
+ # disease_choice = example_diseases[0] if example_diseases else ""
188
+ # definition = vindr_definitions.get(disease_choice, padchest_definitions.get(disease_choice, ""))
189
+
190
+ # # Generate the prompt for the model
191
+ # det_obj = f"{disease_choice} means {definition}."
192
+ # st.write(f"**Definition:** {definition}")
193
+ # prompt = f"Locate the phrases in the caption: {det_obj}."
194
+ # prompt = f"<CAPTION_TO_PHRASE_GROUNDING>{prompt}"
195
+
196
+ # # Prepare the image and input
197
+ # np_image = np.array(image)
198
+ # inputs = processor(text=[prompt], images=[np_image], return_tensors="pt", padding=True).to(DEVICE)
199
+
200
+ # with st.spinner("Processing... ⏳"):
201
+ # outputs = model.generate(
202
+ # input_ids=inputs["input_ids"],
203
+ # pixel_values=inputs["pixel_values"],
204
+ # max_new_tokens=1024,
205
+ # num_beams=3,
206
+ # output_scores=True, # Make sure we get the scores/logits
207
+ # return_dict_in_generate=True # Ensures you get both sequences and scores in the output
208
+ # )
209
+
210
+
211
+ # # Ensure transition_scores is properly extracted
212
+ # transition_scores = model.compute_transition_scores(
213
+ # outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False
214
+ # )
215
+
216
+ # # Get the generated token IDs (ignoring the input tokens part)
217
+ # generated_ids = outputs.sequences
218
+ # generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
219
+
220
+ # # Get input length
221
+ # input_length = inputs.input_ids.shape[1]
222
+ # generated_tokens = outputs.sequences
223
+
224
+ # # Calculate output length (number of generated tokens)
225
+ # output_length = np.sum(transition_scores.cpu().numpy() < 0, axis=1)
226
+
227
+ # # Get length penalty
228
+ # length_penalty = model.generation_config.length_penalty
229
+
230
+ # # Calculate total score for the generated sentence
231
+ # reconstructed_scores = transition_scores.cpu().sum(axis=1) / (output_length**length_penalty)
232
+
233
+ # # Convert log-probability to probability (0-1 range)
234
+ # probabilities = np.exp(reconstructed_scores.cpu().numpy())
235
+
236
+ # # Streamlit UI to display the result
237
+ # st.markdown(f"**🎯 Probability of the Results:** <span style='color:#28a745; font-size:24px; font-weight:bold;'>{probabilities[0] * 100:.2f}%</span>", unsafe_allow_html=True)
238
+
239
+
240
+ # predictions = processor.post_process_generation(generated_text, task="<CAPTION_TO_PHRASE_GROUNDING>", image_size=np_image.shape[:2])
241
+
242
+ # detection = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, predictions, resolution_wh=np_image.shape[:2])
243
+
244
+ # # Annotate the image with bounding boxes and labels
245
+ # bounding_box_annotator = sv.BoundingBoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
246
+ # label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
247
+ # image_with_predictions = bounding_box_annotator.annotate(np_image.copy(), detection)
248
+ # image_with_predictions = label_annotator.annotate(image_with_predictions, detection)
249
+ # annotated_image = Image.fromarray(image_with_predictions.astype(np.uint8))
250
+
251
+ # # Display the original and result images side by side
252
+ # col1, col2 = st.columns([1, 1])
253
+
254
+ # with col1:
255
+ # st.image(image, caption=f"Original Image: {selected_example}", width=400)
256
+
257
+ # with col2:
258
+ # st.image(annotated_image, caption="Inference Results πŸ–ΌοΈ", width=400)
259
+
260
+ # # Display the generated text
261
+ # st.write("**Generated Text:**", generated_text)
262
+
263
+ # # Upload Image section
264
+ # st.subheader("πŸ“€ Upload Your Own Image")
265
+
266
+ # col1, col2 = st.columns([1, 1])
267
+ # with col1:
268
+ # dataset_choice = st.selectbox("Select Dataset πŸ“š", options=list(dataset_options.keys()))
269
+ # disease_options = list(dataset_options[dataset_choice].keys())
270
+ # with col2:
271
+ # disease_choice = st.selectbox("Select Disease 🦠", options=disease_options)
272
+
273
+ # uploaded_file = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"])
274
+
275
+
276
+ # col1, col2 = st.columns([1, 2])
277
+
278
+ # with col1:
279
+ # # Handle file upload
280
+ # if uploaded_file:
281
+ # image = Image.open(uploaded_file).convert("RGB")
282
+ # image = apply_transform(image) # Ensure the uploaded image is transformed correctly
283
+ # st.image(image, caption="Uploaded Image", width=400)
284
+
285
+ # # Let user select dataset and disease dynamically
286
+ # disease_choice = disease_choice if disease_choice else example_diseases[0]
287
+
288
+ # # Get Definition Priority: Dataset -> User Input
289
+ # definition = vindr_definitions.get(disease_choice, padchest_definitions.get(disease_choice, ""))
290
+ # if not definition:
291
+ # definition = st.text_input("Enter Definition Manually πŸ“", value="")
292
+
293
+ # with col2:
294
+ # # Instructions and warnings
295
+ # st.subheader("βš™οΈ Instructions to Get Started:")
296
+ # st.write("""
297
+ # - **Run Inference**: Click the "Run Inference on Example" button to process the image and display the results.
298
+ # - **Choose an Example**: πŸŒ„ Select an example image from the dataset to view its associated diseases.
299
+ # - **Upload Your Own Image**: πŸ“€ Upload an image of your choice to analyze it for diseases.
300
+ # - **Select Dataset**: πŸ“š Choose between available datasets (Vindr or PadChest) for disease information.
301
+ # - **Select Disease**: 🦠 Pick the disease to be analyzed from the list of diseases in the selected dataset.
302
+ # """)
303
+
304
+ # st.subheader("⚠️ Warning:")
305
+ # st.write("""
306
+ # - **🚫 Please avoid uploading non-frontal chest X-ray images.** Our model has been specifically trained on **frontal chest X-ray images** only.
307
+ # - This demo is intended for **πŸ”¬ research purposes only** and should **❌ not be used for medical diagnoses**.
308
+ # - The model’s responses may contain **<span style='color:#dc3545; font-weight:bold;'>πŸ€– hallucinations or incorrect information</span>**.
309
+ # - Always consult a **<span style='color:#dc3545; font-weight:bold;'>πŸ‘¨β€βš•οΈ medical professional</span>** for accurate diagnosis and advice.
310
+ # """, unsafe_allow_html=True)
311
+
312
+ # # Run inference after upload
313
+ # if st.button("Run Inference πŸƒβ€β™‚οΈ"):
314
+ # if image is None:
315
+ # st.error("❌ Please upload an image or select an example.")
316
+ # else:
317
+ # det_obj = f"{disease_choice} means {definition}."
318
+ # st.write(f"**Definition:** {definition}")
319
+
320
+ # # Construct Prompt with Disease Definition
321
+ # prompt = f"Locate the phrases in the caption: {det_obj}."
322
+ # prompt = f"<CAPTION_TO_PHRASE_GROUNDING>{prompt}"
323
+
324
+ # np_image = np.array(image)
325
+ # inputs = processor(text=[prompt], images=[np_image], return_tensors="pt", padding=True).to(DEVICE)
326
+
327
+ # with st.spinner("Processing... ⏳"):
328
+ # # generated_ids = model.generate(input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3)
329
+ # # generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
330
+
331
+ # outputs = model.generate(
332
+ # input_ids=inputs["input_ids"],
333
+ # pixel_values=inputs["pixel_values"],
334
+ # max_new_tokens=1024,
335
+ # num_beams=3,
336
+ # output_scores=True, # Make sure we get the scores/logits
337
+ # return_dict_in_generate=True # Ensures you get both sequences and scores in the output
338
+ # )
339
+
340
+ # transition_scores = model.compute_transition_scores(
341
+ # outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False
342
+ # )
343
+
344
+ # # Get the generated token IDs (ignoring the input tokens part)
345
+ # generated_ids = outputs.sequences
346
+ # generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
347
+
348
+ # # Get input length
349
+ # input_length = inputs.input_ids.shape[1]
350
+
351
+ # # Extract generated tokens (ignoring the input tokens)
352
+ # # generated_tokens = outputs.sequences[:, input_length:]
353
+ # generated_tokens = outputs.sequences
354
+
355
+ # # Calculate output length (number of generated tokens)
356
+ # output_length = np.sum(transition_scores.cpu().numpy() < 0, axis=1)
357
+
358
+ # # Get length penalty
359
+ # length_penalty = model.generation_config.length_penalty
360
 
