diff --git "a/Untitled.ipynb" "b/Untitled.ipynb" new file mode 100644--- /dev/null +++ "b/Untitled.ipynb" @@ -0,0 +1,2089 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 34, + "id": "7bd58c56", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import warnings\n", + "warnings.filterwarnings('ignore')" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "8ecd1ce1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
061487235033.60.627501
11856629026.60.351310
28183640023.30.672321
318966239428.10.167210
40137403516843.12.288331
..............................
76310101764818032.90.171630
76421227027036.80.340270
7655121722311226.20.245300
7661126600030.10.349471
7671937031030.40.315230
\n", + "

768 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "0 6 148 72 35 0 33.6 \n", + "1 1 85 66 29 0 26.6 \n", + "2 8 183 64 0 0 23.3 \n", + "3 1 89 66 23 94 28.1 \n", + "4 0 137 40 35 168 43.1 \n", + ".. ... ... ... ... ... ... \n", + "763 10 101 76 48 180 32.9 \n", + "764 2 122 70 27 0 36.8 \n", + "765 5 121 72 23 112 26.2 \n", + "766 1 126 60 0 0 30.1 \n", + "767 1 93 70 31 0 30.4 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome \n", + "0 0.627 50 1 \n", + "1 0.351 31 0 \n", + "2 0.672 32 1 \n", + "3 0.167 21 0 \n", + "4 2.288 33 1 \n", + ".. ... ... ... \n", + "763 0.171 63 0 \n", + "764 0.340 27 0 \n", + "765 0.245 30 0 \n", + "766 0.349 47 1 \n", + "767 0.315 23 0 \n", + "\n", + "[768 rows x 9 columns]" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data=pd.read_csv('diabetes.csv')\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "b3d17e11", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(768, 9)" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.shape\n" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "e307f834", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
count768.000000768.000000768.000000768.000000768.000000768.000000768.000000768.000000768.000000
mean3.845052120.89453169.10546920.53645879.79947931.9925780.47187633.2408850.348958
std3.36957831.97261819.35580715.952218115.2440027.8841600.33132911.7602320.476951
min0.0000000.0000000.0000000.0000000.0000000.0000000.07800021.0000000.000000
25%1.00000099.00000062.0000000.0000000.00000027.3000000.24375024.0000000.000000
50%3.000000117.00000072.00000023.00000030.50000032.0000000.37250029.0000000.000000
75%6.000000140.25000080.00000032.000000127.25000036.6000000.62625041.0000001.000000
max17.000000199.000000122.00000099.000000846.00000067.1000002.42000081.0000001.000000
\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin \\\n", + "count 768.000000 768.000000 768.000000 768.000000 768.000000 \n", + "mean 3.845052 120.894531 69.105469 20.536458 79.799479 \n", + "std 3.369578 31.972618 19.355807 15.952218 115.244002 \n", + "min 0.000000 0.000000 0.000000 0.000000 0.000000 \n", + "25% 1.000000 99.000000 62.000000 0.000000 0.000000 \n", + "50% 3.000000 117.000000 72.000000 23.000000 30.500000 \n", + "75% 6.000000 140.250000 80.000000 32.000000 127.250000 \n", + "max 17.000000 199.000000 122.000000 99.000000 846.000000 \n", + "\n", + " BMI DiabetesPedigreeFunction Age Outcome \n", + "count 768.000000 768.000000 768.000000 768.000000 \n", + "mean 31.992578 0.471876 33.240885 0.348958 \n", + "std 7.884160 0.331329 11.760232 0.476951 \n", + "min 0.000000 0.078000 21.000000 0.000000 \n", + "25% 27.300000 0.243750 24.000000 0.000000 \n", + "50% 32.000000 0.372500 29.000000 0.000000 \n", + "75% 36.600000 0.626250 41.000000 1.000000 \n", + "max 67.100000 2.420000 81.000000 1.000000 " + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "29ba7ab8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Pregnancies 0\n", + "Glucose 0\n", + "BloodPressure 0\n", + "SkinThickness 0\n", + "Insulin 0\n", + "BMI 0\n", + "DiabetesPedigreeFunction 0\n", + "Age 0\n", + "Outcome 0\n", + "dtype: int64" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "missing_val=data.isna().sum()\n", + "missing_val" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "5c0632ad", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
Pregnancies1.0000000.1294590.141282-0.081672-0.0735350.017683-0.0335230.5443410.221898
Glucose0.1294591.0000000.1525900.0573280.3313570.2210710.1373370.2635140.466581
BloodPressure0.1412820.1525901.0000000.2073710.0889330.2818050.0412650.2395280.065068
SkinThickness-0.0816720.0573280.2073711.0000000.4367830.3925730.183928-0.1139700.074752
Insulin-0.0735350.3313570.0889330.4367831.0000000.1978590.185071-0.0421630.130548
BMI0.0176830.2210710.2818050.3925730.1978591.0000000.1406470.0362420.292695
DiabetesPedigreeFunction-0.0335230.1373370.0412650.1839280.1850710.1406471.0000000.0335610.173844
Age0.5443410.2635140.239528-0.113970-0.0421630.0362420.0335611.0000000.238356
Outcome0.2218980.4665810.0650680.0747520.1305480.2926950.1738440.2383561.000000
\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness \\\n", + "Pregnancies 1.000000 0.129459 0.141282 -0.081672 \n", + "Glucose 0.129459 1.000000 0.152590 0.057328 \n", + "BloodPressure 0.141282 0.152590 1.000000 0.207371 \n", + "SkinThickness -0.081672 0.057328 0.207371 1.000000 \n", + "Insulin -0.073535 0.331357 0.088933 0.436783 \n", + "BMI 0.017683 0.221071 0.281805 0.392573 \n", + "DiabetesPedigreeFunction -0.033523 0.137337 0.041265 0.183928 \n", + "Age 0.544341 0.263514 0.239528 -0.113970 \n", + "Outcome 0.221898 0.466581 0.065068 0.074752 \n", + "\n", + " Insulin BMI DiabetesPedigreeFunction \\\n", + "Pregnancies -0.073535 0.017683 -0.033523 \n", + "Glucose 0.331357 0.221071 0.137337 \n", + "BloodPressure 0.088933 0.281805 0.041265 \n", + "SkinThickness 0.436783 0.392573 0.183928 \n", + "Insulin 1.000000 0.197859 0.185071 \n", + "BMI 0.197859 1.000000 0.140647 \n", + "DiabetesPedigreeFunction 0.185071 0.140647 1.000000 \n", + "Age -0.042163 0.036242 0.033561 \n", + "Outcome 0.130548 0.292695 0.173844 \n", + "\n", + " Age Outcome \n", + "Pregnancies 0.544341 0.221898 \n", + "Glucose 0.263514 0.466581 \n", + "BloodPressure 0.239528 0.065068 \n", + "SkinThickness -0.113970 0.074752 \n", + "Insulin -0.042163 0.130548 \n", + "BMI 0.036242 0.292695 \n", + "DiabetesPedigreeFunction 0.033561 0.173844 \n", + "Age 1.000000 0.238356 \n", + "Outcome 0.238356 1.000000 " + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "corr_data=data.corr()\n", + "corr_data" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "36df3511", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqoAAAJKCAYAAADkwWfoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXQUVxvA4V827u5uRCCBBAgEdylerEBx1wLFKdYWL5Ti7m7FIUBocIfgEjQECcQNYrvfH4ENSzaQQNqQj/ucs+dkZ+/MvHN3MvvuvXfuqshkMhmCIAiCIAiC8JWRFHYAgiAIgiAIgqCMSFQFQRAEQRCEr5JIVAVBEARBEISvkkhUBUEQBEEQhK+SSFQFQRAEQRCEr5JIVAVBEARBEISvkkhUBUEQBEEQhK+SSFQFQRAEQRCEr5JIVAVBEARBEISvkkhUBUEQBEEQhK+SSFQFQRAEQRCEjzp27BiNGjXCxsYGFRUVduzY8cl1QkJC8Pf3R1NTEzc3N1auXJnv/YpEVRAEQRAEQfio5ORkSpYsybx58/JU/uHDhzRo0IDq1asTGhrKwIED6datG0FBQfnar4pMJpN9TsCCIAiCIAjCt0dFRYW///6bpk2b5lpm+PDh7N27l+vXr8uX/fDDD8TFxXHgwIE870u0qAqCIAiCIHyDUlNTSUhIUHikpqYWyLZPnz5NrVq1FJbVrVuX06dP52s7agUSjSD8H9N2aFPYIeTL2dB2hR1CvmQWsT4dH2P7wg4hX2RICzuEfElKf1rYIeSbpqphYYeQL34ri9Y/3W81Ugo7hHxp5VLvX99HQX0uDe/iwYQJExSWjRs3jvHjx3/xtl+8eIGlpaXCMktLSxISEnj9+jXa2tp52o5IVAVBEARBEL5BI0eOZPDgwQrLNDU1Cyka5USiKgiCIAiCUISoqBTMyE1NTc1/LTG1srIiMjJSYVlkZCQGBgZ5bk0FkagKgiAIgiAUKSpF4BajwMBA9u3bp7Ds0KFDBAYG5ms7X/+RCoIgCIIgCIUqKSmJ0NBQQkNDgazpp0JDQwkPDweyhhF06NBBXr5Xr148ePCAYcOGcfv2bebPn8/mzZsZNGhQvvYrWlQFQRAEQRCKkILq+s+PCxcuUL16dfnzd2NbO3bsyMqVK3n+/Lk8aQVwdnZm7969DBo0iL/++gs7OzuWLl1K3bp187VfkagKgiAIgiAUIYWRqFarVo2PTb2v7FenqlWrxuXLl79ov6LrXxAEQRAEQfgqiRZVQRAEQRCEIkRFRaWwQ/jPiERVEARBEAShSPl2OsS/nSMVBEEQBEEQihTRoioIgiAIglCEFMbNVIVFJKqCIAiCIAhFiEhUBUEQBEEQhK9SUfhlqoLy7Ryp8H9BRUWFHTt2FHYYgiAIgiD8B0SLahHTqVMnVq1aBYC6ujoODg506NCBUaNGoab2//92Pn/+HGNj48IO47NVDPBkUK+G+Pu4YG1pTKtuM9h98EKhxHJg6wl2rQshLiYRRzcbugxuhntxB6Vlnzx4waYlB3hwO4JXL2Lp9FMTGvxQRaFM0PZTHNx+ilfPYwCwc7GiZZfa+AV6FUi8QdtOsHtdCPExiTi42dB5cDPcvHOPd8vSrHijXsTS4acmfNe6itKyADtXB7Nh4T7qt6pMx4FNPys+mUzG3Dmb2bolmMTEZPz8PBk7rhuOTtYfXW/9ugOsWL6bqKg4PDwdGTW6C76+bvLXX72KY8b0NZw6fZWU5Dc4OdnQo1cz6tQpD8DTpy9ZOH8bZ89eJyoqDgsLExo2qkyPnt+joZH7NUEmkzFvzha2bjnyNl4Pxozr+sl4N6wLehtvPB6eDowa3Rmft/E+ffqSurUGKF1vxp8DqVuvvMKyuNhEmjcbTmRkDKfOLsPAQDfX/W7deIK1K0OIiUrErZgNP49sRnEf5e8/QPDBKyyeu5/nz2KxdzCj76CGVKicfS7+c/gqf285ze2bESTEp7B682CKedoqbCM6KoE5M/dw7vRdUpJTcXAyp1P3WtSo7fvROoKs+l0wdyd/bz1OYmIKJf3cGDX2RxwdLT+63qb1R1i1IojoqHiKedgzfFQbSvi6yF//ffxqzp65xauXcWjraFKylBs/DW6Os0vO9y0uLonW30/gZWQsx07PRt9A55Nxv9PWy5quvvaYa2twOyaJ307f59qrRKVlm7lbMqWqh8Ky1AwpvitPKC0/oaIbP3jZMOn0fVbdeJrnmD7m7O7jnNh6hKTYBKxcbGnQuzl2Ho5Ky17Yf4rQ4PNEPn4OgI2bPbU7NZSXz8zI5PCqvdy9cJPY59Fo6Wrh4udBnc6NMDA1LJB4v9S31PX/7Rzp/5F69erx/PlzwsLC+Pnnnxk/fjzTp0/PUS4tLa0Qovt3WVlZoampWdhhfDZdHU2u3Qxn4C/LCzWOk4cvs2r2Llp2rcPUlYNwdLdh4qDFxMco/yBKfZOGhY0p7fo0wMhUX2kZU3ND2vVpwNSVg5iyYhAlSrsxddgKnjx48cXxnjp8mTWzd9GiSx0mrxiEo5sNkz8Sb9rbeNv2zj3ed+7fDOfwzjM4uH08QfuUZUt3sm7tfsaN786GTZPQ1tGkR/eJpKbm/n+4f98ppk1dTZ++LdiybSoeHo707D6R6Oh4eZlRI+by8NEz5s4bzt87/6BW7QB+HvQnt24+BODBg2dIZTLGTejBzt0zGTaiI5s3HeKvWes/Gu/ypbtYt/YAY8d3Y/2m39HW0aRn98l5iHcNvfu2YMu2yW/jnSyP18rKjJBjCxUeffu1REdHi8qVS+XY3tgxiyhWLPdk851DBy7z1/RddOtVh1WbBuHuYcPAXouJiVb+/l8NfcjY4Wtp1KwcqzYPpkqNEgz7aQX3w57Ly7x5nUZJP2f6DmyQ634njN5A+KOXTJ/dhXXbh1Ctlg+/DF3NnVsRn4x55bIDbFgXzKhxP7J6wyi0tTXp2+NPUlPTc10naP85ZkzbTM8+jVi/ZSzFPOzp03MWMdEJ8jJe3o6M/70z23f/xvzFg5DJZPTp/ieZmdKc8Y9ZiXsx2xzLP6W+izkjy7sy79Jjmu24xO2YZJbVK4GJlnqu6ySmZVBx3Wn5o/qms0rL1XI0paSFAZHJqfmOKzfXjl5i/+K/qd6uLr3nDMXK2YZVvywgKU75+fHw6j18qvnTZUo/eswchKG5EatGLyAhKg6A9NQ0nt9/QrU2dek9dwhtfulKdMRL1k1YUmAxfykVFUmBPIqCohGloEBTUxMrKyscHR3p3bs3tWrVYteuXXTq1ImmTZsyceJEbGxs8PDI+ob75MkTWrVqhZGRESYmJjRp0oRHjx7Jt5eRkcGAAQMwMjLC1NSU4cOH07FjR5o2bSovU61aNQYMGMCwYcMwMTHBysqK8ePHK8Q1c+ZMfHx80NXVxd7enj59+pCUlCR/feXKlRgZGREUFISXlxd6enrypPt9y5cvp3jx4mhqamJtbU2/fv3kr33Y9f+pYwsJCSEgIABdXV2MjIyoWLEijx8//vzK/0IHQ64w4Y/N7AoqnFbUd/ZsOEbNxuWp3jAAe2cregxrjoamOkf2nFNa3s3bgQ79G1Gxth/q6spb6cpULo5/BS+s7c2xcTCnba/v0NLW4O71L6/vvRuPUaNxeao1DMDO2Ypub+MNySVeV28HfuzXiAq1/VDLJV6ANympzJmwjh4jWqKrn/fWpg/JZDLWrN5Hz17fU6NmWTw8HJk8pR8vX8YSfPh8ruutWrWHFi1r0uz76ri52TFufHe0tDTYvv0feZnLoXdo164+vr5u2Ntb0qt3c/T1dblx4wEAlSuXYuKkPlSsWBJ7e0tq1ChDp86NOHxIed1kx7ufHr2aUaNmGTw8HJk0pe/beHM/N1ev2kuLljVo9n01XN3sGDu+G1paGvy9PQQAVVUJZuZGCo/g4PPUrVceHV0thW1t3HCQhIRkOnVp+Mn63bD6GE2al6dh0wCcXa0YPqY5Wtrq7Nmh/Bg3rTtO+Yoe/Ni5Os4ulvTsVx8PL1u2bjwpL1O/URm69qpD2fLFct3vtdBHtGxTieI+DtjamdKlR2309LW5ffPjiapMJmP9msN079mQ6jX8KOZhz2+Tu/DqZRz/BOf+c5JrVx3i+xaVadKsEq5uNowe9yNaWhrs2J7dMtm8VVVKlymGja0ZXt6O9B3QlBcvYnj2NEphW5s3/kNiYgodOuXvd9UBOpewZfPt52wPi+R+XArjToTxJkNK82JWHzlmiHqdLn9Ev86ZkFvoaDCmghtD/rlNujT3n+LMr1N/h1CmfgX865THwtGKRv1boa6pwaWDZ5SWbzm8A+UaVsba1Q5ze0ua/tQGmVTK/dC7AGjpatNpUl98qvhhbmeJvZcTDXo351nYE+JexhRY3ELeiET1/4C2tra89TQ4OJg7d+5w6NAh9uzZQ3p6OnXr1kVfX5/jx49z8uRJeYL4bp2pU6eybt06VqxYwcmTJ0lISFA6DnTVqlXo6upy9uxZpk2bxq+//sqhQ4fkr0skEmbPns2NGzdYtWoVR44cYdiwYQrbSElJ4Y8//mDNmjUcO3aM8PBwhgwZIn99wYIF9O3blx49enDt2jV27dqFm5sbynzq2DIyMmjatClVq1bl6tWrnD59mh49enxTv+ihTHp6Bg/uROBb1l2+TCKR4Fu2WIEklQCZmVJOHrpM6ps0ivko737Lq4z0DB7eicCnjGK8PgUQ7/IZ2/Gr4I1P2dyTlbyIiHhJVFQc5QOzu4T19XXw9XXjypW7StdJS8vg5o0HBAb6yJdJJBLKB/pwJTR7Hb9SHhzYf4q4uCSkUin79p4kLS2dsgHFc40nMTEFQ0O9T8b7/r4/FW96WgY3bzyk/Cfifd+NGw+4fesR37eorrD8/r0IFs7fzuQpfVGRfPz/MT09gzu3IihbXvH9L1uuGNeuKH//r195TNlyiu9p+QoeXLvy6KP7+pBPKScOB4USH5+CVCrl0P7LpKVm4F9W+TXpnacRUURFxVOufPZQA319HUr4unD1yn2l66SnZXDr5mPKBXrLl0kkEsqV9+LqlQdK13mdksquv09ia2eGlZWJfPn9e89YsmAPv03qiuQT9fshdYkKxc30OfUsTr5MBpx6GoefZe69EzrqqhxpHUDID+WYX9sbNyPFL34qwPRqniy7+oR7cSn5iuljMtIzeBb2BJdS2e+3RCLBtVQxntx6lKdtpKemkZkpRecjX1ZTU96goqKClu7nf6EtSN9Si+r//6DG/2MymYzg4GCCgoLo378/r169QldXl6VLl6KhoQHA2rVrkUqlLF26VJ6grVixAiMjI0JCQqhTpw5z5sxh5MiRNGvWDIC5c+eyb9++HPvz9fVl3LhxALi7uzN37lyCg4OpXbs2AAMHDpSXdXJy4vfff6dXr17Mnz9fvjw9PZ2FCxfi6uoKQL9+/fj111/lr//+++/8/PPP/PTTT/JlZcuWVXr8mzZt+uixlSlThvj4eBo2bCjfn5dXwYyXLMoS45KRZkoxNFH80DE00ePp45dftO3H954zusds0tMy0NLWYOiUztg7594KkxcJ/1K8pw5d5uGdCCYuG/hF8QFEve0yNPtg/JqpmSFRr+KUrhMXl0BmphRTUyPFdUyNePjwmfz5jD8H8fPgWVQM7IKamipaWhr8NWcIjo7K6/Xx4xesX7efIUPbfzJe03zEGyuP94N1TA15+FD5OMPtW//BxdUWP7/s8YtpaekMHTKbn4e2w9rGjCcRkbnGCRAXm0xmphSTD4ZwGJvq8eih8vc/OioRE1O9D8rrEx2lvCs4NxOnd+CXYaupW3kMqmoStLQ0mDqrE/YOZh9dLyoqayiEiZmBwnJTUwOio+KVrUJsXNLb48y5zqOHisNnNm/4h1kztvL6dSpOzlYsWDIY9bfjkdPS0hk5dDEDh7TA2saUpxGv8nXMxlrqqElUiH6tOAQk+k0aLkbKx2c+jE9h1LE73IlJRl9DjS6+dmxsXIoGWy8QmZK1ne4l7cmQylh945nSbXyulIRkpFIpesaK54eesT5REXm7Phxcvgt9EwNc/DyUvp6els7B5bvwqeqP1gc9A4VFhW+nwaVopNOCgj179qCnp4eWlhb169endevW8m54Hx8feZIKcOXKFe7du4e+vj56enro6elhYmLCmzdvuH//PvHx8URGRhIQECBfR1VVldKlS+fYr6+v4g0E1tbWvHyZfSE4fPgwNWvWxNbWFn19fdq3b090dDQpKdnfnnV0dORJ44fbePnyJc+ePaNmzZp5qodPHZuJiQmdOnWibt26NGrUiL/++ivHMIMPpaamkpCQoPCQyTLzFI8ANo7mTF/1M5OWDqBOswrM/W0DTx5++RjVghYVGcuqWTvoN74dGpq5j7vLzZ7dxylTur38kZH+750jc2ZvIjExmWXLx7Bpy2Q6dmrIz4P+5O7d8BxlIyNj6NljInXrBtKyVa334j1B2dId5Y9/M9533rxJY9/ek3zfXLE1ddbMDbi42NKoceV/PYYvtWjefhIT3jBncU9WbhhEm/ZVGD10NffuKl5H9u05Q4UyfeWPjIx/t37rNyzHhm1jWbpqGA6Olgz/eaF87OvsP7fj7GpNg0aB/2oM7wt9mcjOey+5HZPM+Rfx9D90k5jX6fzglTXuu7ipHh2K2zLy2J3/LKa8Orb5ENeOXqbt2K6oa+S8FmRmZLJp0kpkMmjUr1UhRCiIFtUiqHr16ixYsAANDQ1sbGwU7vbX1VW8azYpKYnSpUuzbt26HNsxNzfP137V1RX/iVVUVJBKswbwP3r0iIYNG9K7d28mTpyIiYkJJ06coGvXrqSlpaGjo5PrNmSyrLFK2tra+YonL8e2YsUKBgwYwIEDB9i0aRO//PILhw4donz58jnWAZg8eTITJkxQWKZqUBx1Qx+l5YsifSNdJKqSHDcixcckffLGo09RV1fD2j6rtcnV0577t56wb9Nxeo5o+dnbNPhYvCafF+/D2xHExyYxsvOf8mXSTCm3Qx8QtO0ka0OmIlHN/Xt89Rpl8PHN7opOT8tKEqKi4zG3yJ6VIjoqHk8vJ6XbMDIyQFVVQnR0nMLy6Og4zMyMAAgPf8H6dQfYuWsGbu72AHh6OnHxwm02rD/AuPE95Ou9fBlD544T8Cvlwfhfeyhss3qN0gozCaS9jTdaSbweXsqHahjL41VsEYyOjpfH+76DQWd4/SaVxk0UZ1s4e/YGYXfDKVki62abd///lSt0p3vPZnTqVUGxnox1UVWV5LhxKjY6CVOzXG7sM9MnJjrpg/KJuZZXJuJJFFs3nGT99qG4uGW1Xrt72BB66SHbNp1k+JgW8rJVq5eihI+z/Hl6egYAMVEJmJsbyZdHRyfg4WmvdH/GRnpvjzNBYXl0dAKmZootmfr6Oujr6+DoaImvrwtVKgzgyOFL1G9QjvNnb3MvLIIyBy8C2fVbvdJAuvZoQO9+TT563LFv0smQyjDV1lBYbqqlQdTrvN2gmyGTcSs6CQeDrGt6GStDTLXV+eeHcvIyahIVhpdzoUMJW2puyn089afoGOgikUhIilU8P5JiE3O0sn7oxNYjHN8cTKdJfbByznnTWVaSuoK4lzF0mdLvq2lNhW/rrn+RqBZBurq6uY7b/JC/vz+bNm3CwsICAwMDpWUsLS05f/48VapkfaBkZmZy6dIlSpUqleeYLl68iFQqZcaMGUgkWf9AmzdvzvP6APr6+jg5OREcHEz16tU/WT4vxwbg5+eHn58fI0eOJDAwkPXr1+eaqI4cOZLBgwcrLLMo3i1fx/G1U1dXw8XDjmsXwgiompWAS6VSrl0Io16LigW6L6lMJv/Q/lxq6mo4e9hx/WIYZd+L9/qFMOo2/7x4S5RxZ/qaIQrLFkzchI2jBU1+rP7RJBVAV1cbXd3sL1YymQwzMyPOnrmG19vENCkphatX79H6hzpKt6GhoYZ3cRfOnLlOzVoB8uM6e+Y6bdrVA7JaJYEc4zglqhKk792MEhmZlaR6F3fm90l95P+Dn4r3zJnr8kT6XbytfqitNF51DTW8iztz9sx1atYq+0G8OW/Y2b7tH6pXL42JieL/5p9/DSL1TfaNNtev32fM6IWsWjMeewdLQDHBVFdXw8PLjvNnw6haI/v9P382jJZtlL//JUo6cv5sGD+0z06Sz525i09JJ6XllXnz9magD+teVVVFoe4BdHW10H0vicmqX0POnr2Fh1fWrAZJSa+5fvUBLVtXU7o/dQ01vLwdOXvmFtVr+smP89zZ27Ruk/v1UIYMZFljXAH+mNVbYWaBG9cfMv6XlSxbPRx7+083TqRLZdyISiTQxojgx9FZdQAE2hqxNo/d9hIVKGaiy9EnWTce7bwXyalnsQplltXzYee9SLbf/fjQj09RU1fDxt2eB6F38a6Q1esnlUp5EHqXch9ptT++JZijGw/S8ffe2CqZeeJdkhr97BVdpvRH5yNTpxUGkagK/zfatWvH9OnTadKkCb/++it2dnY8fvyY7du3M2zYMOzs7Ojfvz+TJ0/Gzc0NT09P5syZQ2xsbL5uOnJzcyM9PZ05c+bQqFEjTp48ycKFC/Md7/jx4+nVqxcWFhbUr1+fxMRETp48Sf/+/fN9bOnp6SxevJjGjRtjY2PDnTt3CAsLo0OHDrnuX1NTM8f0Vyoqqvk+jtzo6mji6pQ9ttDJ3hxfb0di45J48iy6wPbzKQ3bVGHebxtx9bTHrbgDezceI/VNGtUbZiVMcyasx+TtdFOQ1UIU8TDrAyUjI5PoV/E8vPsULW1NeQvquvl78Qv0xMzKmNfJqZw4eImbl+4zelb3L463wQ9VWPD7Rlw87XHzdmDfpqx4q76Nd96vWfG26Z0Vb8Z78WZmZBLzKp5Hd5+ipaOJlZ0Z2rpa2LsqTkelqa2BvqFOjuV5oaKiQvsO37Fo4XYcHK2xs7NgzuyNWFgYy5M6gC6df6VmrQDavU1EO3ZsyKiR8yhewgUfHzfWrN7H69epNGtWDQBnZxscHKyYMG4JQ4a1x8hIjyPB5zl96irzFwwHspLUTh3GY2NjztBhHYiJyW6Re781L2e89Vm88G8cHa2wtbNg7uzNb+MtIy/XtfNv1KxVlrZv4+3QsQGjRy6geAkXSvi4sfZtvE2bVVXYfvjjF1y8cJsFi4bn2LeDg+LY2ti4rHhdXG0xMNAlKT0pxzptOlTht1824uVtj7ePA5vWHuPN6zQaNM16/yeMWo+5pSF9fsp6/1u3q0zvLvNZtyqEilW8OLQ/lFs3IhgxNrtlPz4+hcjnsUS9ytr/40dZQ5BMzfQxNTPAydkCOwczpv66lf4/N8LQSIejR65z7nQYM+Z2VVqv79dv2/a1WLpoLw4OltjamTF/zg7MLYzkSShAzy5/UL2mPz+0qwHAjx1rM3bUcryLO1LCx5n1aw7z+nUqTZplJeQRT14RdOA8gRW8MTbWJzIylhVL96OpqU6lKllJvL2DhUIscW9bGl1crPM8j+qK60+ZWsWD61FJXH2VQMfidmirSdgeljWMZ2pVDyKTU5l54REAff0cCH2ZyOOE1xhoqNHV1w4bPU223MkqH5eaQVyq4hfWdKmMqJR0Hsa/zlNMH1OhWTW2z1iHrbsDth4OnN5xlLTUNPxrZ7Xgbv1jLQamhtTp3AiAY5sPc2TNPloO74CRpQmJb/9nNLQ10dTWJDMjk40Tl/PsXgQ/TuiBVCqVl9HW1/noTCJCwRO1/X9OR0eHY8eOMXz4cL7//nsSExOxtbWlZs2a8lbI4cOH8+LFCzp06ICqqio9evSgbt26qKrmPUErWbIkM2fOZOrUqYwcOZIqVaowefLkjyaFynTs2JE3b97w559/MmTIEMzMzGjRooXSsp86ttevX3P79m1WrVpFdHQ01tbW9O3bl549e+YrpoLk7+vCwc1j5c+njcuqnzVbjtLj5/wn9p+rYi0/EmKT2bQ0iLjoBJzcbRn9Z3d5V3pUZJxCS1JsVALDOs6UP9+9PoTd60Pw9nNlwvw+AMTHJjH31w3ERiego6eNo6s1o2d1p2SA8hsU8qNCLT8S4pLZsiSIuJgEHN1tGTEz93hjohIY0Sk73j3rQ9izPgQvP1fGzevzxfEo07VbE16/TmX8uEUkJqTg7+/JosWj0NTM7kJ9Eh5JXGx2Iln/uwrExCYwd/ZmoqLi8PRyYtHiUfKudHV1NRYuGsnMmevo12cqKSlvsHewYtLkvlSp6g/AqVNXCQ9/QXj4C2pU66UQ041bufdqdOnW+G28S97G68HCxSNyxBv7Xpdq/e8qEBubwNzZW97G68jCxSNydP1v3/4PllYmVKj46Ynx86J2PT/iYpNZMj+I6KgE3D1s+XNBd0zfDlV58ULx/fct5cyvU35k0Zz9LJy9D3sHc6b91RlX9+wvIcdDrvP7mE3y52OGrQWga686dO9TFzV1VWbO68b8WXsZ0n8Zr1PSsHMwZezvPyj8cEBuOnWtx+vXqfw+fjWJiSmU8ndn3qKBaL43JvrJk1fEvTfXZ936AcTGJLFg7k6io7KGCcxbNFDe9a+hqc7li3dZv+YQCfEpmJoZ4F+6GCvXjcxxE9aX2P/gFSZa6gzwd8RcR4Nb0Ul0O3BdPuWUtZ4mUll2q7KBhhq/VXLHXEeD+NQMbkQl8sPuUO4X4N39H+NT1Z/k+CSC1+4jKSYBa1c7OvzWCz3jrDqJfxmL5L2Gl/N7T75NRlcobKd6u3rU+LE+CdFx3D5zHYD5facplOkytR/O7w37KSzfUouqikwmK7jJzIT/C1KpFC8vL1q1asVvv/1W2OEUOm2HNoUdQr6cDW1X2CHkS2YRuwL5GCsfY/i1kpFzIvivWVJ6wfxS0X9JU/Xr+LWivPJbWbT+6X6r8d8kvAWllUu9f30fVt4jC2Q7L25OLpDt/JtEi6rA48ePOXjwIFWrViU1NZW5c+fy8OFD2rZtW9ihCYIgCILwgW+pRfXbOVIhVxKJhJUrV1K2bFkqVqzItWvXOHz4sJhzVBAEQRCEQiVaVAXs7e05efLkpwsKgiAIglDovqUWVZGoCoIgCIIgFCEq31CH+LdzpIIgCIIgCEKRIlpUBUEQBEEQihDR9S8IgiAIgiB8lfLzgzxF3beTkguCIAiCIAhFimhRFQRBEARBKEJE178gCIIgCILwVRJ3/QuCIAiCIAhCIRMtqoIgCIIgCEWI6PoXBEEQBEEQvkoiURUEQRAEQRC+SmKMqiAIgiAIgiAUMtGiKgifcDa0XWGHkC/lSq0r7BDy5djFHws7hHx5+Sa8sEPIl5nXdAs7hHwpb1H0PpbcDOILO4R8+amCRmGHkC+zr+kVdgj50srlP9iJ6PoXBEEQBEEQvkbf0hjVb+dIBUEQBEEQhCJFtKgKgiAIgiAUISoqKoUdwn9GJKqCIAiCIAhFiLjrXxAEQRAEQRAKmWhRFQRBEARBKEK+pZupRKIqCIIgCIJQlHxDY1S/nZRcEARBEARBKFJEi6ogCIIgCEJR8g01M4pEVRAEQRAEoSj5hrr+RaIqCIIgCIJQlHxDieo31HgsCIIgCIIgFCWiRVUQBEEQBKEo+YaaGb+hQxX+CyoqKuzYsaOwwxAEQRCE/1syFZUCeRQFokVVyLMXL14wefJk9u7dS0REBIaGhri5ufHjjz/SsWNHdHR0CjvEQnVg6wl2rQshLiYRRzcbugxuhntxB6Vlnzx4waYlB3hwO4JXL2Lp9FMTGvxQRaFM0PZTHNx+ilfPYwCwc7GiZZfa+AV6/evH8k7FAE8G9WqIv48L1pbGtOo2g90HL/xn+3/foW0n2LvhH+JjEnFwtaHDoGa4ejsqLRvx4AXblu3n4Z0Iol7E8uOAJtRrVVWhzLZlB/h7xUGFZdYOFkxfPyLfsf296SSbVoUQE52IazFrBgxvhlcJ5e89QMihKyyff4AXz2KxczCjx4AGlK+c/b5OGbuRoN2K9Vy2ggfT5nUHIPTCPQZ1X6h02wvWDsAzl/PuYx4eDuH+vkOkxidgYG9HifatMXZ1Ulr2+fnLhO0+QPLLV8gyMtG1ssClfi3sK5aTl7mzfQ9Pz17gTXQsEjVVDJ0c8GzZBGNX53zHpsyZXcc5vvUISbEJWLnY0rBPc+w9lJ8P5/ef4vLh80Q+fg6ArZs9tTs3lJfPzMjk0Kq93D1/k5jn0WjpauHq50HdLo0wMDUskHiDtp1g93vXh86Dm+Hmnfv1YfPSAzx8e33o8FMTGrSuorQswI7VwWxYuI/6rSrTaWDTAon3yr5jXNwRTEpcAmZOtlTr1gKrYk5Ky14/eJJbIeeIDs+qXwtXeyq0a5SjfMyTF5xYs5OnN+4hzZRiYm9Fg2FdMTA3+eJ4v3e2po2bLSaaGtxPSObPq/e5FZf0yfVq2poxoYwnx55HM+rcLfnyE00qKS0/78ZDNtx7+sXxCnknElUhTx48eEDFihUxMjJi0qRJ+Pj4oKmpybVr11i8eDG2trY0bty4sMMsNCcPX2bV7F30GNYCt+IO7N10nImDFvPXxuEYmujnKJ/6Jg0LG1MCa5Rk5V87lW7T1NyQdn0aYG1vhkwGIfvOM3XYCqavGoy9i9W/fUgA6Opocu1mOKs3hbBpyc//yT6VORN8mXVzd9J5SEvcvB04sPkYUwcvZvqGERgaK6nf1DTMbUwJqF6KtXN25LpdO2crRszqJX+uqpr/TqYjQaEsmLGLQaOb41XCga3rjzOszxJW7xiGsZL3/nroI34buY7u/esTWNmb4P2XGTN4JYs3DMTZzVpeLqCCB8MntJY/V9fIvlwXL+nEtkNjFba7fH4Ql86F4eFtn+9jeHrmAjfXb8OnUxuMXZ15EHSEs9NnU33aeDQNDHKUV9fTxb1xffSsLZGoqREZeo0rS1ajqa+Pha83ALpWFvi0b42OhRnStHQeBAVzZtpsakz/FU2DnPWSH1ePXmLfkr9p0r8V9h5OnNwRwsrRCxi0dDR6Rjm3/fDqPXyr+ePg7Yy6hjrHNh9m5agFDFg0AkMzI9JT03h27wnV29bFytmG10mv2btwO2vGL6HvnCFfFCvAqcOXWT17F92GtsC9uAP7Nh1n0qDF/Lkh9+uDpY0p5auXZPVs5deHd+7dDOfwzjM4vHfufKm7Jy5yfMXfVO/VGqtijoTuDmHHr/PpMHcMOkrqN+LGPYpVLo2Npwuq6mpc+Pswf0+YT/vZo9AzNQIg7vkrtoz6k+K1Ain/w3doaGsR8+QFaurqXxxvDRsz+hV35o+r97gZm0grF1tmBpagTfBF4tLSc13PSluTvsWdCY2Kz/Fa4wNnFZ6XtzRmRCl3jj6L+uJ4C0TRaAwtEKLrX8iTPn36oKamxoULF2jVqhVeXl64uLjQpEkT9u7dS6NGjXKsExISgoqKCnFxcfJloaGhqKio8OjRI/mykydPUq1aNXR0dDA2NqZu3brExsYCkJqayoABA7CwsEBLS4tKlSpx/vx5+bqxsbG0a9cOc3NztLW1cXd3Z8WKFfLXnzx5QqtWrTAyMsLExIQmTZoo7Lug7NlwjJqNy1O9YQD2zlb0GNYcDU11juw5p7S8m7cDHfo3omJtP9TVlX9fLFO5OP4VvLC2N8fGwZy2vb5DS1uDu9cfF3j8uTkYcoUJf2xmV1DhtKK+s3/jUao3Kk/VBgHYOlvReWgLNLXUOZpL/bp6OdC2b2MCa+VevwASVQlGpgbyh76RXr5j27L2KA2+L0f9JgE4uVoxeHRztLTU2b/jvNLy2zYcJ6CCBz90rI6jiyVd+tbD3cuWvzeeVCinrqGGiZmB/KFvkN1joa6u+JqBoS4nQ65Tr3FZVD6jO+/BgWAcqlXEoUoF9G2t8e3UBlVNDcKPnlZa3syrGNZlSqFva42upTkudWugb29LzN178jJ2FQIwL+GFroU5+nY2eLdtQcbrNyQ8+fLWqJPbQyhTrwKl65THwtGKJv1boa6pwcWgM0rLtxregfKNKmPjaoe5vSXNBrZBJpPyIPQuAFq62nSZ3BefKn6Y21vi4OVEoz7NeRb2hLiXMV8c796N2dcHO2crur29PvzzkevDj/0+fn0AeJOSytwJ6+gxoiV6+gXXo3Vp1z8Urx1I8ZrlMbW3pkav1qhpanAjWPn5UG9QR0rWr4K5sx0mdlbU6tMWZDKeXL0jL3N6/R6cShenUsemWLjYY2RtjkuAj9LEN79+cLNl9+MX7At/yaPE10y/co83mZk0dLTMdR0JMLa0B8tuh/Ms5U2O12NS0xUelaxMuRQVz7OU1C+Ot0BIVArmUQSIRFX4pOjoaA4ePEjfvn3R1dVVWuZzPhwhK3GtWbMm3t7enD59mhMnTtCoUSMyMzMBGDZsGNu2bWPVqlVcunQJNzc36tatS0xM1ofHmDFjuHnzJvv37+fWrVssWLAAMzMzANLT06lbty76+vocP36ckydPoqenR7169UhLS/useJVJT8/gwZ0IfMu6y5dJJBJ8yxYrsKQyM1PKyUOXSX2TRjEf5d2b/68y0jN4eDeC4mWKyZdJJBKKlynGvRuPvmjbkRFR9GsynkEtf2f+hLVEvYjN1/rp6RncvfWU0uUUY/Mv586Nq8rf+5tXH1O6nLvCsrKBHjnKh164T7Ma4+jQdCp/TtxGfFxyrnGcPHqDhPgU6jcpm6/4AaQZGcQ/CsesuKd8mYpEgpm3J7H3HnxyfZlMxqsbt0l+Hompp7vSMtKMDML/OYGajjYGDnb5jvF9GekZPAt7gpufYp27+RUj/NajPG0jPTWNzAwp2h9J7t4kv0FFRQUt3S9LADPeXh98yiheH3zKFiPsC68Py2Zsx6+CN75li326cB5lpmfw8v4THEp6yJepSCQ4+Hrw4s6jPG0jIy2NzMxMNPWyPi9kUikPL9zAyMaCvyfMY3HHkWwc9gf3z1754njVVFQoZqjHhVdx8mUy4MKrOIor6W15p5OHA3Fp6ewNj/zkPow11algaczex58uKxQ80fUvfNK9e/eQyWR4eHgoLDczM+PNm6xvon379mXq1Kn53va0adMoU6YM8+fPly8rXrw4AMnJySxYsICVK1dSv359AJYsWcKhQ4dYtmwZQ4cOJTw8HD8/P8qUKQOAk5OTfDubNm1CKpWydOlSeSK9YsUKjIyMCAkJoU6dOvmOV5nEuGSkmdIcXXiGJno8ffzyi7b9+N5zRveYTXpaBlraGgyd0hl75/+m2/9rkRifW/3q8/wL6tfN25Eeo37A2sGCuOgE/l5xkN/6zmXKmqFo62jlaRvxsVmxGZsotsQam+oT/kh5bDFRiTmGBBib6hEbnSh/HlDBg8o1fLC2NeFZRDRL5+xjRL+lzF3VX+nwhP07zlE20ANzS6M8xf2+tMQkZFJpji5+TUMDkp7n/sGcnvKaQz+NRJqRjopEgk+HNpiXUBw/HXn5GhfnLyMzLQ0tIwMChw1AUz//rdbvS0lIRiqV5uji1zPS59WTvJ0PB5bvwsDUAFc/D6Wvp6elE7R8F77V/NHSzdu5kJuEj1wfnn3B+Xvy0GUe3olg0rKBXxTfh14nJiOTStExVDwfdIz0iXmat0TtxOqd6BkbypPdlPgk0t+kcmH7IQLbNqBShyY8unSTPVOX0fzX/tiVUP4FJy8MNdVRk6gQk6rYxR+Tmo5jLl9EfE0MaOhoSeeQy3naR317C1IyMjn6/Cvp9odvah5VkagKn+3cuXNIpVLatWtHaurndYeEhobSsmVLpa/dv3+f9PR0KlasKF+mrq5OQEAAt25lDXrv3bs3zZs359KlS9SpU4emTZtSoUIFAK5cucK9e/fQ11f8gHjz5g33799Xus/U1NQcx5KWmo6G5pePo/ocNo7mTF/1MynJrzlz5Cpzf9vAhPl9vrlk9d9Q8r2b0hzcbHD1dmRgi984eySUag3LF2JkUKOen/xvF3drXNytaddoMqEX7udojX0VGcf503cYO7X9fxqjmpYmVX8fRcabVKJu3uHGhq3oWJhh5pXdumfqXYyqv48iLTGJxyEnuTB3KZXHD1M67vW/cnTTIa6FXKbbtH6oa+T8v87MyGTjxJXIZNC4X6tCiPDToiJjWTVrB6P/6llo16bcnN92kLsnLtH8twGova1fmUwGgEuAD/6NawBg7mzH8zsPuRZ04osS1fzSVlPlF/9iTAu9R3xaRp7WaeBgycGIV6RJZf9ydPnw7eSpoutf+DQ3NzdUVFS4c+eOwnIXFxfc3NzQ1tZWup5EknV6vbtIQVZ3/PtyWzev6tevz+PHjxk0aBDPnj2jZs2aDBmSdfNDUlISpUuXJjQ0VOFx9+5d2rZtq3R7kydPxtDQUOGxbNaWj8agb6SLRFVCfEyiwvL4mCSMTL9s/JW6uhrW9ma4etrTrk8DnNxs2Lfp+Bdts6jRN8ytfhMx/ML6fZ+uvjZW9uZERuS91cTQOCu22BjFu4tjoxMxMVWejJmY6RP7wbHERidh/JFjsbEzxdBIl6dPcsa2f+d5DAx1qFi1eJ7jfp+Gvh4qEgmpCQkKy1PjE9A0zD2hVJFI0LW0wNDRHtf6tbAp68e93QcUyqhpaqJraYGxmwulurVHoioh/Oipz4rzHR0DXSQSCUlxinWYFJeI3ke6egGObz3Csc3BdJrUGysX2xyvZ2ZksmHSCuJextBlcp8vbk0FMPjY9UHJjVR58fB2BPGxSYzo/CdtKg+lTeWh3Lx8nwNbTtCm8lCkmdLPjldbXxcViYSUeMXzISUuEV2jj3/BuLgjmAvbD9NsXF/MnbLrV1s/qw5M7RW/YJvYWZEYlb/hNh+KT00nQyrD5IOE3URTneg3OYd42epoYaOrxZRy3oQ0qkhIo4rUs7egkpUJIY0qYvNBb4qviQGO+jrsEd3+cvPmzcPJyQktLS3KlSvHuXPKx1q/M2vWLDw8PNDW1sbe3p5BgwbJe2PzQiSqwieZmppSu3Zt5s6dS3Jy7uPkPmRubg7A8+fP5ctCQ0MVyvj6+hIcHKx0fVdXVzQ0NDh5Mvsmk/T0dM6fP4+3t7fCfjp27MjatWuZNWsWixcvBsDf35+wsDAsLCxwc3NTeBgaKp9yZuTIkcTHxys8ug5U3uL7jrq6Gi4edly7ECZfJpVKuXYhjGIlCnY8qVQmIz09b60A/y/U1NVwLmbHjYuK9XvjYhhuxZ0KbD9vUlJ5+TQKo1wSTGXU1dUo5mXLpbOKsV06d4/ivsrfe29fRy6dC1NYdvHM3VzLQ1araUJ8CqZmirHJZDIO7DpPnYZlUFNXzXPc75OoqWHo5EDUjewvojKplKibdzB2c8nzdmRSGdKMj5+bMpkM6Reev2rqati423P/7Y1QkFXn90Pv4uDllOt6x7YE88/6IDr+3gu7YjmnhXqXpEY/fUWXyX3RMVA+Hv9z4nXxsOPaB+fv9QthuH/m9aFEGXemrxnC1JWD5Q8XT3sq1fFn6srBSD5j9op3VNXVsHC158nV7PqVSaU8uXYXKw+nXNe78Pdhzm05QNOxvbF0U6xfVXU1LN0ciX2qONQh7tlL9L9waqoMmYy78UmUNjeSL1MBSpsbcSM2MUf58KQU2h+5ROeQy/LHiRcxXIqKp3PIZV6+VuxRa+hoye24RO4l5P2z7z9RSDdTbdq0icGDBzNu3DguXbpEyZIlqVu3Li9fKh/Gsn79ekaMGMG4ceO4desWy5YtY9OmTYwaNSrvh5rvKIVv0vz588nIyKBMmTJs2rSJW7ducefOHdauXcvt27dRVc35Ienm5oa9vT3jx48nLCyMvXv3MmPGDIUyI0eO5Pz58/Tp04erV69y+/ZtFixYQFRUFLq6uvTu3ZuhQ4dy4MABbt68Sffu3UlJSaFr164AjB07lp07d3Lv3j1u3LjBnj178PLK6tJt164dZmZmNGnShOPHj/Pw4UNCQkIYMGAAERERSo9TU1MTAwMDhUdeutYatqlC8K6zhOw9T8SjSJZM20bqmzSqNwwAYM6E9aybv1dePj09g4d3n/Lw7lMyMjKJfhXPw7tPef5ei9m6+Xu5efk+L5/H8Pje86znl+5Tua7/J+MpKLo6mvh6O+L7dr5SJ3tzfL0dsbcx/c9iAKj/Q1VCdp/h2P7zPH0UyYo/tpL6Oo2qDbLqd+Fv69m0cI+8fEZ6Bo/DnvI47CkZ6ZnEvIrncdhTXkS8kpdZP3cXty7f49XzGO5ee8isUSuQqEoIrJW/+m35Y1X2/H2WA7vO8/hBJH9O2s6b12nUe3tj06RfNrBk9j55+eZtKnPu1B02rw4h/OFLVi4M4s7NCJr9kDXE5XVKKgv/3M3Nq4958SyGi2fDGD1oBbb2ppStoDim8tK5ezx/GkODZuX4Ei71ahJ+9ARPjp8m8elzrq7aQGZqKg5VAgG4vGgltzbvkJcP232AV9dvkfzyFYlPn3N//2EiTp3FtkLW+5GRmsqtLTuIvfeAlKho4h4+JnTJat7ExmET8OXnb8Xvq3Fh/2kuHTrHy/AX7JqzhbQ3aZSuk1UPW6avJWj5bnn5Y5sPc3j1Xr4f3AZjSxMSYxJIjEkg9W1SkpmRyfrfl/Ps7hNaDe+AVCqVl8kogC+GDX6owpFdZzm6L+v6sHR61vWh2tvrw9xf17N+Qfb1ISM9g0d3n/Lo7fUh9lU8j+4+5cXb1n5tXS0cXK0VHlraGugZ6uDg+uXTVPk3rs71Q6e4eeQsMU9ecGTRZtLfpOJdM2tITNBfqzm5Zpe8/IXthzizfi+1+rXDwMKU5NgEkmMTSHsv6fNvWpO7Jy9x/eBJ4p6/4sq+ozw4fx3fepW/ON6N957SyNGKevYWOOppM6SkK9qqqvIbpX7xL0ZPr6xrWJpUxsPEFIVHUnoGKRmZPExMIeO9HkAdNVWq25ix+2tsTVVRKZhHPs2cOZPu3bvTuXNnvL29WbhwITo6Oixfvlxp+VOnTlGxYkXatm2Lk5MTderUoU2bNp9shX2fGKMq5ImrqyuXL19m0qRJjBw5koiICDQ1NfH29mbIkCH06dMnxzrq6ups2LCB3r174+vrS9myZfn9998VxqQWK1aMgwcPMmrUKAICAtDW1qZcuXK0adMGgClTpiCVSmnfvj2JiYmUKVOGoKAgjI2NAdDQ0GDkyJE8evQIbW1tKleuzMaNGwHQ0dHh2LFjDB8+nO+//57ExERsbW2pWbMmBgU8Rq5iLT8SYpPZtDSIuOgEnNxtGf1nd3nXXlRkHCrvfXuNjUpgWMeZ8ue714ewe30I3n6uTJifVZfxsUnM/XUDsdEJ6Ohp4+hqzehZ3SkZoPwGkH+Dv68LBzdnz9c5bVwHANZsOUqPn5VPOP9vKF/Tj4S4JLYtPUB8TAKObrYMm9FDfoNKVGRsjvod3Tn7S9G+DSHs2xCCZylXfpnbF4CYV3HMG7+WpIRk9I308PB1ZvyinzAwzt/NPjXqliI+NomVC4KyJvz3sGHqvG6YvO3Kf/kiFsl7sZUo5cQvk9qxfN4Bls7dj62DGb/N7CSfQ1UikXA/7DlBuy+QlPgGU3MDygQWo0ufemhoKF6y9+04R/GSTjg4W+Qr5g/Zli9DWmISd7bvyZrw38GOckP7y7v+X0fHKHyoZaamcm3VBl7HxKGqoY6etRV+PTtjWz7rpkYVFQlJzyK5cGIxaYnJqOvpYuTsSMXRP6NvZ/NFsQL4VvUnOT6J4DX7SIxNwNrFjk6/90LPOCve+JexCjORnN1zksz0TDb8vkJhOzXa1aNm+/okRMVx+8x1AOb2maZQpuvUfriU/LIxlBVq+ZEQl8zmJUHExWRdH0bOzL4+REfGKZwjMVEJDO+k/Powbl7Oa21BK1apNK8TkjizcS8psYmYOdvSdGwfedd/4ivF+r164ASZGRnsm7ZMYTvlWten/A/fAeBWviQ1erbm/PZDhCzbhrGNBQ2GdcXW2/WL4z3yLAojTXW6eTpgoqnBvYRkfj5zndi3N1hZamsileV/fGktWzNUgMPvfcH9ahTCGNW0tDQuXrzIyJEj5cskEgm1atXi9GnlU5dVqFCBtWvXcu7cOQICAnjw4AH79u2jffu8j6lXkck+490ThG/I1Zg9ny70FSlXal1hh5Avxy7+WNgh5Iut7ueP/ysMM68VTBf2f6W8RcFNHfdfcTMoWsNxTkVqFHYI+bI+rGj96mFuv2pVkNzrLPt0oTy4vvvHHDcQa2pqoqmpmaPss2fPsLW15dSpUwQGBsqXDxs2jKNHj3L27Nkc6wDMnj2bIUOGIJPJyMjIoFevXixYsCDPMYquf0EQBEEQhKKkgMaoKruBePLkyQUWZkhICJMmTWL+/PlcunSJ7du3s3fvXn777bc8b0N0/QuCIAiCIBQlBdT1P3LkSAYPHqywTFlrKmTNna6qqkpkpOKY3cjISKyslE+ZOGbMGNq3b0+3bt0A8PHxITk5mR49ejB69Gj57EAfI1pUBUEQBEEQvkHKbiDOLVHV0NCgdOnSCjP1SKVSgoODFYYCvC8lJSVHMvru5uu8jjwVLaqCIAiCIAhFiKyQfplq8ODBdOzYkTJlyhAQEMCsWbNITk6mc+fOAHTo0AFbW1v58IFGjRoxc+ZM/Pz8KFeuHPfu3WPMmDE0atRI6WxByohEVRAEQRAEoSj5jDlQC0Lr1q159eoVY8eO5cWLF5QqVYoDBw5gaWkJQHh4uEIL6i+//IKKigq//PILT58+xdzcnEaNGjFx4sQ871MkqoIgCIIgCEKe9OvXj379+il9LSQkROG5mpoa48aNY9y4cZ+9P5GoCoIgCIIgFCWF06BaKESiKgiCIAiCUJQU0hjVwiDu+hcEQRAEQRC+SqJFVRAEQRAEoSgppJupCoNIVAVBEARBEIqSbydPFYmqIAiCIAhCkSLGqAqCIAiCIAhC4RItqoIgCIIgCEXJN9SiKhJVQRAEQRCEouQb6g//hg5VEARBEARBKEpEi6ogfEKmrLAjyJ9jF38s7BDypUrptYUdQr5sPtGhsEPIl95eyYUdQr7seKxV2CHkWxXrtMIOIV901YvWRW1DrdjCDuHrI7r+BUEQBEEQhK/St5Oniq5/QRAEQRAE4eskWlQFQRAEQRCKEJn4ZSpBEARBEAThqyTGqAqCIAiCIAhfpW8nTxVjVAVBEARBEISvk2hRFQRBEARBKErEGFVBEARBEAThq/QNjVEVXf+CIAiCIAjCV0m0qAqCIAiCIBQl306DqkhUBUEQBEEQipRvaIyq6PoXBEEQBEEQvkoiUf1KPXr0CBUVFUJDQ//V/YSEhKCiokJcXNy/uh9BEARBEAqIRKVgHkWA6PovJJ06dWLVqlXy5yYmJpQtW5Zp06bh6+tbaHGFhIRQvXp1+XMLCwsqVarE9OnTcXFxKbS4ioKgbSfYvS6E+JhEHNxs6Dy4GW7eDkrLPnnwgi1LD/DgdgRRL2Lp8FMTvmtdJddt71wdzIaF+6jfqjIdBzYtkHgPbTvB3g3/ZMXrakOHQc1w9XZUWjbiwQu2LdvPwztZ8f44oAn1WlVVKLNt2QH+XnFQYZm1gwXT148okHjzomKAJ4N6NcTfxwVrS2NadZvB7oMX/rP9v+/kzuOEbDlCYkwi1q42NOvbHAdP5fV7Zt9pLh46z4tHzwGwc7enfpcGCuWvHb/C6T2niAh7QkpiCoMWDMHWze6zYtu9+STb1oYQG52Is7s1vYc2w6O48nMV4PjhK6xZeIDI57HY2JvRpX8Dylb0kr/+OiWVFXP3cvroDRLjk7G0MaFx60o0aF5BXuZ5RBRL/9rDjdCHpKdnUDrQg95DmmFsqv9Zx3Bj/1Gu7ArmdVwCJo62VOzaEgt3J6Vlbx06SdjRc8Q8eQaAuYsDZds2Uiif/jqVs+t28vjcVd4kJaNvYUqJ+lXxrlv5s+LbvvEkG1YdJSYqEddi1gwc0RRvn9zr+J+DV1g6L4gXz2KxczCj18DvCKzspbTsH79tY+fWM/Qf2phWP2bHt3pJMKeP3yLszjPU1VXZf+K3z4od4MKeY5zdfoSk2AQsnW2p07MFNh7Kz9/LB05x7cg5oh5nnb9WbvZU69Ao1/L7527i8oGT1OrejIAm1ZWW+ZSdm06yeXUIMdFZ9dtvWDM8S+Rev0cPXWHlggO8eBaLrYMZ3Qc0oFwlxfp9/CCSpbP3cuXSA6QZmTi4WDJuekcsrY0BGNx9PlcvPlBYp2Hz8gwc3eKzjuFLyIpGjlkgRItqIapXrx7Pnz/n+fPnBAcHo6amRsOGDQs7LADu3LnDs2fP2LJlCzdu3KBRo0ZkZmbmKCeTycjIyCiECHNXGDGdOnyZNbN30aJLHSavGISjmw2TBy0mPiZRafm0N2lY2JjStncDjD7xQX3/ZjiHd57Bwc26wOI9E3yZdXN30qxzXX5fNhgHNxumDl5MfKzyeFNT0zC3MaV1r4YYfiReO2cr5u4cL3+Mnd+vwGLOC10dTa7dDGfgL8v/0/1+KDTkErsW7aD2j/UYuGAINi62LBm5kMRc6vf+lXuUqu5Pr+l96f/XQAzNjVg8YgHxUXHyMmlv0nAq4UyDbo2+KLajB0NZMmsXbbvVZs6agbi42zCm/xLicjlXb155xNRf1lGnSQBz1g4isGoJfhuykkf3nsvLLPlzFxdP32Hor21YtHkYTX+owoLpOzhz9AYAb16nMrrfElSAyQt68cfSfmSkZzJh8HKkUmm+j+H+yYucXvU3pVvW5/tpwzF1smXf7/N4Ha/8GJ7fCMO1Umkajv+JppN+RtfMiH2/zSM5Ok5e5vSqbUSE3qT6gA60mvULPg2qcXLZFh6dv5rv+IIPhDL3j9106lmbpRsH4uZhw8+9lxIbnaS0/LXQR0wYsZ4GzQJYtmkglasXZ9TAVTwIe5Gj7LHga9y49hgzc4Mcr6WnZ1Ctti9NWwbmO+b33Tx2ieClf1OpTT26/DUUC2dbNo6dT3Kc8voNvxZG8aqlaTe5Px3+GIyBuTEbxs4n8b3z9507p67w9M4j9EwMPzu+f4JCWThzF+171Gbh+qxzeETfJcTmcg7fuPKIiaPWUa9JAAvXD6JitRKMG7ySh++dw8+eRDGw6zzsnSyYsbg3izf9zI/da6Ohqdie912zcmw+OFb+6P7T1/GZ/f9MJKqFSFNTEysrK6ysrChVqhQjRozgyZMnvHr1Smn5o0ePEhAQgKamJtbW1owYMUIhIUtNTWXAgAFYWFigpaVFpUqVOH/+vMI29u3bR7FixdDW1qZ69eo8evRI6b4sLCywtramSpUqjB07lps3b3Lv3j35UIH9+/dTunRpNDU1OXHiBFKplMmTJ+Ps7Iy2tjYlS5Zk69at8u3FxsbSrl07zM3N0dbWxt3dnRUrVgCQlpZGv379sLa2RktLC0dHRyZPngwoHwIRFxeHiooKISEhAJ8dU0Hau/EYNRqXp1rDAOycreg2rDkamuqE7DmntLyrtwM/9mtEhdp+qKnn3rHxJiWVORPW0WNES3T1dQos3v0bj1K9UXmqNgjA1tmKzkNboKmlztHc4vVyoG3fxgTW8kP9I/FKVCUYmRrIH/pGegUWc14cDLnChD82syuocFpR3zm6LYRy9QMJqFcOK0crmv/UEnVNDc4HnVVavt3I9lRsXAlbNzssHCxpNfgHZDIZYZfvysuUrl2WOu3r4e5f7Iti+3v9Ueo1LUedxgE4uFjRb2RzNLXUObjrvNLyOzcep3SgBy3aV8fB2ZIOvevh6mnL7i0n5WVuXX1EzQZl8C3thqWNCfW/L4+LuzV3boYDWcnuy+cxDB73A85u1ji7WfPz+B8IuxXBlfP38n0MV3cfwbNWBTxqBGJsb03lHj+gpqnBnSOnlZavMbATxetVwczZDiNbK6r0aodMJuPptTvyMpF3HlKsajlsShRD38IUr9qVMHWy5dW9x/mOb9OaYzT6vhwNmpbF2dWSIb98j5aWOnt3KP//2rruBAEVPGjbqRpOLpZ061ePYl62bN94UqHcq8h4Zk3ZydhJbVFTV82xna596tK6fRVc3K3yHfP7zu34h1J1K1CydnnMHayp37cVapoaXDl0Rmn5JkM7UrpBZSxd7DCzt+S7/m2QSaU8unJXoVxiVBwHF22lyZAOqKrljD+vtq07ynfNylGvSQCOLlYMHJ11Dh/Yqfwc3r7+OGUDPWjdsTqOLpZ07lMPN09bdm7Krt/l8w5QrqInPQY2xN3TFht7MypULY6xieIXcy0tDUzMDOQPXT2tzz6OL/INdf2LRPUrkZSUxNq1a3Fzc8PU1DTH60+fPuW7776jbNmyXLlyhQULFrBs2TJ+//13eZlhw4axbds2Vq1axaVLl3Bzc6Nu3brExMQA8OTJE77//nsaNWpEaGgo3bp1Y8SIT3fLamtrA1kJ5TsjRoxgypQp3Lp1C19fXyZPnszq1atZuHAhN27cYNCgQfz4448cPXoUgDFjxnDz5k3279/PrVu3WLBgAWZmZgDMnj2bXbt2sXnzZu7cucO6detwcnLKdx3mN6aCkpGewcM7EfiUcZcvk0gk+JQtxt3r+f+Qe9/yGdvxq+CNT9kvS07el5GewcO7ERQvk71NiURC8TLFuHfj0RdtOzIiin5NxjOo5e/Mn7CWqBexXxht0ZORnsHTuxEU81esX3f/Yjy++ShP20hLTSMzQ4qOvm6BxpaensG9208pFaAYW6kAd25fU36u3r72GL+y7grLSpf3UCjv5evE2WM3iHoZj0wm48qFezwNj8K/XNZ+0tMyQEUFdY3sLzkaGuqoSFS4ceVhvo4hMz2DqAdPsPP1kC9TkUiw9fEg8k7etpWRloY0MxNNvewvf5Yezjy+cI3k6DhkMhnPrt8l/tlL7Eoq737PTXp6BndvPaV0ecXrQZny7ty4qryOr199TJnyinUcUKEY198rL5VK+X30Btp0qoqz25cloh+TmZ7B83tPcCqlWL/OpTx4ejtv9ZuemoY0U4rWe1+uZVIpu2auodz3NTF3/PzeoXf1++7cgqz69S/nzs1c6vfmtcf4l1Os37KBHvLyUqmUsyduYedozvA+i2lRcxz9OvzFyX+u59hW8P5LfF9jLN1aTmfpnH28eZ2Wo8x/QkWlYB5FgBijWoj27NmDnl5Wi1NycjLW1tbs2bMHiSTn94f58+djb2/P3LlzUVFRwdPTk2fPnjF8+HDGjh3L69evWbBgAStXrqR+/foALFmyhEOHDrFs2TKGDh3KggULcHV1ZcaMGQB4eHhw7do1pk6dmmuMz58/548//sDW1hYPDw9OnToFwK+//krt2rWBrJbcSZMmcfjwYQIDs7qcXFxcOHHiBIsWLaJq1aqEh4fj5+dHmTJlABQS0fDwcNzd3alUqRIqKio4Oiof1/Qp+Y2poCTEJSPNlGL4wTdvQxM9nj5++dnbPXXoMg/vRDBx2cAvjFBRYnxu8erz/AvidfN2pMeoH7B2sCAuOoG/Vxzkt75zmbJmKNo6hdTqUAiS45ORSqXoGSvWr76xPi+fROZpG3uX7sbQ1OCLW08/9O5cNTZRbOk2MtHnySPl731sdGKO4SlGJnrERmd3s/Ye2ozZk7bQocFvqKpKUJGo8NPolvj4uwLg6eOIlpYGy+fspWPf+iCTsWLuPqSZUmKjlHfX5uZNYhIyqRRtQ8WYtI0MiHuat/o9t3YnOsaG2Pp6ypdV7NqSYws3sK7nL6ioSlBRkVClVxusvd3yFV98bDKZmVJMTBXr2NhUj8cPlddxTFRijvImpvrEvFc361aEoKoqoUXbSvmKJ79SEpKRSaXoGinWr66RPtEReavff1buQs/EAOf3kt3TWw8jUZVQtvGXXXvjczmHjT92Dkcl5hgLbWSqR8zbczguJonXKalsXHGETn3q0/2nBpw/dYfxQ1bxx+JelCyddR7XqOePpbUxpuYGPAx7zpLZe4l49JLxMzp90TF9liLSGloQRKJaiKpXr86CBQuArK7x+fPnU79+fc6dy9k9dOvWLQIDA1F57xtQxYoVSUpKIiIigri4ONLT06lYsaL8dXV1dQICArh165Z8G+XKlVPY7rsk7kN2dnbIZDJSUlIoWbIk27ZtQ0NDQ/76u4QT4N69e6SkpMiTxHfS0tLw8/MDoHfv3jRv3pxLly5Rp04dmjZtSoUKWTdadOrUidq1a+Ph4UG9evVo2LAhderU+XQFfiC/MSmTmppKamqq4jqp6Whoquc7ni8RFRnLqlk7GPVXz/9835+rZGB2y5ODmw2u3o4MbPEbZ4+EUq1h+UKMrGg5svEwoSGX6f1HP9Q1isZ7v2vTCW5fC2fcjM5YWBtz/fID5k/7GxMzA/zKFcPQWI9RU9ozd8p2dm06gYpEhap1SuHmaYvKf/yBG/r3Qe6fvEjD8T+h9l79Xt93lJdhj6g7oid6ZiY8v3WPk0s3o2NiiN17CW1huHMzgq3rjrNs40CFz4Cv0akth7h57BI/Tu4vr9/n98I5v+soXf4a9lXGL5XJAAisVoIWP2bd1OrmYcvNK4/Ys/W0PFFt2Dz7Oubibo2JmT5Dey3i2ZMobOzN/vvAvxEiUS1Eurq6uLllf1tfunQphoaGLFmyhG7duhViZHD8+HEMDAywsLBAXz/nzTO6utldkklJWTcI7N27F1tbW4VympqaANSvX5/Hjx+zb98+Dh06RM2aNenbty9//PEH/v7+PHz4kP3793P48GFatWpFrVq12Lp1q7x1Wfb2QgKQnp6uNOb8xqTM5MmTmTBhgsKyHkPb0Gt421zXMTDSRaIqyXHjVHxMEkYmn3dH88PbEcTHJjGy85/yZdJMKbdDHxC07SRrQ6YiUf28kTv6hrnFm/jRG6XyS1dfGyt7cyIjogpsm0WBrqEuEomEpA9unEqMTcTAOOcNMO8L2XKEIxsP03NqH2xcbAo8tnfnamyM4k09cTGJmJgqj83YVJ+46MQPyifJW6hS36Szav5+fpnekYBK3gA4u9tw/+4ztq89it/bLlr/8h4s3zGS+LhkVFUl6Olr067uBKzqmOTrGLT09VCRSHLcOPU6LgEdo4/X75Wdhwn9+xANxvbD1Cn7upCRmsb5DbupM7Q7DqVLAGDqZEv0owiu7grOV6JqaKyLqqqEmA9unIqNTsLUTPn/l4mZfo7yMdGJmLwtf+XSQ2JjkmlRb5L89cxMKfNm7GbLuuNs2T8qz/F9io6BLioSSY4bp5LjEtE1/vj14cz2YE5vPUzb3/ti4Zxdv09u3Cc5Pom5ncfJl8mkUoKX7eD8zqP0XT4+z/EZ5nIOx8YkYpzbOWymr9ADABAXnYTJ23PY0EgXVTUJji6WCmUcnC24Hvoo11g8387i8PRJ9H+fqH5DAzdFovoVUVFRQSKR8Pr16xyveXl5sW3bNmQymfwb6cmTJ9HX18fOzg5TU1M0NDQ4efKkvOs8PT2d8+fPM3DgQPk2du3apbDdM2eUD453dnbGyMgoT3F7e3ujqalJeHj4R7vUzc3N6dixIx07dqRy5coMHTqUP/74AwADAwNat25N69atadGiBfXq1SMmJgZzc3MgawjCu5bQvMwtm9eYPjRy5EgGDx6ssOxWUvBH11FTV8PZw47rF8MoW9UHyBrzdP1CGHWbV/zourkpUcad6WuGKCxbMHETNo4WNPmx+mcnqfJ4i9lx42IYZapkx3vjYhi1vy+4bsU3Kam8fBqFUd3SBbbNokBNXQ3bYnaEXQ6jRMWsqeakUin3Lt+lYpPcpzr6Z1MwwesP0X1yL+w9cp9m50uoq6vh5mnLlfNhVKhWQh5b6Pl7NGqp/Fz19HEk9HwYTdtmT592+exdPH2yrjOZGZlkZGTmaClTlUjkLVXvMzTK+kIZej6MuNgkylcunq9jUFVXw8zFnqfX7uAUUBLISnqeXbtL8fq5T/EWuuMQl7cH8d0vfTF3UxxeJM3MRJqRmWPMnopEgkya8xg+Rl1djWJetlw8e48qNbLr+OLZe3z/QwWl65TwdeTi2TCFqaYunAmjhG9WnHUb+lPmgzGWP/deQt2GpfmuaRkKkqq6GtZu9jy6chePwKzzN+vGqDuUbph7/Z7eephTmw/yw6+9sXZXPH9LVA/AqaSHwrKNYxfgU6MsvrUUe/k+5V39XjoXRsXq2fV7+dw9mrRWfg57+zhy+VwYzdtlx3/x7F2839avuroaHt72RHwwdCAiPAqLt1NTKXP/TtZ0Z7l9AflXfYUt0/8WkagWotTUVF68yJp+JDY2lrlz55KUlESjRjmnn+nTpw+zZs2if//+9OvXjzt37jBu3DgGDx6MRCJBV1eX3r17M3ToUExMTHBwcGDatGmkpKTQtWtXAHr16sWMGTMYOnQo3bp14+LFi6xcufKLj0NfX58hQ4YwaNAgpFIplSpVIj4+npMnT2JgYEDHjh0ZO3YspUuXpnjx4qSmprJnzx68vLK6imfOnIm1tTV+fn5IJBK2bNmClZUVRkZGSCQSypcvz5QpU3B2dubly5f88ssvBRKTMpqamjlaXDXSP9392uCHKiz4fSMunva4eTuwb9MxUt+kUbVhAADzfl2PibkhbXo3ALJuuIl4mDXeKzMjk5hX8Ty6+xQtHU2s7MzQ1tXC3lXxhgNNbQ30DXVyLP8c9X+oyqKJG3D2tMfVy4EDm4+S+jqNqg2y4l3423qMzQ1o3auhPN6njyLf/p0V7+Owp2hqa2Bll/VlYv3cXfhV9MbMyoTYqHi2LwtCoiohsJb/F8ebV7o6mrg6Zd9o4mRvjq+3I7FxSTx5Fv2fxVG1eTU2TluPXTF7HDwcOP73UdLepFG2btaH8oapazE0M+S7rln/60c2HiZo9X7ajeyAsZUJCTEJAGhqa6KpnXU+piQkE/syloTorNdeRWR9qOqbGGBg8vGWxPc1a1uVmRM24u5lR7HiDuzccJzU12nUblQWgD/GbcDU3JDO/b4DoMkPlRnecz7b14ZQtpI3Rw9eJuxWBP1HZc0dqaOnhY+/C8tn70FTSx0LK2OuXXpA8L4LdB/YWL7fg7vO4eBsiaGxLreuPmbRzJ00bVMZOyeLfNevb6MahMxdg7mrA+ZuTlzb+w/pqakUq57VNfvP7NXomhoS0K4JAKF/H+LCpr3UGNgRfXNTUmKz6lBdSxN1bU00dLSx9nbj7JodqGmoo2duwvOb9wg7eo7Ajt/nO77W7aswacwmPIvb4VXCni1rj/P6dRrfNc2q499Hb8DMwpBeP2XVcYt2lejfdQEbVx0lsIoXwQdCuX0jgqFjsurY0EhXnuC/o6auiomZPg7v1V/k81gS4lOIfB5HZqaMsNtPAbB1MENHJ/eepA8FNK3O7j/XYu1uj00xR87tDCH9TZo8qdw1Yw36poZU75T1/p7eeohja/fRZGhHDC1NSXpbvxpammhoa6JjoIuOgWL8qmqq6BrrY2qn2IqZF83bVWXauI14eNvhUdyB7euP8+Z1GvUaZ9XvlDFZ9dutf1b9ft+2MoO7z2fLmhDKVfLmn6DL3L0ZwaBfsuc/bdWhGr+PWIuPvwulyrhx/tRtTh+7yYzFvYGs6auOHLhMQEUvDIx0eBD2nAUzduHr74JLsYLv/RCyiUS1EB04cABr66ykQ19fH09PT7Zs2UK1atVyTBtla2vLvn37GDp0KCVLlsTExISuXbsqJG1TpkxBKpXSvn17EhMTKVOmDEFBQRgbZ30jdHBwYNu2bQwaNIg5c+YQEBDApEmT6NKlyxcfy2+//Ya5uTmTJ0/mwYMHGBkZ4e/vz6hRWV1SGhoajBw5kkePHqGtrU3lypXZuHGj/NinTZtGWFgYqqqqlC1bln379sm7/ZcvX07Xrl0pXbo0Hh4eTJs2LU9jWD8VU0GqUMuPhLhktiwJIi4mAUd3W0bM7C7v+o+KjFMYixcTlcCITjPlz/esD2HP+hC8/FwZN69Pgcf3ofI1/UiIS2Lb0gPExyTg6GbLsBk95DdYRUXGKsQbG5XA6M4z5M/3bQhh34YQPEu58svcvlnH9CqOeePXkpSQjL6RHh6+zoxf9BMGxv/dFFX+vi4c3DxW/nzauA4ArNlylB4/L/zP4ihVzZ+kuGSCVu0nMTYBG1dbuk3qif7brtPYl7EKLZCn95wkMz2T1b+uUNhO7fZ1qdsh6+bIG6evs+mPDfLX1k5cnaNMXlStU4qEuCTWLAoiNjoRl2I2/Dq7m7wr/9WLWCTvxeZd0olhv7dj9YIDrJy/H1t7M8b80Qmn9+b1HT7xR1bO28f0MetJTEjBwsqYDr3r813z7DHwTx+/YtW8/Vmv2xjTunNNmrXNvYXuY1wrluZ1QhIXNu4lJS4RUydbvhvdV971nxQVo3D+3jx4HGlGBof/WKawHf+W9SnTOuvLY81BXTi3fidHZq8iNSkFPTMTyrZpiFed/Pcy1KxXirjYZJbNDyImKhE3Dxv+mN9N3tUc+ULxeuBTyolxk9uyZG4Qi+fsx87BjEmzOuZ7mqml84M4sOui/HmX1rMAmL20F35lXfO8He8q/qTEJ3Fs7T6SYxOwdLGj9a+90Xs7dCXhleL14dK+k2RmZLJ9suL8xZXa1KNKu+/ydQx5Ub1uKeJjk1i5IOscdvWwYfLc7HP45YtYJO/FV7ykE6MmtmPF/AMsn7sfWwczJszshPN753ClGj78NKo5G1ccYd70Hdg7WjBuegd8/JyBrJ6SS2fD2PY2KbawNKJyDR/adatV4MeXJ9/QzVQqMpmSvhlBEOQuR+8p7BDyJUNatC5gVUqvLewQ8mXziQ6FHUK+eBt9XT/I8Sk7Hhe9GSLau+ccrvU12/8k762rX4MaNoU0BdRnstf9sh/lyAvnn3YWyHYe/tWkQLbzb/qGhuMKgiAIgiAIRYno+hcEQRAEQShKvqFmRpGoCoIgCIIgFCXf0BjVbygnFwRBEARBEIoS0aIqCIIgCIJQlIh5VAVBEARBEISv0jfU9S8SVUEQBEEQhKLk28lTxRhVQRAEQRAE4eskWlQFQRAEQRCKEJno+hcEQRAEQRC+St9Qoiq6/gVBEARBEISvkmhRFQRBEARBKErE9FSCIAiCIAjCV+kb6g//hg5VEARBEARBKEpEi6ogCIIgCEJRIrr+BUEQBEEQhK/SN3TXv0hUBeETfIztCzuEfHn5JrywQ8iXzSc6FHYI+dKq0urCDiFfKi3uV9gh5IupZmZhh5BvfqbphR1CvnR0dy7sEPLlcdKdwg5BKEQiURUEQRAEQShKRIuqIAiCIAiC8DWSiTGqgiAIgiAIwlfpG5qz6Rs6VEEQBEEQBKEoEYmqIAiCIAhCUaKiUjCPzzBv3jycnJzQ0tKiXLlynDt37qPl4+Li6Nu3L9bW1mhqalKsWDH27duX5/2Jrn9BEARBEISipJBuptq0aRODBw9m4cKFlCtXjlmzZlG3bl3u3LmDhYVFjvJpaWnUrl0bCwsLtm7diq2tLY8fP8bIyCjP+xSJqiAIgiAIgvBJM2fOpHv37nTu3BmAhQsXsnfvXpYvX86IESNylF++fDkxMTGcOnUKdXV1AJycnPK1T9H1LwiCIAiCUJRIVArkkZqaSkJCgsIjNTVV6S7T0tK4ePEitWrVyg5DIqFWrVqcPn1a6Tq7du0iMDCQvn37YmlpSYkSJZg0aRKZmXmfL1kkqoIgCIIgCEWJSsE8Jk+ejKGhocJj8uTJSncZFRVFZmYmlpaWCsstLS158eKF0nUePHjA1q1byczMZN++fYwZM4YZM2bw+++/5/lQRde/IAiCIAjCN2jkyJEMHjxYYZmmpmaBbV8qlWJhYcHixYtRVVWldOnSPH36lOnTpzNu3Lg8bUMkqoIgCIIgCEWIrIBuptLU1MxzYmpmZoaqqiqRkZEKyyMjI7GyslK6jrW1Nerq6qiqqsqXeXl58eLFC9LS0tDQ0PjkfkXXvyAIgiAIQlFSCNNTaWhoULp0aYKDg+XLpFIpwcHBBAYGKl2nYsWK3Lt3D6lUKl929+5drK2t85SkgkhUv2oqKirs2LEj19ednJyYNWtWge6zWrVqDBw48Iviet/48eMpVarUF8clCIIgCELhGjx4MEuWLGHVqlXcunWL3r17k5ycLJ8FoEOHDowcOVJevnfv3sTExPDTTz9x9+5d9u7dy6RJk+jbt2+e9ym6/gvRq1evGDt2LHv37iUyMhJjY2NKlizJ2LFjqVix4ifXP3/+PLq6unna1/jx45kwYcJHy8hksjxt6/nz5xgbG+ep7P8rmUzG3Dmb2bolmMTEZPz8PBk7rhuOTtYfXW/9ugOsWL6bqKg4PDwdGTW6C76+bvLXX72KY8b0NZw6fZWU5Dc4OdnQo1cz6tQpD8DTpy9ZOH8bZ89eJyoqDgsLExo2qkyPnt+joZH7v/Pfm06yaVUIMdGJuBazZsDwZniVcMi1fMihKyyff4AXz2KxczCjx4AGlK/sJX99ytiNBO2+oLBO2QoeTJvXHYDQC/cY1H2h0m0vWDsAz+K57zs3J3ceJ2TLERJjErF2taFZ3+Y4eDoqLXtm32kuHjrPi0fPAbBzt6d+lwYK5a8dv8LpPaeICHtCSmIKgxYMwdbNLt9xfYmKAZ4M6tUQfx8XrC2NadVtBrsPXvj0iv+Cxg5WtHS2xURDg/uJycy79YA78UmfXK+alRmjS3lwMjKa8ZdvKy3zk7crDR2smH/rAX8/fl4g8b4K+YeXB4NIT4hH284eu9Zt0HV2Vlo27vIlXuzfR9qrl8gyM9G0sMCiVh1Myme3AqUnJPBs+1YSbt0kM+U1eu7u2LVug9YHN458rpC/T3Bo0xESYhKxc7Wh9YDvcfJSfv4+e/ic3SsOEH73CTGRsbTo25SaLaoqlJFmStmz6gDnDl0kISYRQzMDAusGUL99bVQK4HfgZTIZs2evY8uWgyQkJOPv78X48X1wcrLJdZ3z56+zbNl2rl+/z6tXMcybN4patRRb2g4ePMXGjfu5ceM+cXGJ7NjxF15eLvmOb9fmk2xZnXVNc3G3pu+wZnh+5Jp27NAVVi44QOTzWGztzeg2oAEBlbKvaXVKD1G6XrefGtCqQ3UA2jecSOTzWIXXu/T7jh8618h3/F+skOZRbd26tTx3efHiBaVKleLAgQPyG6zCw8ORSLLbQO3t7QkKCmLQoEH4+vpia2vLTz/9xPDhw/O8T5GoFqLmzZuTlpbGqlWrcHFxITIykuDgYKKjo/O0vrm5eZ73NWTIEHr16iV/XrZsWXr06EH37t3zHXduY1G+JcuW7mTd2v1MmtwXWzsL5szeRI/uE9m1Zyaamsq7M/bvO8W0qasZN747Pr7urFm9l57dJ7Jn3yxMTQ0BGDViLgmJycydNxxjY3327jnBz4P+ZPOWKXh5O/PgwTOkMhnjJvTAwcGKsLAnjB+7iNev3zB0WAel+z0SFMqCGbsYNLo5XiUc2Lr+OMP6LGH1jmEYm+jnKH899BG/jVxH9/71CazsTfD+y4wZvJLFGwbi7JadiAdU8GD4hNby5+rvJcrFSzqx7dBYhe0unx/EpXNheHjb572i3woNucSuRTtoPqAVDl6OHN9+lCUjFzJs+Sj0jXMew/0r9yhV3R8nbyfUNdQ5simYxSMWMHTpCAzNjABIe5OGUwlnSlYtxZY/N+U7poKgq6PJtZvhrN4UwqYlPxdKDABVrczo6enM7Bv3uRWXyPdONkwuU5wuxy8Rl5ae63qW2pr08HTiakx8rmUqWpjgZaRH1BvlU958jtgL53m6dTP2bX9Ex8mZV0cOc3/OLLzG/4a6gUGO8qo6uljV/w4tK2tU1FSJv3qVx6tXoqavj0HxEshkMh4smIeKqiouvfuiqqXNy+BD3PtrJl7jfkX1C28uuXDkMtsW7KDNoJY4ezlyZOtRZg9bxPjVIzFQcv6mpaZjZmOKf7WSbJ23Q+k2gzYEc2znKTqOaIONszWP74SzeupGtHS1qNG8yhfFC7BkyTbWrNnDlCkDsbOz5K+/1tG161j27Zuf6zUuJeUNHh7ONG9em379JuVaxt/fm/r1K/HLL3M/K7aQg6EsmrmLAaOa41nCge3rjzOq3xKWbVd+Tbtx5RGTRq+jS7/6lK/szZH9lxn/80rmrcu+pm0MUrxenT91m5m/bqFyDV+F5R161eW7ZuXkz7V1C+7Go3wpnDwVgH79+tGvXz+lr4WEhORYFhgYyJkzZz57f6Lrv5DExcVx/Phxpk6dSvXq1XF0dCQgIICRI0fSuHFjpeuMGzcOa2trrl69CuTs+ldRUWHp0qU0a9YMHR0d3N3d2bVrFwB6enpYWVnJH6qqqujr6ysse0cqlTJs2DBMTEywsrJi/PjxCnF82PUfERFBmzZtMDExQVdXlzJlynD27Fmlx3D//n1cXFzo168fMpmMlStXYmRkRFBQEF5eXujp6VGvXj2eP1dsdVm6dCleXl5oaWnh6enJ/Pnz5a+lpaXRr18/rK2t0dLSwtHRUT69hkwmY/z48Tg4OKCpqYmNjQ0DBgz4+JvzCTKZjDWr99Gz1/fUqFkWDw9HJk/px8uXsQQfPp/reqtW7aFFy5o0+746bm52jBvfHS0tDbZv/0de5nLoHdq1q4+vrxv29pb06t0cfX1dbtx4AEDlyqWYOKkPFSuWxN7ekho1ytCpcyMOH8r9J+y2rD1Kg+/LUb9JAE6uVgwe3RwtLXX271Ae67YNxwmo4MEPHavj6GJJl771cPey5e+NJxXKqWuoYWJmIH/oG+hkv6au+JqBoS4nQ65Tr3HZz2rtObothHL1AwmoVw4rRyua/9QSdU0NzgcpP8/ajWxPxcaVsHWzw8LBklaDf0AmkxF2+a68TOnaZanTvh7u/sXyHU9BORhyhQl/bGZXUOG0or7T3MmG/U8iCXr6kvDk1/x14z6pmZnUtc35SzPvSICRvsVYHRbOi9dvlJYx1dSgr7cLk6/eJSOPPTZ58fLwIUwrVsa0QkW0bWywb/sjEnUNok+dVFpe38MDIz9/tKyt0TS3wKJmLbRt7Ui6fw+A1JeRpDx8gH3bdug6OaNlZYV9m3bI0tOJPf/xn4fMi+AtIVRsEEiF+uWwdrKizeCWaGhpcHq/8vPXydOB5r0aU7aGP2rqytuTHtx4RMmKJfAJLI6plQn+VUvhVcaDx7fDvzhemUzG6tW76N27FbVqlcfT05lp0wbx8mUMhw/nnnBUrVqGQYPaU7u28vGKAE2b1qBfvzYEBpb67Pi2rT1K/WblqNs4AEcXK34a1RxNLXWCdiq/pu3YcJyygR606lAdB2dLOvWph5unLbs2Z58v71+vTMwMOBVyg5JlXLG2M1XYlo6upkI5be3CSVQlkoJ5FAVFJMz/P3p6eujp6bFjx45cJ9d9RyaT0b9/f1avXs3x48fx9fXNteyECRNo1aoVV69e5bvvvqNdu3bExMTkK7ZVq1ahq6vL2bNnmTZtGr/++iuHDh1SWjYpKYmqVavy9OlTdu3axZUrVxg2bJjCwOl3rl69SqVKlWjbti1z586VJywpKSn88ccfrFmzhmPHjhEeHs6QIdndMOvWrWPs2LFMnDiRW7duMWnSJMaMGcOqVasAmD17Nrt27WLz5s3cuXOHdevWyX/5Ytu2bfz5558sWrSIsLAwduzYgY+PT77q40MRES+JioqjfGD2+6Cvr4OvrxtXrtxVuk5aWgY3bzwgMDB73xKJhPKBPlwJzV7Hr5QHB/afIi4uCalUyr69J0lLS6dsQPFc40lMTMHQUE/pa+npGdy99ZTS5bKTMYlEgn85d25cfax0nZtXH1O6nLvCsrKBHjnKh164T7Ma4+jQdCp/TtxGfFxyrjGePHqDhPgU6jcpm2uZ3GSkZ/D0bgTF/BWPwd2/GI9vPsrTNtJS08jMkKKjn7ehMt8SNRUVihnocSk6Tr5MBlyKjsfbKGfr1Ds/utkTm5bOgacvlb6uAgz3dWfLw6c8TnpdYPFKMzJICX+Mvld2t62KRIK+lxcpD+5/cn2ZTEbi7VukRr5Azy3rnJJlZAAgefvLOe+2qaKmRvK9sC+KNyM9g/C7EXiWVjx/Pf3deXBD+f9gXrgUd+L2pbtEPsmq/4h7T7l//QHFA7w+seanRURE8upVLBUqlJIv09fXpWTJYlzOZXjHfyU9PYOw20/xC1CsT78Ad25dy/2a5vfBNa1MoAe3crkGxkYncu7ELeo1Ccjx2qaV/9C8xlh6t53J5tX/kJmR94nrhc8juv4LiZqaGitXrqR79+4sXLgQf39/qlatyg8//KCQiGZkZPDjjz9y+fJlTpw4ga2t7Ue326lTJ9q0aQPApEmTmD17NufOnaNevXp5js3X11c+v5m7uztz584lODiY2rVr5yi7fv16Xr16xfnz5zExMQHAzc0tR7lTp07RsGFDRo8ezc8/K3Zxpqens3DhQlxdXYGsboVff/1V/vq4ceOYMWMG33//PQDOzs7cvHmTRYsW0bFjR8LDw3F3d6dSpUqoqKjg6Jg97is8PBwrKytq1aqFuro6Dg4OBATkvPjkR1RUHABmb7vr3zE1MyTqVZzSdeLiEsjMlGJqaqS4jqkRDx8+kz+f8ecgfh48i4qBXVBTU0VLS4O/5gzB0VH5cIvHj1+wft1+hgxtr/T1+NhkpJlSjE0UE1ljU33CHylPMGKiEnN0nxmb6hEbnSh/HlDBg8o1fLC2NeFZRDRL5+xjRL+lzF3VH1XVnN9/9+84R9lAD8wtjXK89inJ8clIpVL0Pugi1TfW5+WTyFzWUrR36W4MTQ0KtfX0a2WooY6qRIXYD7r4Y1PTsNc1VLpOcSN96tlZ0utkaK7bbe1ii1QmK7Axqe9kJiWBVJqji19N34A3uUw6DpD5OoXrI4YhTc9ARaKCfZt2GHh7A6BlZYW6iQnP/t6Ofbv2SDQ1eRV8iPTYWNITch/WkBdJb8/fD7v4DYz1iQxX/j+YF3Xb1uRNyhsmdJyCikQFmVRG467fEVC79BfFC/DqVdY4TGXXq6ioWCVr/HcS4t5e00xzXtOe5HJNi43OeU0zMtEj5r1r2vsO7bmAjq4mlWooNmo0+aES7p626BvqcPPKI5bP3U9MVCK9BivvBf03FcAw5CJDJKqFqHnz5jRo0IDjx49z5swZ9u/fz7Rp01i6dCmdOnUCYNCgQWhqanLmzBnMzMw+uc33k1xdXV0MDAx4+TJ/F8MPW2ytra1z3UZoaCh+fn7yJFWZ8PBwateuzcSJE5XOKKCjoyNPUj/cX3JyMvfv36dr164K42kzMjIwNMz6EO3UqRO1a9fGw8ODevXq0bBhQ+rUqQNAy5YtmTVrFi4uLtSrV4/vvvuORo0aoaam/NRPTU3N0cIddPAfJk5cLn++YMHID1crMHNmbyIxMZlly8dgZKzPkeDz/DzoT1av/ZVixRRvFIiMjKFnj4nUrRtIy1a1ctniv6NGPT/53y7u1ri4W9Ou0WRCL9zP0Rr7KjKO86fvMHaq8mT633Zk42FCQy7T+49+qGuof3oF4aO0VVUZ7luMP6/fIyE9Q2kZdwNdmjna0OfUlf84utxJNLXwHD2WzNQ3JN6+zdOtm9EwM0ffwwMVVTVcevYhfM1Krv08ECQS9D29ssavFnbgubgYEsr5w5fo/MuP2DhZEXHvKVvm7cDQ1IDAevn7Mr5rVwjjxs2TP1+0aOxHSv//O7DzHDXq+6OhqXi9aPFj9g1tLu42qKmr8dfErXTp991Hb2b9N4hEVfjPaGlpUbt2bWrXrs2YMWPo1q0b48aNkyeqtWvXZsOGDQQFBdGuXbtPbk9dXfEfS0VFRWk3fEFtQ1tb+5PbMzc3x8bGhg0bNtClSxcMPmgJUba/dzMQJCVl3XW8ZMkSypUrp1Du3QTC/v7+PHz4kP3793P48GFatWpFrVq12Lp1K/b29ty5c4fDhw9z6NAh+vTpw/Tp0zl69GiO/ULWz8l9ODvCiJFd2bZ9uvx5+tuWp6joeMwtsmc/iI6Kx9PLSWkdGBkZoKoqIfq97lWA6Og4zN7e3BMe/oL16w6wc9cM3Nyzbjjy9HTi4oXbbFh/gHHje8jXe/kyhs4dJ+BXyoPxv/YgN4bGukhUJcTGKN69HRudiIlpzptOAEzM9ImNSfygfBLGprl3A9vYmWJopMvTJ1E5EtX9O89jYKhDxaq5D1/4GF1DXSQSCUmxijElxiZiYKz8GN4J2XKEIxsP03NqH2xccr9b+VsWn5ZOplSG8QdJvLGmBrGpaTnK2+hoYa2jxW/+3vJl7z40D9SpQOfjlyhhbICRhjrrqpaRl1GVqNDT05nvnWxof/TiZ8erqqcHEgnpCQkKyzMSE5TeSCWPUSJB0yJrzK2OvQOpL54TGbQPfQ+PrGWOjnj+Mo7M1ylIMzJR19fnzpRJ6DgqvzM/r/Tenr8JH5y/CbGJGJh8/Pz9mL8X7qZOm5qUreEPgK2LDdGRsQStD853olqjRgAlS2b3NqS9vcZFR2fNLPJOdHQcnp75v0O/IBkYvb2mRSu5ppkpr09j05zXtLiYJEyUXNOuXX5AxONXjJ7y6S/WniUcyMyUEvksBnun3MdzC19GjFH9ynh7e5OcnD3Wr3Hjxqxfv55u3bqxcePGQoxMOV9fX0JDQz86DlZbW5s9e/agpaVF3bp1SUxU3t2ijKWlJTY2Njx48AA3NzeFh/N7U9EYGBjQunVrlixZwqZNm9i2bZs8Jm1tbRo1asTs2bMJCQnh9OnTXLt2Ten+Ro4cSXx8vMLjlzE9cXS0kj9c3ewwMzPi7JnsbSQlpXD16j2Fi/37NDTU8C7uwpkz1+XLpFIpZ89cp2SprHXevMlKClQ+mHZEoipBKs1u14mMjKFThwl4F3fm90l9FKYC+ZC6uhrFvGy5dDZ7nJ1UKuXSuXsU91X+Aezt68ilc4rj8i6euZtrechqNU2IT8H0gw8KmUzGgV3nqdOwDGrqqrms/XFq6mrYFrMj7LLiMdy7fBdHb6dc1/tnUzCH1x6k+6Re2Hvkfzqsb0WGTMbdhCT83hvKogL4mRpyMy7n/2p4cgrdT1ym16lQ+eP0yxiuxMTT61Qor96kcvjZK3qeDFUoE/UmlS0PnzLyws0vileipoaOgyOJt2/Jl8mkUhJv30LHxfUjayqSyWTIlLQIq2rroK6vz5vISFIeP8KwZKkvildNXQ2HYnbcuZQ9Fl0qlXLnUhguxT8/CU5LTct5rZBI8jzN4Pv09HRwdLSRP9zcHDA3N+b06ewW8aSkFK5cuYufn+dnx1wQ1NXVcPe0JfS84vUg9Pw9vHxyv6Zd/uCadunsXbyUXNMO7DiHu5cdrsU+/cX2/p1nSCQqGJkov0fg36SiolIgj6JAtKgWkujoaFq2bEmXLl3w9fVFX1+fCxcuMG3aNJo0aaJQtlmzZqxZs4b27dujpqZGixYtCinqnNq0acOkSZNo2rQpkydPxtramsuXL2NjY6PwSxW6urrs3buX+vXrU79+fQ4cOICeXt7+uSdMmMCAAQMwNDSkXr16pKamcuHCBWJjYxk8eDAzZ87E2toaPz8/JBIJW7ZswcrKCiMjI1auXElmZiblypVDR0eHtWvXoq2trTCO9X3Kfk4uQ6o4FYuKigrtO3zHooXbcXC0xs7OgjmzN2JhYUzNWtk3C3Xp/Cs1awXQrl3W+OCOHRsyauQ8ipdwwcfHjTWr9/H6dSrNmlUDwNnZBgcHKyaMW8KQYe0xMtLjSPB5Tp+6yvwFWXPOZSWp47GxMWfosA7ExGS3KpmbGyk9ppY/VmXK2I0U87aTT0/15nUa9d7e2DTplw2YWxjSfcB3ADRvU5mB3eezeXVI1lQuQZe5czOCn8dknXevU1JZteggVWr6YmKmz9Mn0Sz6aw+29qaUreChsO9L5+7x/GkMDZoptobnV9Xm1dg4bT12xexx8HDg+N9HSXuTRtm6WdvdMHUthmaGfNe1EZDV3R+0ej/tRnbA2MqEhLf1pKmtiebbu3RTEpKJfRlLQnTWa68isoab6JsYfFFLV37o6mji6pQ9/tjJ3hxfb0di45J48ixv09QVhG2PnjHMx5278UnciU+imZMNWqqqBL29UWqYjztRqWksv/uYdKmMR0kpCusnv70Z6d3yxPQMEj9IAjNkMmJS04hI/vIbqyxq1ebxyuXoODqh6+TMyyOHkaalYVoha/7pRyuWoWFkjE2zrHHtLw7sQ8fBCU1zc2QZGcRfv0bMmTPYt83upYq9eAE1PX00TEx4/fQpTzdvxLCUHwben9cT8L6aLauxasp6HIrZ4/R2eqrUN2kE1ss6f1dOWoeRuSFNuzcEsm7Aev44a/x1ZkYmcVHxPLn3FE1tDSxss6Yl9AkszoG1hzCxMMLG2ZonYREEbwmhQv0v+1+DrGtchw6NWbBgE46ONm+np1qLhYUJtWqVl5fr2HE0tWsH8uOPWXEnJ78mPDx7THJERCS3bj3A0FAPG5usFse4uESeP3/Fy5dZDQkPHz4FwMzMGHPzvM3P3fzHqkwftxF3Lzv59FRvXqdRt3HWNW3a2A2YmhvStX/WNa1pm8oM6T6frWtCCKjkTcjBy9y9GcFPoxU/S5OT3nDs8BV6DmqUY583rz7i9vVwSpZxQ0dHk5tXH7Nw5k5q1PdXmPHkv1JEcswCIRLVQqKnp0e5cuX4888/uX//Punp6djb29O9e3dGjRqVo3yLFi2QSqW0b98eiUQiv7GosGloaHDw4EF+/vlnvvvuOzIyMvD29mbevHk5yurp6bF//37q1q1LgwYN2LdvX5720a1bN3R0dJg+fTpDhw5FV1cXHx8f+XhXfX19pk2bRlhYGKqqqpQtW5Z9+/YhkUgwMjJiypQpDB48mMzMTHx8fNi9ezempqYf3+kndO3WhNevUxk/bhGJCSn4+3uyaPEohfkFn4RHEhebnUjW/64CMbEJzJ29maioODy9nFi0eJS8619dXY2Fi0Yyc+Y6+vWZSkrKG+wdrJg0uS9VqmZ17506dZXw8BeEh7+gRrVeCjHduLVZaaw16pYiPjaJlQuCsib897Bh6rxu8m6vly9ikbzXMlOilBO/TGrH8nkHWDp3P7YOZvw2s5N8vkGJRML9sOcE7b5AUuIbTM0NKBNYjC596uUYp7VvxzmKl3TCwfnLusVKVfMnKS6ZoFX7SYxNwMbVlm6TesrnUI19GavQOnB6z0ky0zNZ/esKhe3Ubl+Xuh3qZ9XX6ets+mOD/LW1E1fnKPNv8/d14eDm7PGA08ZlzYW7ZstRevys/AcT/g1HX0RhpKFGR3cHjDU1uJ+QzKgLN+RzqFpoayL7ikZrGpcpS0ZiIs937yQjIQFtO3tc+/8k7/pPj4lROB+kqalEbFhHWlwsEnV1tKyscerSFeMy2V8s0+Pjebp1MxkJCagZGmJSPhCr7xoWSLxlaviRFJ/EnpUHSIhJwM7Vlv5Te2Lw9gafmJexCq2j8dEJTOr+h/z54U3/cHjTP7iXdGXwrKz5K1sP+J5dy/ez8a9tJMYmYWhmQKVGFWjQoU6BxNy9e3Nev37D2LFzSUhIpnRpb5YunaB4jXvygtj3rnHXr9+jQ4fsz6/Jk5cB0KxZDaZMGQTAkSNnGTnyL3mZQYOmAdCvXxv692+bp9iq1cm6pq1eGERsdCIuxWyYOKebfHjSyxeK14PiJZ0YObEdKxccYMW8/dg4mDF+RieFeaEha35WZFC9rh8fUldXIyQolDWLDpKenoGVjQnft61C8x+r5igrFCwV2ef0EwjCNyRD+vXcEJIXL998+TyK/6WLUUXr+3KrSqsLO4R8qbRY+cTcXytTzaI33U8Pj0//gtfXpIZNzplZvmaPk+4Udgj54qiXs0W2oLkvOlYg2wnr+eU/DvFvK1qfEIIgCIIgCN84lW/oDqNv6FAFQRAEQRCEokS0qAqCIAiCIBQh4mYqQRAEQRAE4askEYmqIAiCIAiC8DX6llpUxRhVQRAEQRAE4askWlQFQRAEQRCKkG+pRVUkqoIgCIIgCEVIUfn504Iguv4FQRAEQRCEr5JoURUEQRAEQShCvqUJ/0WiKgiCIAiCUIR8Qz3/outfEARBEARB+DqJFlVBEARBEIQi5FtqURWJqiAIgiAIQhHyLSWqoutfEARBEARB+CqJFlVBEARBEIQiRPINtaiKRFUQPkGGtLBDyJeZ13QLO4R86e2VXNgh5Eulxf0KO4R8OdFjbmGHkC9/n+pQ2CH833udEVXYIeRLXFrRysoc/4N9fEtd/yJRFQRBEARBKEK+pURVjFEVBEEQBEEQvkqiRVUQBEEQBKEIUfmGBqmKRFUQBEEQBKEIEV3/giAIgiAIglDIRIuqIAiCIAhCEfIttaiKRFUQBEEQBKEI+ZYSVdH1LwiCIAiCIHyVRIuqIAiCIAhCEfIN3