361
+ # # Calculate total score for the generated sentence
362
+ # reconstructed_scores = transition_scores.cpu().sum(axis=1) / (output_length**length_penalty)
363
+
364
+ # # Convert log-probability to probability (0-1 range)
365
+ # probabilities = np.exp(reconstructed_scores.cpu().numpy())
366
+
367
+ # # Streamlit UI to display the result
368
+
369
+ # # st.write(f"**Probability of the Results (0-1):** {probabilities[0]:.4f}")
370
+ # st.markdown(f"**🎯 Probability of the Results:** <span style='color:green; font-size:24px; font-weight:bold;'>{probabilities[0] * 100:.2f}%</span>", unsafe_allow_html=True)
371
+
372
+
373
+
374
+ # predictions = processor.post_process_generation(generated_text, task="<CAPTION_TO_PHRASE_GROUNDING>", image_size=np_image.shape[:2])
375
+
376
+ # detection = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, predictions, resolution_wh=np_image.shape[:2])
377
+
378
+ # bounding_box_annotator = sv.BoundingBoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
379
+ # label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
380
+ # image_with_predictions = bounding_box_annotator.annotate(np_image.copy(), detection)
381
+ # image_with_predictions = label_annotator.annotate(image_with_predictions, detection)
382
+ # annotated_image = Image.fromarray(image_with_predictions.astype(np.uint8))
383
+
384
+ # # Create two columns to display the original and the results side by side
385
+ # col1, col2 = st.columns([1, 1])
386
+
387
+ # # Left column for original image
388
+ # with col1:
389
+ # st.image(image, caption="Uploaded Image", width=400)
390
+
391
+ # # Right column for result image
392
+ # with col2:
393
+ # st.image(annotated_image, caption="Inference Results πŸ–ΌοΈ", width=400)
394
+
395
+ # # Display the generated text
396
+ # st.write("**Generated Text:**", generated_text)
397
 
398
  import streamlit as st
399
  from PIL import Image
 
423
  padding-right: 3rem;
424
  }
425
  .title {
426
+ font-size: 2.5rem;
427
  text-align: center;
428
+ color: #FF6347;
 
 
 
 
 
 
 
 
 
429
  }
430
  .subheader {
431
  font-size: 1.5rem;
 
465
  # Load Model and Processor
466
  @st.cache_resource
467
  def load_model():
468
+ REVISION = 'refs/pr/6'
469
+ MODEL_NAME = "Anonymous-AC/K2Sight-Lite"
470
+ # MODEL_NAME = '/u/home/lj0/Checkpoints/AD-KD-MICCAI25'
471
  DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
472
+
473
+ config_model = AutoConfig.from_pretrained ("microsoft/Florence-2-base-ft", trust_remote_code=True)
474
+ config_model.vision_config.model_type = "davit"
475
+
476
+ model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True, config=config_model).to(DEVICE)
477
+
478
+ BASE_PROCESSOR = "microsoft/Florence-2-base-ft"
479
+ processor = AutoProcessor.from_pretrained(BASE_PROCESSOR, trust_remote_code=True)
480
  processor.image_processor.size = 512
481
  processor.image_processor.crop_size = 512
482
 
 
520
  return transformed["image"]
521
 
522
  # Streamlit UI with Colorful Title and Emojis
523
+ st.markdown("<h1 class='title'>🩺 Knowledge to Sight: Reasoning over Visual Attributes via Knowledge Decomposition for Abnormality Grounding πŸš€</h1>", unsafe_allow_html=True)
 
 
524
  st.markdown(
525
  "<p style='text-align: center; font-size: 18px;'>Welcome to a simple demo of our work! πŸŽ‰ Choose an example or upload your own image to get started! πŸ‘‡</p>",
526
  unsafe_allow_html=True
 
781
 
782
 
783
 
784
+