fQvElVBEARBEISiRHT9C4IgCIIgCEIhEy2qgiAIgiAIRYjKN9TM+A0dqvD/5tGjR6ioqBAaGgpASEgIKioqxMXFFWpcgiAIgvBvUlEpmEdRIFpUhQLVqVMn4uLi2LFjx3++7woVKvD8+XMMDQ3/k/3JZDLmzdnC1i1HSExMxs/PgzHjuuLoZP3R9TasC2LF8t1ERcXj4enAqNGd8fF1A+Dp05fUrTVA6Xoz/hxI3XrlFZbFxSbSvNlwIiNjOHV2GQYGunmO/+HhEO7vO0RqfAIG9naUaN8aY1cnpWWfn79M2O4DJL98hSwjE10rC1zq18K+Yjl5mTvb9/D07AXeRMciUVPF0MkBz5ZNMHZ1znNM7+zefJJta0OIjU7E2d2a3kOb4VHcIdfyxw9fYc3CA0Q+j8XG3owu/RtQtqKX/PXXKamsmLuX00dvkBifjKWNCY1bV6JB8wrZxxgRxdK/9nAj9CHp6RmUDvSg95BmGJvq5zt+gMYOVrR0tsVEQ4P7icnMu/WAO/FJn1yvmpUZo0t5cDIymvGXbyst85O3Kw0drJh/6wF/P37+WfF9jooBngzq1RB/HxesLY1p1W0Guw9e+M/2/zHHdxznyOYjJMQkYutqQ/P+zXH0dFRa9tTe05w/eJ7nj7Lqzr6YPQ27Nsi1fEEI+fsEhzZlxWfnakPrAd/j5KV8f88ePmf3igOE331CTGQsLfo2pWaLqgpl3qS8Ydfy/Vw5cY3E2CTs3W1p2a8ZTp65/598jEwmY8HcHWzfepTExBRK+bkzamx7HB2tPrrexvXBrFqxn+ioeIp5ODB8VDt8fF2Ubr9frz85eeIaM2f3p0ZNfwDu3A5nxdJ9XL58l7jYJGxszWjRqhrt2tfJV/wHtp5g97oQ4mIScXSzocvgZrjlcs148uAFm5Yc4OHtCF69iKXjT01o8EMVhTIHt5/i4PZTvHoeA4CdixUtutTGL9BL2Sb/cypFJcssAKJFVfi/oaGhgZWV1X/2D7x86S7WrT3A2PHdWL/pd7R1NOnZfTKpqWm5rrN/3ymmTV1D774t2LJtMh4ejvTsPpno6HgArKzMCDm2UOHRt19LdHS0qFy5VI7tjR2ziGLF8v/B9PTMBW6u30axpg2o8usoDBzsODt9NqkJCUrLq+vp4t64PpXGDKXqxF+wrxzIlSWreXn1pryMrpUFPu1bU3XSL1T8ZQg65qacmTab1ITEfMV29GAoS2btom232sxZMxAXdxvG9F9CXIzy7dy88oipv6yjTpMA5qwdRGDVEvw2ZCWP7mUncEv+3MXF03cY+msbFm0eRtMfqrBg+g7OHL0BwJvXqYzutwQVYPKCXvyxtB8Z6ZlMGLwcqVSar/gBqlqZ0dPTmbX3ntD7VCgPEpOZXKY4RhrqH13PUluTHp5OXI2Jz7VMRQsTvIz0iHqTmu+4vpSujibXboYz8Jfl//m+P+bSP5f4e+EO6naox9CFQ7BxtWXB8IUkxio/Z+5duYd/DX/6zejLoDkDMTI3YsGwBcS9ivtX4rtw5DLbFuygQce6jFr8M3auNswetoiEXOJLS03HzMaUpj0aYmCi/IvS2umbuH3hDp1GtuOX5UPxKuPBX0M+/xhWLtvH+nWHGD2uA2s2jEFbW4M+PWaSmpqe6zpB+88yY9pGevZpwoYt4ynmYU+fnjOIic55HVm7+iAouTTfuvkIY1N9Jk7pwbadv9OtR0PmzNrGxnWH8xz7qcOXWT17Fy261mHqykE4utswcdBi4nO5ZqS+ScPSxpS2fRpglMsXURNzQ9r2acCUlYOYvGIQJUq7MW3YCp48eJHnuISCIRJV4V9TrVo1BgwYwLBhwzAxMcHKyorx48fLX5fJZIwfPx4HBwc0NTWxsbFhwIDs1kQVFZUcLbNGRkasXLlS6f4+7PpfuXIlRkZGBAUF4eXlhZ6eHvXq1eP58y9vgZLJZKxZvZ8evZpRo2YZPDwcmTSlLy9fxhJ8OPcWptWr9tKiZQ2afV8NVzc7xo7vhpaWBn9vDwFAVVWCmbmRwiM4+Dx165VHR1dLYVsbNxwkISGZTl0a5jv+BweCcahWEYcqFdC3tca3UxtUNTUIP3paaXkzr2JYlymFvq01upbmuNStgb69LTF378nL2FUIwLyEF7oW5ujb2eDdtgUZr9+Q8ORpvmL7e/1R6jUtR53GATi4WNFvZHM0tdQ5uOu80vI7Nx6ndKAHLdpXx8HZkg696+HqacvuLSflZW5dfUTNBmXwLe2GpY0J9b8vj4u7NXduhgNZye7L5zEMHvcDzm7WOLtZ8/P4Hwi7FcGV8/eU7vdjmjvZsP9JJEFPXxKe/Jq/btwnNTOTurYWua4jAUb6FmN1WDgvXr9RWsZUU4O+3i5MvnqXDJks33F9qYMhV5jwx2Z2BX0drajvhGwNocJ3gZSvVw4rJytaDWyJhqYGZw6cVVq+w6j2VG5SCTs3OywdLGnz8w9IZTLuXr77r8QXvCWEig0CqVC/HNZOVrQZ3BINLQ1O71cen5OnA817NaZsDX/U1HN2fKalpnH52FWa9WyEe0lXLGzNadipHuY2ZhzddSrf8clkMtatOUT3no2oXsOfYh72/Da5O69exvJP8KVc11uz6iDft6hC02aVcXWz5ZdxHdDS0mDH9uMK5W7fCmfNqiAm/NY1xzaafl+F4SPbUaasJ3b2FjRoVIHGTSsRfPhinuPfs+EYNRuXp3rDAOycreg+rDkamur8s+ec0vJu3g6079+IirX9UFdSvwBlKhfHv4IX1vbm2DiY06bXd2hpaxB2/XGe4/o3fUtd/yJRFf5Vq1atQldXl7NnzzJt2jR+/fVXDh06BMC2bdv4888/WbRoEWFhYezYsQMfn/+xd9fhTV19AMe/Sd3dlTqFIsXdh9uwMTbcYcOGD5vB2NgYwzbcneHaQvHhrkVKkZZSd03eP1JS0qbQ0rLSl/PhyfOQm3Pv/eX23JOTY/Er1vMnJyfz66+/smbNGo4fP05oaCjffPNNkY/79GkEkZGx1KqVE6+RkT4VKnhw9ar6D7uM9Exu3XxEzdf2kUql1Kzlx9Ur6ve5efMhd26H8GnnRirbH9x/yuKF25k5axiSQi6oJ8vMJC4kFMtyPsptEqkUS18fYu4/fOv+crmclzfvkBT2Agsfz3zPEXr0JJr6ehg7OxY4toyMTO7feUal6l7KbVKplErVPblzXf0HxJ3rj6lcTTWOKjW9VdKXreDK2eM3iYyIQy6Xc/XCfZ6FRuJfQ3GejPRMkEjQ0s750NLW1kIilXDz6qMCxw+gKZHgZWzIpahY5TY5cCkqDl/T/IcRfOHhREx6BgeeRah9XQKMr+DJlkfPeJyYUqiY/p9lZmTy5N5TvPxV84yXvxcht0IKdIz0tHRkmTL0jQo+dKYw8YXee4pPFdX4fPw9eXjz3So9siwZMpkMrVwt9No6Wjy4/vZ7OLdnT18SGRlHjZrllNuMjPTxq+DO1avqv6hlpGdy+1YINWrl7COVSqlR05drr+2TkpLGpHF/MfHbL7C0KtiwrMTEZExMDAuUNjMjk4d3n+L3WhkglUrxq+bFvWKqVMqyZJw6fJm01HS8/N7f8JDC+JgqqmKMqvBeVahQgWnTpgHg6enJ/PnzCQwMpFmzZoSGhmJra0vTpk3R0tLC2dmZ6tWrF+v5MzIyWLx4Me7u7gAMHz6c7777rsjHjYyMBcDCQrXgtbA0ITKfrreY2HiysmR597Ew4dEj9a2O27cexc3dgcqVvZXb0tMzGPvNPMaM7YGdvSVPnr4oVOzpCYnIZTJ0jI1VtuuYGJMYlv+xMpJTODxiIrLMDCRSKX49u2NVXnW81ovL17m4cBlZ6enomhpTa9zX6BgV7AMHID42CVmWDDNz1X1MzY14EqK+AhcTlZCn+87U3JCYqJxuvyFjOzLvpy30bP09GhpSJFIJIyZ3wc9fkS98/FzQ1dVm+Z976TWsJcjlrJi/D1mWjJjIwg1dMNHWQkMqISZdtcs0Ji0dJwP1H9TlTI1o4WjD4FNX8j1uNzcHZHL5fzomtTRIiktCJpNhZKaaB4zMjIh4UrB7Y9eS3RhbGOP9WmWyuCRmx2ecKz5jMyNehKrP02+jq6+LWzlX9q05hK2LDcZmRpw/comHt0KwcrAs9PEiIxVDTSwsVcsEcwtjoiLVD0OJiU3ILs9U97GwMCHkUU73+K8/b6BiZXcaNfYvUCxXLgdz6MB55i0cWaD0r8oMU/O8ZcDzx+92fV8JvR/G5IHzyEjPRFdPm29m9cGxzJvH7ArFT1RUhfeqQoUKKs/t7OyIiFAUHl26dGHu3Lm4ubnRokULWrVqRdu2bdHULL5sqa+vr6yk5j6/OmlpaaSlqY79k2qlc/jQOWZMX6LctnDR+GKLMT+pqens23uKQUM+Vdk+97cNuLk50LZdvfcew+s0dXVo8MMkMlPTiLx1l5sbtqJvbYll2ZwPdwtfLxr8MIn0hEQeB53iwvyl1Js+Lk+l+L+2a9NJ7lwPZdqcPljbmXHj8kMWzv4Hc0tjKtfwwsTMkEmzvmT+rO3s2nQSiVRCg08q4eHjUOgW68LS09BgfAUvfr9xn/iMTLVpPI0N6Ohiz9DTV99rLB+jwxsCuHz0MsPnDM/TQvkh6z2xB2tmb2Ril+lIpVKcvByp1tif0HtP3rrv3j1n+GH6KuXzPxeNfC8xBh25zLmzt9m0dUaB0t8Pfsqor+YxaEg7atcp/15iKgx7Fyt+WTWG5KQU/j1yjQXfb2DGwqEfRGW1tLSGFgdRURXeKy0t1YJfIpEoJ6c4OTlx9+5dAgICOHz4MEOHDuWXX37h2LFjaGlpIZFIkOcah5eRkf/A/oKeP/cxXzdz5kxmzFAtVL+dOpAx3/SiQvbMfFC0agJERcVhZW2m3B4VGYd3PjN5zUyN0dCQKidOKfeJisPS0jRP+kMH/yUlNY127VVno549e5Pge6FULK8Y3/bq/dSrPYABgzpCzab5vj8AbSNDJFJpnolTaXHx6JjkX6GUSKUY2CjGWJq4OJH4PIz7uw+oVFQ1dXTQtLHGwMYaMw83joydSuix03i2bfHGmF4xNjVAqiElJlp1dnxsdALmFupjM7MwIjYqIVf6ROVs/bTUDFYt3M+3v/Siel1fAMp42vPg3nO2rz1G5ezuf/+a3izfMZG42CQ0NKQYGunRo/kMbD8xL1Dsr8SlZ5Alk2OWq9JjpqNNjJqJdvb6utjp6/K9v69y26sPoQOf1KbPiUuUNzPGVFuLdQ2qKtNoSCUM8inDp672fHms4OP5/t8YmBgglUrzTJxKiEnAyPzNX5CObD5C4IYAhv4yFAd3+/cSn2F2fLknTsXHJGD8lvjexMrBktF/DCctJY3U5FRMLExYOmMVlnYWb923YaNK+PnlzMxPz/6CFBUZj5WVqXJ7dFQ8Xj5Oao9hZmqUXZ6pliOK8kzxvs6dvc3TJy+pV2uYSppvRs6nchUvlq2coNz24P4zBvb7hU+7NGTA4HZvfQ+vvCozck+2jI1OzHeiVEFpamli66RooXbzceLB7Sfs23SCgRO6FOm4xUH8hKog/Ef09PRo27Ytbdu2ZdiwYfj4+HD9+nX8/f2xsrJSmfgUHBxMcnLye41n4sSJjB49WmWbVOs2OjraGBjoKbfJ5XIsLU35998b+JR1BRTjqq5du0/Xz5qpPbaWtia+5cpw9t8bNGlaDQCZTMbZf2/QvUfzPOm3bztKo0ZVMM/1Yfb7H6NIS82psN+48YApkxezas10nJxt+PXhm2epSzU1MXF1JvLmXeyqVFK8H5mMyFt3cW3a8I37vk4ukyPLVN8CqEwjlyPLp5VQHS0tTTx8HLh6PpjaDRUtKjKZjCvn79O2Sx21+/j4uXDlfDAdPs+p0F8+ew+f7LFkWZlZZGZm5VkNQkMqRabmS4uJqWKc4pXzwcTGJFKzXrk8ad4kUy7nXnwilS1MOB2hWNpGAlS2MGGnmm770KRkBpy8rLKtt6cz+poaLLz9iJepaQQ8f8nlXF9wZlb1JeD5Sw7mM6b1Y6GppYmTlyP3LgdToa6iB0cmk3Hv8j3qdci/1yFwYyCH1h9myKzBOHu/25JOBY3P2cuRu5fuUamunzK+u5eCadixbpGPr6Ong46eDkkJydw6f4eOg9q+dR8DAz015ZkJ587ewqes4lokJqZw/doDunRrpPYYWtqalPV15dy/t5RLTclkMs6dvc1n3ZsA0Ld/az7trPpFu3OHKXwzvjsNGlZSbrt//xkD+86mbbs6fDWiU6Hev6aWJm7ejty4EEz1BjnX98aFYFp0Vl9mvCuZXE5GIcozoXiIiqpQYlauXElWVhY1atRAX1+ftWvXoqenh4uLooLRuHFj5s+fT61atcjKymL8+PF5WkiLm46ODjo6OirbMmTaedJJJBK+7NmSvxf/g4uLLQ6O1syftxlrazOaNM1p9erX53uaNK3G5z0ULYo9e7Vm8sRFlCvvRnk/D9au3kdKShodOqqukRj6OJyLF+6w6K+8QwycnVW7nWJiFS0abu4OinVUH8a89X26tWjClSWrMC3jjKmbKw8PHSErLQ3n+rUAuPzXSnTNTCnbtQMAwbsPYFrGBX1rS2QZmURcu8nT02fx69UdgMy0NIJ37ce2cgV0TE1IT0gkJOAYqTGx2Fcv2Ni0Vzp+3oDfZmzEs6wjXuWc2bnhBGkp6TRrq6jc/zptAxZWJvQZ3gqA9p/VY/yghWxfG0S1ur4cO3SZ4NtP+WpSZwD0DXXx83dj+bw96OhqYW1rxvVLDwncd4EBI3Nabg7tOodzGRtMzAy4fe0xf/22kw7d6+Homv9M/fxsC3nOOD9P7sUlcjcukY6u9uhqaCgrleP8PIlMS2f5vcdkyOSEJKp+AUvK/gLwantCRiYJuT4gM+VyotPSeZr0302sMtDXwd01J/+5OllRwdeFmNhEnjyP+s/iyK1h54as+3k9zl5OOPs4c2zbMdJT06nRXLHO79pZazGxNKFtf0UlLmBDAPtW7afnpJ6Y25oTH624h15V+opbky4NWTVLEZ9rWReObD1GWmo6tVoo4lv50zpMrUzoMECxgkdmRiZhjxXja7Mys4iNjOPJ/Wfo6Glj7WAFwK1zd5Ajx8bJmpfPItm+eBc2zjbUbllDfRBvIJFI6PFlM5b8tRtnZxscHC1Z8Oc/WFmb0ahJzv07sO9sGjfx57Meil6bL3t9wpRJS/Et50p5PzfWrTlESkoa7bMr4JZWJmonUNnaWeDgqHgf94OfMqDvbGrXKc+XvZoT+VLxhUyqIcnzJT0/bbrXZ8H3G3HzccKjnDP7Nh4nLTWdhm0Ucx7mz1ivXG7q1fV9+khxfTMzs4h+GUfIvWfo6ukoW1DXL9xLpVo+WNqakZqUxslDl7h16QGT5w4o9PV9H0SLqiD8B0xNTZk1axajR48mKysLPz8/du/ejYWFoutqzpw59OnTh3r16mFvb88ff/zBxYsfThdn3/7tSElJY/q0JSTEJ+Pv783ivyego5NTsX0S+oKY17r8WraqTUxMPPPnbSEyMhafsi4s/ntCnq7/7duPYmNrTu06qmN8i4tDzaqkJyRyd/sexYL/zo7UGPuVsus/JSpaZRBUVloa11dtICU6Fg1tLQztbKk8qA8ONRWVcolESuLzF1w4+TfpCUloGRpgWsaFOpPHYORYuC7VBp9UIj42kTV/HSQmKgE3L3u+m9df2ZX/MjwG6Wux+VZ0ZdwPPVi96AArF+7HwcmSKb/2xtUj54cXxv/4BSsX7OOXKetJiE/G2taMnkNa0qpTLWWaZ49fsmrBfsXr9mZ069OEjp+rtgYV1LHwSEy1Nenl6YyZjjYP4pOYdOEmsdlDRqz1dJDz3y8vVVT+Fdw4tHmq8vnsaT0BWLPlGAPHLC6psPBv5E9iXBL7Vu4nPiYeR3cHBs8apFyDNCYiRqVF/dTuU2RlZLFixgqV47To2ZyWvVoWe3xVG1cmMS6RPSsPEB+tiO+rn3Pii46IURkLHRcVz08DflU+D9h0lIBNR/Gs6M7oucMBSElKYcfSvcS+jEXfSJ/K9SvSvl8rNDQ13inG3v1akZKSzvfTV5KQkExlfy8W/jUaHZ2cxoEnTyKIic0ZltO8ZQ1iohNYNH+H8gdMFv41GgvLgv/oyuFDF4iJTmDv7jPs3Z2zPJ6dvQX7D//6hj1z1G5amfiYJDYvPUhsVDyung5M+n2AcoJV5ItYlesbHRnPuF6/KZ/vXh/E7vVB+FZ2Z/rCoQDExSSy4LsNxETFo2+oh4u7HZPnDqBCdW8+BFJJ6Ss/3pVE/qYBe4IgkCG7/PZEH5CJ59/eovohGVI2qaRDKJTBpws3ZrWknRw4v6RDKJR/Tvcs6RAKTVtauj5Ga1mblnQIhXIvPrqkQyiUiuaFX9u6sJofPFksxznYvOjDT9430aIqCIIgCIJQioiuf0EQBEEQBOGD9DH9WpOoqAqCIAiCIJQiH9MY1Y+pUi4IgiAIgiCUIqJFVRAEQRAEoRT5mMaoihZVQRAEQRCEUkRaTI93sWDBAlxdXdHV1aVGjRqcO3euQPtt3LgRiURChw4dCnU+UVEVBEEQBEEQ3mrTpk2MHj2aadOmcenSJSpWrEjz5s2JiHjzL+SFhITwzTffUK9e/r8Wlx9RURUEQRAEQShFpJLieRTWb7/9xoABA+jTpw++vr4sXrwYfX19li9fnu8+WVlZ9OjRgxkzZuDm5lb491r4MAVBEARBEISSIpHIi+WRlpZGfHy8yiMtLU3tOdPT07l48SJNmzZVbpNKpTRt2pQzZ86o3Qfgu+++w9ramn79+r3TexUVVUEQBEEQhI/QzJkzMTExUXnMnDlTbdrIyEiysrKwsbFR2W5jY0N4eLjafU6ePMmyZctYsmTJO8coZv0LgiAIgiCUIsU163/ixImMHj1aZZuOjk6xHDshIYEvv/ySJUuWYGlp+c7HERVVQRAEQRCEUqS4usN1dHQKXDG1tLREQ0ODFy9eqGx/8eIFtra2edI/ePCAkJAQ2rZtq9wmk8kA0NTU5O7du7i7u7/1vKLrXxAEQRAEQXgjbW1tqlSpQmBgoHKbTCYjMDCQWrVq5Unv4+PD9evXuXLlivLRrl07GjVqxJUrV3BycirQeUWLqiAIgiAIQilSUj+hOnr0aHr16kXVqlWpXr06c+fOJSkpiT59+gDQs2dPHBwcmDlzJrq6upQvX15lf1NTU4A8299EVFQFQRAEQRBKkZL6Zapu3brx8uVLpk6dSnh4OJUqVeLAgQPKCVahoaFIpcXbWS8qqoIgCIIgCKVISY7bHD58OMOHD1f7WlBQ0Bv3XblyZaHPJyqqgvAWiRnPSjqEQqlpXbpu6x2PdUs6hEKx0Mkq6RAK5Z/TPUs6hELpWHt1SYdQaKcv9yjpEAolMTOypEMolL2heiUdQqFUNC/pCP6/lK5PNEEQBEEQhI9cSXX9lwRRURUEQRAEQShFSmoyVUkQy1MJgiAIgiAIHyTRoioIgiAIglCKiK5/QRAEQRAE4YP0MXWHf0zvVRAEQRAEQShFRIuqIAiCIAhCKfIxTaYSFVVBEARBEIRS5GMaoyq6/gVBEARBEIQPkmhRFQRBEARBKEU+phZVUVEVBEEQBEEoRT6m7nBRURUEQRAEQShFPqbJVB9TpVwQBEEQBEEoRUSLqvDB6t27N6tWrVI+Nzc3p1q1asyePZsKFSoAIJEoBuqcOXOGmjVrKtOmpaVhb29PdHQ0R48epWHDhsr0//zzDx06dChSbFs3nmTtyiCiIxPw8LJnzMSOlPNzzjd94KGr/D1/P2HPY3BytmTYqDbUrldW+frRgGv8s+UMd249JT4umdWbR+Pl46ByjKjIeP78bQ/nztwjOSkNZ1creg9oSuNmFd7pPfy76wQnth4hMSYeWzcH2gzthJO3i9q05/ef5nLAeV48DgPAwcOJZn3aKNNnZWZxeNVe7p2/RXRYFLoGurhX9qZ537YYW5i8U3y53dx/jKu7AkmJjcfcxYE6/bpg7emqNu3tw6cIPnaO6CfPAbByc6ba521V0mekpHF23U4en7tGamISRtYWlG/ZAN/m9Yol3pdBR4k4dJCM+Dj0HJ1w7NYdgzJl1KaNvXyJ8P37SH8ZgTwrCx1ra6ybfoJ5zVo58cbH83z7VuJv3yIrOQVDT08cu3VH18amWOLN7cSOExzZfIT46AQc3O3p9FUnXHzU54/Te89w/tB5wkIU+cPJy4k2/Vrnm/6/VKe6D6MGt8Hfzw07GzO69p/D7kMX/vM4Dm47ye51QcRFJ+DsYU+f0R3x8FVfZjx5GM6WpQd4eOcpkeEx9BzRnlbd6ud77J2rA9mweB8tu9aj18gO7xTfto2n2LDqGNGRCbh72TFqQgd831CmHTl0laULDhL+PAZHZ0uGjGxFrdfKtGWLDhF44AoR4bFoamni7evAwOEtKVdB9Zinj99mxV+HeRAchra2FpWrujFzbu9Cx3/n4DFu7M4pH6r36YKVh6vatPcCT/Hg+Dlis8sHizLOVO7eViV9Smw8F9fv5Pm126QnpWBT1oMafbpgbGdd6Njeh49pjKpoURU+aC1atCAsLIywsDACAwPR1NSkTZs2KmmcnJxYsWKFyrZ//vkHQ0PD9xLT4QOX+eOXXfQf/AmrNo3C09uekYP/JjoqQW36a1ceMXX8Wtp2rMGqzaOp37g840as4EFwmDJNako6FSuXYdjI1vmed8bkDYSGRPDLvL6s2/4NDZv68e3Y1dy9/bTQ7+HasUvsW/IPjb9ozrD5Y7F1s2fl5EUkxqp/D4+u3adCQ3/6/Tycwb+PwsTKlJWTFhEXGQtARlo6z+8/odHnzRk2/xs+n9KPyKcRrJm+pNCxqfPg1EXOrPqHKl1a8uns8Vi4OrDvhwWkxKmPN+xmMO51q9Bm+gg6/DQGA0tT9n2/gKSoWGWaM6u28fTKLRp93ZOuc7/Fr3VDTi3bQsj5a0WON+bCeZ5t3Yxtm7Z4T5qCnqMjD/6cS0Z8vNr0GvoG2LZshde4ifhMmYZ5rTo8Xr2S+Js3AJDL5TxctIC0yEjchgzDZ/IUtC0suP/Hb2SlpRU53twuHb3EP4t30LxnC8Yu/gZ7dwcWjV9MQoz6633/6n38G/szfM4wRv05ElMrUxaNW0Tsy9hij62wDPR1uH4rlJHfLi+xGE4HXGbNvF107vsJM1eMwsXDnpmj/iYuWv31TE9Nx9regs+HtMbUwuiNx35wK5SAnf/i7GH3zvEFHrjC/F9302dQM5ZtHImHtz2jhywlJipRbfrrV0KYMWE9bTpWZ/mmkdRrVI6JI1fxMDhcmcbJxYpREzuwatsYFq4cip29OaOHLCEmOueYQQHX+H7yBlq3r8bKzaNZtGoYTVtWLnT8j05f5Pzqf6jYqSVtZ43HzMWBgJ/yLx/CbwZTpnYVmk8dQavvx6BvYcrhHxeQFB0LKO63o7/+TcKLSBp/M4i2P0/A0NKcQz/8SUZq8d9v70JaTI/SoLTEKXykdHR0sLW1xdbWlkqVKjFhwgSePHnCy5cvlWl69erFxo0bSUlJUW5bvnw5vXr1ei8xbVh9nPadatKmQ3XKuNsyfkondPW02LPjnNr0m9adoGYdb77o04gybjYMGt4S77IObN14SpmmZduq9Bv8CdVqeuV73utXQujSvS7l/JxxcLSg78BmGBrpcedW4Suqp7YHUbVFbap8UhNrF1vaf9UVLR1tLh78V236ruN7UrNtPezdHbFysqHjyO7I5TIeXrkHgK6BHn1nDsOvfmWsnGxwLutK26GdeB78hNiI6ELHl9u13UfwaVob78a1MHOyo97Az9DU0ebukTNq0zce2ZtyLepjWcYRUwdb6g/ugVwu59n1u8o0L+4+wqtBDezLe2FkbUHZZnWxcHXg5f3HRY43IuAwFnXqYVG7Dnr29jh9/gVSLW2iTp9Sm97I2xvTyv7o2tmhY2WNdZOm6Dk4kvjgPgBpES9IfvQQp897YOBaBl1bW5y690CekUHMefX5riiCtgZRu1Utaraoga2rLV1HdkFbR5t/D5xVm77npC+p174ujh6O2Djb0H3MZ8jkcu5dvlfssRXWoaCrzPh1M7sO/vetqK/s3Xicxu1q0rBNdRzL2NJ/XCe0dbQI2qP+b+fu68wXw9tSu1llNLXy7/hMTU7jzxnrGDihCwZG+u8c38Y1x2n7aQ1ad6hGGXcbxn77Kbq6+ZdpW9adpEZtbz7v3RBXNxsGDG+BV1kHtr1Wpn3SqjLVanrh4GiBm4ctX33TlqTEVOUX9MzMLP74eRfDRrWhQ9daOLtaUcbdhibNKxY6/lt7j+DZpDaejWph6mhHrf6foaGtzf2j6suH+l/3xqd5fcxdHTFxsKX24B4glxOeXT7Eh0XwMjiEmv0/w9LDBRN7G2r270ZWegaPTl0sdHxC0YiKqlBqJCYmsnbtWjw8PLCwsFBur1KlCq6urmzbtg2A0NBQjh8/zpdfflnsMWRkZHL39lOq1fRUbpNKpVSr4cX1q+orODeuPqZaDdUKaM3a3ly/GlKoc/tVciXg4BXi4pKRyWQc3n+Z9LRM/Kt5FOo4mRmZPA9+gkflnJikUikelb0IvV2wmDLS0snKlKH3hg/H1KRUJBIJugbv/gEKkJWRSeTDJzhW8FZuk0ilOPh58+LuowIdIzM9HVlWFjqGObHYeJfh8YXrJEXFIpfLeX7jHnHPI3CsWPYNR3o7WWYmyaGPMSqbcxyJVIpR2bIkP3zw1v3lcjkJd26T9iIcQw/F30iemQmAVEtL5ZgSTU2S7gcXKd7cMjMyeXLvKV7+qvnDy9+LkFshBTpGelo6skwZ+kYGxRpbaZSZkcmju0/xq6paZvhV8+LejaJ9KVo+ZzuVa/viVy3/L7hvk5GRyb3bz6iaq0yrWtOTm9fyKdOuPVZJD1Cjthc38kmfkZHJzm3/Ymiki4eXPQD3bj/jZUQcEqmEPl1/p32T7xgzdKlKq2xBZGVmEvXwCfZ+quWDvZ83L4MLVj5kpaUjy8xCO7t8kGXfbxqvfUmQSKVItTSJuPv2e/i/IJUUz6M0EGNUhQ/anj17lF34SUlJ2NnZsWfPHqRS1e9Yffv2Zfny5XzxxResXLmSVq1aYWVlVezxxMYkkZUlwzxXd5yZhSEhjyLU7hMVmYC5hWGu9EZERarvlsrPj7/05Ntxq2lebwoamlJ0dbX5eW5vnJwtC3Wc5PgkZDIZhqaq78HQ1IiXT9S/h9wOLN+FsYUx7pW91b6ekZ7BweW7qNDQH10D3ULFl1tqQiJymQw9E9V49UyNiX32okDHOLd2J/pmJjhU8FFuq9OvC8cXb2DdoG+RaEiRSKTUH9wdO9/CVfxzy0pMBJkMLWNjle2aRsakhuf/IZyVksyNCeOQZWQikUpw6t4DY19fAHRtbdEyN+f5P9tx6vElUh0dXgYeJiMmhoz4uCLFm1tSnCJ/GJmpXm8jMyMinhTseu9ashtjC2O8q7x7Ber/RXxsErIsGSbmqtfTxNyQZ48Ldr+pc/rwZR7dfcqPy0YWKb44ZZmmWkaZWxjyOJ8yLToyATM1ZVp0rjLt1LFbTB+/jtTUDCwsjfh98UBMzRRfXp4/VfS0LF98iK++aYutvTkbVx/jq/6L2LBrPMYmBfuCmxavKB90c5UPuibGxD0vWH69uG4neuYm2PspygcTe1sMLM24tGEXtQZ0R1NXm1t7j5IcFUtKTPHeb+9K8hHN+hcVVeGD1qhRIxYtWgRATEwMCxcupGXLlpw7dw4Xl5yJGl988QUTJkzg4cOHrFy5knnz5r3T+dLS0kjLNeYvjQx0dLTy2eO/89eC/STEp/Ln34MwNTPk2JHrTB67msUrhuPh9e7j0wrr2KbDXA+6TP/Zw9HSzntdsjKz2PjjSuRyaDe8638WV36u/HOIB6cu0mb6CDRfi/fGvmNEBIfQfMIgDC3NCbt9n1NLN6NvboLjaxXa/4pURxefyVPJSksl4c4dnm3djLalFUbe3kg0NHEbNJTQNSu5PmYkSKUY+ZTFuFx5PrSPq8MbArh89DLD56jPH0LRRb6IYdXcHUz6YxDaH0DZlB//ah6s2DyK2Ngkdm87y9Sxa/h77deYWRgikytybs/+TWjYVDEhdNJ33fj0kx84cugqHbrUetOhi831HYd4dPoizaeNQCM7v0o1NWg0ZgCnFq9jY79xSKRS7Py8cajk+5/EJKgSFVXhg2ZgYICHR04L19KlSzExMWHJkiX88MMPyu0WFha0adOGfv36kZqaSsuWLUlIKFyLJcDMmTOZMWOGyrZxk7szYcrnAJiaGaChIc0zcSomKhELS/WTHiwsjYjONSkhJioh3/TqPH0SydYNp1i/fSxuHrYAeHrbc+XSI7ZtOsX4KZ0LfCx9YwOkUmmeiVOJsQkYmr05phNbj3B8cyB9Zg7F1s0hz+tZmVls+GkFsRHR9Pt5eJFbUwF0jQyRSKV5JkakxMajb2qcz14KV3cGcOWfw7SeOhwL15x4M9PSOb9hN5+MHYBzlfIAWLg6EBXylGu7AotUUdUwNASpNM/EqcyE+DytrK+TSKXoWCtmFOs7OZMWHsaLg/sw8la0Wuu7uODz7TSyUpKRZWahZWTE3Vk/oe9SvDPrDUwU+SP3xKmEmASMzN98vY9sPkLghgCG/jIUB3f7Yo2rtDI2NUCqIc0zcSouOhFT84KXAa97dOcpcTGJTOzzu3KbLEvGnSsPObjtFGuDfkaqUbCRfSbKMk21jIp+Q5lmbmmUZ6JVTFQC5rnS6+lr4+hsiaOzJeUruPBZ25/Zs+McX/ZrjGV2Wle3nFUrtLU1sXMw50V4bIFiB9AxVpQPqbnKh9S4ePTeUj7c2B3A9Z2H+eTb4Zi7qJZnFm7OtJs9kfTkFGSZmegaG7F38i9YuOW/EsJ/qbR02xcHMUZVKFUkEglSqVRl4tQrffv2JSgoiJ49e6KhofFOx584cSJxcXEqj1Hjuihf19LSxLusI+fP5owLlMlknD8bjF9F9RWG8hVdVNIDnPv3Hn4VXQscV2pKBgCSXKWThoYEmaxwbWqaWprYezrx4ErORBeZTMaDK/dwLpt/TMe3BHJ0/UF6/TAYR6+8hfWrSmrUs5f0nTkMfePiGZ+ooaWJpZuTykQouUzG8+v3sPFWv9wTwJUdh7m07QAtvx2KlYfq30aWlYUsMwskqtdTIpUiL+T1zE2qqYm+swsJd26rxJtw5zb6bu4FPo5cLkeekZlnu4aePlpGRqS+eEHy4xBMKlYqUry5aWpp4uTlyL3Lqnn83uV7uPq65rtf4MZADq49xOBZg3H2/jA+zD8EmlqalPF25MZF1et540IwXuXf7UtG+aqe/LLmG35eOVr5cPNxos4n/vy8cnSBK6mgKNO8yjpw8ex9lfgunr1PuQr5lGkVXLiQq0w7/28w5fNJ//px09MVedrb1xFtbU2ehORMjM3MyCL8eQy2dmYFjl9DUxMLNyfCcpUPYTfuYeWZf/lwY+dhrm07QLOJQ7F0zz9ubX09dI2NiA+LIOpBKE5V3205wOL2Mc36Fy2qwgctLS2N8OxxfTExMcyfP5/ExETatm2bJ22LFi14+fIlxm9otXobHR0ddHR0VLZlpal2rXXvWZ/vv91IWV8nfP2c2bT2OKkp6bTuUB2AGZPWY2VjwtARiqWmuvWox5C+C1m3Kog69ctyeP8Vbt98yoSpORXguLhkXoTFEPlS0Qr3OEQxNszC0ggLS2Ncy1jj6GzJz99t5asxbTEx1efYkRucOxPMnPn9Cv0+63zakG2/rsPB0xlHb2dO/3OM9NR0qnxSA4Atv6zF2MKE5n0V1/n45gAC1uyj6/iemNmYkxCtiFNbTwcdPR2yMrNY/8Nywu4/5cvvBiKTyZRp9Iz03zhzuSAqtG1M0Pw1WLk7Y+XhyvW9R8lIS8OrkWLt3KPzVmNgYUL1Hu0BuPLPYS5s2kvjkb0wsrIgOUYRi5auDlp6Omjr62Hn68HZNTvQ1NbC0MqcsFv3CT52jlq9Pi1SrADWTZvxeOVy9F1cMXAtQ8SRAGTp6VjUrgNAyIplaJuaYd9Rca7wA/vQd3ZFx8oKeWYmcTeuE/3vvzh93kN5zJiLF9A0NELb3JyUZ894tnkjJpUqY+xbrsjx5tawc0PW/bweZy8nnH2cObZNkT9qNFfkj7Wz1mJiaULb/or8EbAhgH2r9tNzUk/Mbc2Jz/7b62Tnj5JkoK+Du6ut8rmrkxUVfF2IiU3kyfOo/ySG1p/VZ9EPG3HzccLD15l9m46TlppOgzaKMmPBd+sxtzKh+xBFmZGZkcnTR4rxlVmZWUS/jCPk3jN09XWwdbREz0AXJ3fV4T46etoYmejn2V4Qn31Znx+nbMKnnCNlyzuxee0JUlLSad2hGgDfT96AlbUJg0e0AqBLj7oM77eIDauOUbt+WQIOXOHOzaeMy+7ZSUlOZ/XSQOo09MXS0pjY2CS2bzxNZEQ8jbLXfTYw1KV9l5osW3QIa1sTbO3NWL/yGACNPilcZdC3dWNOLlyDhbszlu6u3N53lMy0NDwaKsqHE/NXo29uQpXPFeXD9Z2HubJ5L/W/7oWhtQUpsYr8qqmrg5auIr+GnLmErrEhBpbmxIQ+59yqrThVq4BDESdbCoUnKqrCB+3AgQPY2SkKXiMjI3x8fNiyZYtyAf/XSSQSLC0LN7HoXTRrUZnYmCSWLDxIVGQ8nt4O/L5oABbZE6zCw2NVWj4rVCrDd7O+4K8/97N43j6cnK2Y/Ucf3D1zPlBOBN3ghymblM+njFsLQL/BnzBgaHM0tTT4bUF/Fs7dyzdfLSMlOR1HZwum/vCZyg8HFFSFBv4kxSUSuGYfCTHx2Lk50vuHwRiaKSr5cRExyh9TADi75xRZGVls+EF1vdrGPVrQ5MuWxEfGcudfxZqf84fOVknT7+fhuFVUnSFcWO51qpASn8iFjXtJjk3AwtWBVpOHKbv+EyOjVa75rUMnkGVmEvDrMpXj+HdpSdVuispAk1F9Obd+J0fmrSItMRlDS3OqdW9D2U/qFilWALOq1chMSCBs904y4+PRc3TC/asRyq7/jOholesrS0vj6YZ1pMfGINXSQtfWDte+/TCrWk2ZJiMujmdbN5MZH4+miQnmNWth26pNnnMXB/9G/iTGJbFv5X7iY+JxdHdg8KxBGGd3Vcfkyh+ndivyx4oZqvmjRc/mtOzV8r3EWFD+Fdw4tHmq8vnsaT0BWLPlGAPHLP5PYqjdtDLxsUlsWXKQ2Oh4XDwdmPDbAGXXf+QL1TIjOjKeCb1/Uz7fsz6IPeuDKFvZnWkLhhZ7fE1aVCI2JomlCw8qfsTE2545C/srJ42+CI9F+lp8fpVcmTbzc5bMP8jff+7H0dmSmXN74eap+EIg1ZDw+FEE+3ddIC42CWNTA8qWc2TBiqHKoUsAw0a1QUNDyveTN5KWloGvnzN/LBmEsXHhVgopU7sKqfGJXNm8l5TYBMxdHWg6cZiy6z8pSrV8uHtYUT4E/aZaPlTs3JJKXRTlQ0psPOfXbCc1NgE9M2Pc69egQqcWhYrrffqYfkJVIpfLP553KwjvICZtT0mHUCiBz0vX98/Hie82TKOknI8s2RbCwurtmVTSIRRKx9qrSzqEQjt9ucfbE31AHA1kJR1CoSy5o1fSIRTKpErN3vs5pl0KKJbjzPBvWizHeZ9K1yeaIAiCIAjCR05MphIEQRAEQRCEEiZaVAVBEARBEEqR0jVgqmhERVUQBEEQBKEU+ZgmU4muf0EQBEEQBOGDJFpUBUEQBEEQSpGPaTKVqKgKgiAIgiCUIh9TRVV0/QuCIAiCIAgfJNGiKgiCIAiCUIpofEQtqqKiKgiCIAiCUIqIrn9BEARBEARBKGGiRVUQBEEQBKEU+ZjWURUVVUEQBEEQhFLkY+r6FxVVQRAEQRCEUuRj+glVMUZVEARBEARB+CCJFlVBEARBEIRSRHT9C4KgpKNhUtIhFIqHcVxJh1Ao9e3SSzqEQqlskVHSIfxfO325R0mHUGi1K68r6RAK5em97iUdQqHUsy1dZcR/4WOaTCW6/gVBEARBEIQPkmhRFQRBEARBKEXEL1MJgiAIgiAIH6SPaYyq6PoXBEEQBEEQPkiiRVUQBEEQBKEU+ZhaVEVFVRAEQRAEoRT5mCqqoutfEARBEARB+CCJFlVBEARBEIRSROMjWkdVVFQFQRAEQRBKkY+pO1xUVAVBEARBEEoRMUZVEARBEARBEEqYaFEVBEEQBEEoRUSLahFJJBJ27NhR4PTTp0+nUqVK7yOUD1Lv3r3p0KGD8nnDhg0ZOXJkicVTGuS+ZoIgCILwsdKQyIvlURoUqkW1d+/erFq1SrGjpibm5uZUqFCB7t2707t3b6RSRb03LCwMMzOz4o/2DUJCQihTpgyXL18u1kqvq6srjx8/BkBfXx9vb28mTpxIly5diu0c27dvR0tLq9iOVxQrV66kT58+ebYvWbKE/v37v/fz5/d3/OOPP5DLP6ybSi6Xs2j+Tv7ZeoKEhGQqVvZg0tQvcHGxeeN+m9YfYdWKg0RFxuHl7cT4Sd0pX8FN+foP01dz9t/bvIyIRU9fh4qVPBgxuhNl3OzyHCs2NpFun84g4kUMx8/Mw8hYv8DxH9x2kt3rgoiNTsDFw54+ozvi4eusNu2Th+FsXnqAR3ee8jI8hp4j2tO6W/18j71jdSAbFu+jZdd69B7ZocAxvbJ94yk2rDpGdGQC7l52jJzQAV8/9bEBHD10laULDhL+PAZHZ0sGj2xFrXpl1ab99ftt7Nz6L1+NbUfXL+opt69eEsiZE7cJvvscLS0N9p/8vtBxvy7on5Mc3nSE+OgEHN3t6fb1p7iWdVGb9vmjMHavOEDovSdEv4ih87AONOncQCWNLEvGnlUHOHf4IvHRCZhYGlOreXVaftkMiaTozSvFHW9qciq7lu/n6snrJMQk4uTpQJfhHXH1yf/vWBiv8m9cdALOBci/W5Ye4OGdp0Rm599Wb8i/O1/Lv73eIf8WRZ3qPowa3AZ/PzfsbMzo2n8Ouw9deO/n3bbxFOuy7zkPLztGv+WeO3LoKn+/ds8NHdmK2q/dc0sXHSLgwBUiwmPR0tLE29eBQcNbUq5C3mOmp2cy4It5BN8NY+WmkXj5OBQ6/iP/nOTgxqPERSfg5G5P9xEdccsn/z57FM7O5ft5fO8pUeExdBvenmZdVPPv+G7fExUek2ffRh3q0GNUp0LH9/9kwYIF/PLLL4SHh1OxYkX+/PNPqlevrjbtkiVLWL16NTdu3ACgSpUq/PTTT/mmV6fQLaotWrQgLCyMkJAQ9u/fT6NGjRgxYgRt2rQhMzMTAFtbW3R0dAp76A/Wd999R1hYGJcvX6ZatWp069aN06dPF9vxzc3NMTIyKtIxMjIyiikaMDY2JiwsTOXRo0ePYjv+uzAxMcHU1LREY8ht5bIDbFgXyKRpX7B6wyT09HQYNvB30tLy/1sc3H+OObM3M2hoW9ZvmYqXtxNDB80lOipemaasrwvTf+jD9t3fs/DvUcjlcoYO+J2sLFme482YshJPr8IX6qcDLrN63i469f2EWStG4eJhz0+j/iYuOkFt+rTUdGzsLeg+pDWmFm/Oq/dvhRKw81+cPfJWrAsi8MAV5v+6m96DmrF040g8vO0ZM2QpMVGJatNfvxLCjAnrad2xOss2jaReo3JMGrmKh8HhedIeD7zOzeuPsbQyzvNaRkYmDZtVoEOXWu8U9+suHLnMtkU7aN2rOZP+HoOjuz3zxv1FfIz665ueloGlvQUdBrbB2Fz99T24IZDjO0/T7etPmbZqAh0HtuHQxiMc3X7ig4x37S+buHPhLr0n9uDb5WMpW9WbP75ZROzL2CLHezrgMmvm7aJz30+YmZ1/Z74h/6anpmNtb8HnBci/D4qYf4vKQF+H67dCGfnt8v/snAEHrjDv1930HdSMFdn33KghS4l+wz03bcJ62naszspNI6nfqBwTRq7iwWv3nLOLFWMmdmDNtjEsWjkUO3tzRg5ZQkx03mMu+H0vllYm7xz/uSOX2bxgJ217NWfqktE4udsz95u/88+/qelY2VvQaWAbTPLJv9/+NYo526crH6PnDAagSsOK7xxncZJKiudRWJs2bWL06NFMmzaNS5cuUbFiRZo3b05ERITa9EFBQXTv3p2jR49y5swZnJyc+OSTT3j27FnB32thg9TR0cHW1hYHBwf8/f2ZNGkSO3fuZP/+/axcuRLI2/U/fvx4vLy80NfXx83NjSlTpqitWP311184OTmhr69P165diYuLU3l96dKllC1bFl1dXXx8fFi4cKHytTJlygBQuXJlJBIJDRs2LNB+6enpDB8+HDs7O3R1dXFxcWHmzJkq5zUyMsLW1hYvLy8WLFiAnp4eu3fvBuDJkyd07doVU1NTzM3Nad++PSEhIcp9s7KyGD16NKamplhYWDBu3Lg8LYO5u/7DwsJo3bo1enp6lClThvXr1+Pq6srcuXOVaSQSCYsWLaJdu3YYGBjw448/ArBz5078/f3R1dXFzc2NGTNmKL9AAMTGxtK/f3+srKwwNjamcePGXL16VSUeiUSCra2tykNPT4+VK1fmqSzu2LFDpTXn1TCONWvW4OrqiomJCZ999hkJCTkFhkwmY/bs2Xh4eKCjo4Ozs7My/vz+jrm7/tPS0vj666+xtrZGV1eXunXrcv78eeXrQUFBSCQSAgMDqVq1Kvr6+tSuXZu7d+9SHORyOevXBDBgUBsaNa6Ml7cT38/sy8uIWI4GXs53v7WrDvNp53q071gXdw97Jk/7Al1dbXZsP6lM06lrA6pU9cLewZKyvi4M+7oD4eHRPH8WqXKszRuPkpCQTM/ezQsd/96Nx2nSriaN2lTHsYwt/cd1QltHi6N7zqlN7+HrzBfD21KnWWW0tPLviElNTmP+jHUMnNAFQ6OCt+6+btOa47T9tAatO1SjjLsN33z7Kbq6WuzdoT62retOUr22N5/3boirmw39h7fAq6wD2zeeUkn38kUcc2ftZOpPn6OppZHnOP2GNqfbl/Vx87R9p7hfF7gliDqta1G7ZQ3sXG3pProL2rranNl/Vm16Vx9nOg1uR7XG/mjmc30f3gyhYp3y+NUqh4WtOf4NKlG2qjeP74R+cPGmp6Vz+fg1Og5qi2dFd6wdrGjTuwVW9pYc21X0L/l7Nx6ncbuaNMyVf4Pyyb/u2fm3drPK+V5fUOTfP7Pzr8E75t+iOhR0lRm/bmbXwfffivrKxjXHafdpDdpk33Pjvv0UHV0t9uRzz21ed5Iatb3pkX3PDRzeAu+yDmx77Z77pFVlqtX0wsHRAjcPW77+pi1Jiak8CA5TOdaZk3c4d+Yew0e3eef4D28+Rr02Nanbqjr2rrZ8MaYz2rpanNynPv4yZZ3pMqQd1ZtURlNbfX4wMjXExMJY+bh25iZWDhZ4V3J/5ziLU0lVVH/77TcGDBhAnz598PX1ZfHixejr67N8ufovVuvWrWPo0KFUqlQJHx8fli5dikwmIzAwsODvtfBh5tW4cWMqVqzI9u3b1b5uZGTEypUruXXrFn/88QdLlizh999/V0lz//59Nm/ezO7duzlw4ACXL19m6NChytfXrVvH1KlT+fHHH7l9+zY//fQTU6ZMUQ5FOHdOkSEDAgIICwtTxvK2/ebNm8euXbvYvHkzd+/eZd26dbi6uub7XjU1NdHS0iI9PZ2MjAyaN2+OkZERJ06c4NSpUxgaGtKiRQvS09MBmDNnDitXrmT58uWcPHmS6Oho/vnnnzdez549e/L8+XOCgoLYtm0bf//9t9pvK9OnT6djx45cv36dvn37cuLECXr27MmIESO4desWf/31FytXrlRWAgG6dOlCREQE+/fv5+LFi/j7+9OkSROio6PfGFNhPHjwgB07drBnzx727NnDsWPHmDVrlvL1iRMnMmvWLKZMmcKtW7dYv349NjaK7vL8/o65jRs3jm3btrFq1SouXbqEh4cHzZs3z/M+Jk+ezJw5c7hw4QKampr07du3WN7js6eRREbGUaNmTleXkZE+5Su4ce3qA7X7ZKRncvvWY2rU8lVuk0ql1KhZlmtXH6rdJyU5jV3/nMLB0RJbW3Pl9gf3n7Nk0R6+/6kf0kKWNpkZmTy8+xS/qp4qcfhV8yL4xuNCHSu3ZXO2U7m2LxWqeb3T/hkZmdy7/YwqNVVjq1rTk5vX1Md249pjqr6WHqB6bS9uvJZeJpPxw+QNdO/dgDIeRa+IvklmRiah957iUyXnGkilUnz8PXl4892vr1s5V+5cuseLJ4qy4On9Zzy48ZBy1dUPcSjJeGVZMmQyGVraqkOatHW0eHBdfV4vTLyP8sm/94qYf5dn51+/d8y/pVFGRiZ3bz9TuYekUinVanqq3EOvu3HtMdVy3XM1ct1zuc+xc9u/GBrp4uFlr9weHZXArBlbmfrjZ+jqvtvwt8yMTB7fe4pvrvxbtooXD2+GvNMx1Z3j38OXqNuyRrEMsymt0tPTuXjxIk2bNlVuk0qlNG3alDNnzhToGMnJyWRkZGBubv72xNmKbda/j48P165dU/vat99+q/y/q6sr33zzDRs3bmTcuHHK7ampqaxevRoHB0U35p9//knr1q2ZM2cOtra2TJs2jTlz5vDpp58Cipa3V5WxXr16YWVlBYCFhQW2tjkfRG/bLzQ0FE9PT+rWrYtEIsHFRf2YFlD8kebMmUNcXByNGzdm06ZNyGQyli5dqsy8K1aswNTUlKCgID755BPmzp3LxIkTledfvHgxBw8ezPccd+7cISAggPPnz1O1alVA0SLs6emZJ+3nn3+uMp60b9++TJgwgV69egHg5ubG999/z7hx45g2bRonT57k3LlzREREKIdm/Prrr+zYsYOtW7cycOBAAOLi4jA0NFQe19DQkPDwvN2o+ZHJZKxcuVI5nOHLL78kMDCQH3/8kYSEBP744w/mz5+vjNPd3Z26desC5Pt3fF1SUhKLFi1i5cqVtGzZElCMgzl8+DDLli1j7NixyrQ//vgjDRooxh5NmDCB1q1bk5qaiq6uboHfjzqRkYrWfnNL1S5kCwtjoiLj1O1CTGwiWVkyzC3y7hPySPX6bt5wlLlztpKSkoZrGVsWLRmNVvY3//T0DCaO/ZuR33TGzt6CZ09fFir2+NgkZFmyPF1eJuaGPH+svvumIE4dvsyju0/5adnIdz5GXExS9jUyVNluZmHI40fqY4uOTMiT3tzCiOjInFb8dSuC0NCQ0vnzuu8cW0ElxiUhk8kwNlO9vsZmRrwIfffr2/zzJqQmpzKj1ywkUglymZx2/VpRvVmVDy5eXX1d3Mq5sm/NIWxdbDA2M+L8kUs8vBWClYNlkeJ9U/59VoT8ezo7//5YhPxbGsXmc8+Zv+Gei4pMwCzPPWpEVKRqV/upY7eYOn4dqakZWFgaMXfxQEzNDABFr9QPUzbRoUtNypZzIuzZuzWWJMYp8oO6/BtehPvtdZdP3CA5MYU6LasVy/GKQ3HN+k9LSyMtLU1lm46Ojtrhm5GRkWRlZSkbll6xsbHhzp07BTrf+PHjsbe3V6nsvk2xVVTlcnm+3zQ2bdrEvHnzePDgAYmJiWRmZmJsrPph7ezsrKykAtSqVQuZTMbdu3cxMjLiwYMH9OvXjwEDBijTZGZmYmKS/7iWpKSkt+7Xu3dvmjVrhre3Ny1atKBNmzZ88sknKscZP3483377LampqRgaGjJr1ixat27N2LFjuX//fp7xpampqTx48IC4uDjCwsKoUaOG8jVNTU2qVq2a78Sgu3fvoqmpib+/v3Kbh4eH2slpryqyr1y9epVTp06ptKBmZWWRmppKcnIyV69eJTExEQsLC5X9UlJSePAgpxXQyMiIS5cuKZ+/miRXUK6urirXxM7OTtkifPv2bdLS0mjSpEmhjvm6Bw8ekJGRQZ06dZTbtLS0qF69Ordv31ZJW6FCBZU4ACIiInB2Vj9JQN1Nm6WRTuDhS/wwfY1y27xFX79z/AXRsk0NatT2JfJlHKtXHGT8mMWsWDsRHR0t5v2+nTLudrRuW/SxlMUl8kUMq+buYPIfg9DW+TAmBr5y99ZTtq47wbKNI0t1a8jFoCucD7hEn2+/wN7Vlqf3n7FlwQ5MLIyp1aLgExP+K70n9mDN7I1M7DIdqVSKk5cj1Rr7E3rvSUmHlser/DvpA8y/pZl/NQ9WbR5FbGwSu7adZcrYNSxZ+zXmFoZsWX+K5KQ0evZrXNJhvtXJfWcpX90HU8t3H0db3DSKqSibOXMmM2bMUNk2bdo0pk+fXjwneM2sWbPYuHEjQUFBhWosKraK6u3bt5XjC1935swZevTowYwZM2jevDkmJiZs3LiROXPmFPjYiYmKwddLlixRqfQBaGjkHWtWmP38/f159OgR+/fvJyAggK5du9K0aVO2bt2qTDt27Fh69+6NoaEhNjY2yg+7xMREqlSpwrp16/Kc+1XL4PtkYGCg8jwxMZEZM2YoW29fp6urS2JiInZ2dgQFBeV5/fWxp1KpFA8PjzxppFJpngq2urHGuVcwkEgkyGSKiUB6enr5vp/34fVYXv3dXsWijrqbdtKU3owc8znl/XLyd0aGYtxvdGQ8Vlamyu1RUfF4+zipPbaZqSEaGlKViVOv9rHIVQAaGeljZKSPi4sNFSq4Ub/21xwJuETL1jU4f/YO94OfUvXQRQDl36RR3ZH0G9iaJl82zPf9ARibGiDVkOaZeBIXnYhpPhML3ubRnafExSQyoU/OkB5ZlozbVx5ycNsp1gX9jFTj7V94TMwMsq+R6oSLmKhELCzVx2ZuaZQnfXRUAubZ6a9eekRMdBKdW/ykfD0rS8aCObvZsu4EW/ZPKvD7LAhDEwOkUmmeiRzxMQkYm+edxFVQ/yzezSfdm1CtseJLrIObPVEvYji4PrBIFdX3Fa+VgyWj/xhOWkoaqcmpmFiYsHTGKiztLN6+8xu8z/w7MVf+vZOdf9cWMP+WRqb53HPRUYnKeyg3C0ujPJMbY6IS8tyjevraODpb4uhsSfkKLnRt+zN7dpyjZ7/GXDx/nxvXHtOw2kSVffp9Po9PWlVmyg+fFSh+QxNFflCXf/ObKFUYUeHR3Lp4j6Hf510N5//BxIkTGT16tMq2/CbDW1paoqGhwYsXL1S2v3jxIt8e0Fd+/fVXZs2aRUBAgEoDUkEUS0X1yJEjXL9+nVGjRuV57fTp07i4uDB58mTltlfLPb0uNDSU58+fY2+vGL/y77//IpVK8fb2xsbGBnt7ex4+fJjv7HNtbW1A0YL4SkH2A8Us927dutGtWzc6d+5MixYtiI6OVo6hsLS0VFtx8/f3Z9OmTVhbW+dpIX7Fzs6Os2fPUr++YimUzMxM5dhQdby9vcnMzOTy5ctUqaLo0rt//z4xMXmXyVAXz927d9XG+ur18PBwNDU13zgONz9WVlYkJCSQlJSkrCRfuXKlUMfw9PRET0+PwMBAtctdqfs75ubu7o62tjanTp1SDtXIyMjg/PnzRV6PVt1Nm6VxHh0dbQwMcr4ByuVyLC1NOHv2Nt5lFa2ziYkp3Lj2kC7dGqo9tpa2JmV9XTj7720aNakMKCrN587eoVv3RvnGJEcOcsUYV4Bf5w5RWVng5o1HTP92JctWj8fJyYpI3ryMl6aWJm7ejly/GEy1Bn7KOG5cCKZ5pzpv3Dc/5at68suab1S2LfpxEw4u1rT7olGBP+S1tDTxKuvAxbP3qd+4vDK2i2fv8+lntdWfu4ILF88Gqyw1deHfYMpXUOSN5m38qVpDdejMmCFLaN6mCq06qPZKFAdNLU2cvRy5e+kelermXN+7l4Jp2PHdhx6kp6UjydXfp+7L44cS7ys6ejro6OmQlJDMrfN36DiobZHjLePtyI3/IP/au1jTvhD5tzTS0tLEO/uea/DaPXfh7H06veGeu3A2mG6v3XPnXrvn8iOTyUjPLsdGjW/PwGEtlK9Fvoxj1JClfDe7B+XesCxWbppamrh4OXL7YjCV6+XkhzuXgmlUDPn35P5zGJsaUqFm0caCFzdpMa2Bml83vzra2tpUqVKFwMBA5eTmVxOjhg8fnu9+s2fP5scff+TgwYN5eoILotAV1bS0NMLDw8nKyuLFixccOHCAmTNn0qZNG3r27JknvaenJ6GhoWzcuJFq1aqxd+9etZOJdHV16dWrF7/++ivx8fF8/fXXdO3aVVlLnzFjBl9//TUmJia0aNGCtLQ0Lly4QExMDKNHj8ba2ho9PT0OHDiAo6Mjurq6mJiYvHW/3377DTs7OypXroxUKmXLli3Y2toWaCmkHj168Msvv9C+fXu+++47HB0defz4Mdu3b2fcuHE4OjoyYsQIZs2ahaenJz4+Pvz222/Exsbme0wfHx+aNm3KwIEDWbRoEVpaWowZMwY9Pb23dltOnTqVNm3a4OzsTOfOnZFKpVy9epUbN27www8/0LRpU2rVqkWHDh2YPXs2Xl5ePH/+nL1799KxY8e3ZqAaNWqgr6/PpEmT+Prrrzl79qxypYeC0tXVZfz48YwbNw5tbW3q1KnDy5cvuXnzJv369cv37/g6AwMDhgwZwtixYzE3N8fZ2ZnZs2eTnJxMv379ChVPbupu2uRM7TzpJBIJn3/ZlKV/7cXZ2QYHR0sW/rkDK2tTZSUUYFDfX2nUxJ/Peii6t77o1Yypk5bjW86F8n5lWL8mgJSUNNp3VHzAPn3ykoMHzlOrti9mZka8eBHDiqX70dHRom59RSHs5GytEktsdkuCm5sdRsb6RMapHyP7utaf1WfhDxtx93HC3deZfZuOk5aaTsM2ipa5+d+tx9zKhM+HtAYUkwmePlJ8i87MzCLmZRwh956hq6+DraMlega6OLurLuejq6eNoYl+nu1v0+3L+vw0ZRM+5RwpW96JLWtPkJKSTqsOivFhP0zegKW1CYNHtAKgc4+6fNVvERtXHaNW/bIEHrjCnZtPGTulMwAmpgaYmKr2PmhqaWBuaYSza861fBEWQ3xcMi/CYsnKkhN8R7F8ioOzJfr6hVtur0mXhqyatR5nLydcy7pwZOsx0lLTqdVC0bOz8qd1mFqZ0GGAYqZzZkYmYY8V1zcrM4vYyDie3H+Gjp421g6K3hm/WuU4sPYw5tam2Jex40nwUwK3BFG7ZQ31QZRwvLfO3UGOHBsna14+i2T74l3YONsUS7ytP6vPoh824ubjhMdr+bdBdv5dkJ1/u6vJv1mZWUSryb9OufKpjp42Rib6eba/bwb6Ori75rROuTpZUcHXhZjYRJ48j3ov5/zsy/r8kH3P+ZZ3YtPaE6SmpNMm+577bvIGrKxNGJJ9z3XtUZeh/RaxftUxatcvS0D2PTc++55LSU5n1dJA6jb0xcLSmLjYJLZtPE1kRDyNmyla02ztVIez6esrylkHRwusbUwLFX+zrg1YPnMDLj5OlPFxJmDrMdJS0qnTUpEflv24HlMrYzoNzMm/z0Oyy7MMRf4NDVbkXxvHnN5QmUzGqf3nqdWiGhqa+ffeloSS+uo0evRoevXqRdWqValevTpz584lKSlJOV+mZ8+eODg4KFdP+vnnn5k6dapy9aJX810MDQ1V5sK8SaErqgcOHMDOzg5NTU3MzMyoWLEi8+bNo1evXmrHMrZr145Ro0YxfPhw0tLSaN26NVOmTMkz/sHDw4NPP/2UVq1aER0dTZs2bVSWkerfvz/6+vr88ssvjB07FgMDA/z8/JQtaJqamsybN4/vvvuOqVOnUq9ePYKCgt66n5GREbNnzyY4OBgNDQ2qVavGvn37CjQuU19fn+PHjzN+/Hg+/fRTEhIScHBwoEmTJsoW1jFjxhAWFqa8Pn379qVjx455lt563erVq+nXrx/169fH1taWmTNncvPmzbeO6WjevDl79uzhu+++4+eff0ZLSwsfHx9ly6VEImHfvn1MnjyZPn368PLlS2xtbalfv36ewdHqmJubs3btWsaOHcuSJUto0qQJ06dPV07CKqgpU6agqanJ1KlTef78OXZ2dgwerFijLr+/Y26zZs1CJpPx5ZdfkpCQQNWqVTl48OB/+kMTvfu1ICUljR+mryYhIZlK/p4s+GskOq+NcXvy5CWxsTldUs1bVicmOpFF83cSFakYJrDgr5HKrn9tHS0uX7zH+jWHiY9LxsLSGP8qXqxcNzHPJKyiqN20MvGxSWxecpDY6HhcPR2Y+NsAZddp1ItYldUEoiPjGd/7N+Xz3euD2L0+CN/K7kxbMDTP8YuiSYtKxMYksWzhQcXi4972/LqwP+bZ61++CI9VaVn0q+TKtJmfs2T+Qf7+cz+Ozpb8NLdXoZeZWrrwIAd2XVQ+79ttLgDzlg6mcrXCLUlTtXFlEuMS2bPyAPHR8Ti6O/DVz4OUa45GR8SovIe4qHh+GvCr8nnApqMEbDqKZ0V3Rs9VtFR0+/pTdi3fz8Y/tpEQk4iJpTF129amdU/VMfXv4n3Em5KUwo6le4l9GYu+kT6V61ekfb9WxfKB/yr/bsnOvy6eDkx4Lf9GvlDNI9GR8Ux4Lf/uWR/EnvVBlH0P+beo/Cu4cWjzVOXz2dMUDUBrthxj4JjF7+WcTbPvuSXZ95yntz2/5brnpLnuuRkzP+fv+Qf5K/uemzW3F+7Z95xUQ8LjRxHs23WBuNgkTEwN8CnnyMIVQ3F7D6tuVG9cmcTYRHYuV+RfJw8HRv4yUNn1H5Ur/8ZGxvNd/5zhhwc3BnFwYxBeldwZ98cw5fbbF4OJfhFD3VYf3hjwkvoJ1W7duvHy5UumTp1KeHg4lSpV4sCBA8o6RGhoqEr9adGiRaSnp9O5c2eV4xRmHKxE/qH93I+Qx9OnT3FyciIgIKBIk5CEd5OcWfQF1f9L9wrQovohsTfIf8zwh+hGdLEN7RfUMNMpXfkBoHblvPMUPmRP73Uv6RAK5Vbsh9Wa+Tb1bFu/93Mceb6vWI7T2L5VsRznfRIl7gfoyJEjJCYm4ufnR1hYGOPGjcPV1VU5zlUQBEEQhI9Xcc36Lw1ERfUDlJGRwaRJk3j48CFGRkbUrl2bdevW5ZlNLwiCIAjCx6e4JlOVBqKi+gFq3rw5zZsX/mcxBUEQBEEQ/p+IiqogCIIgCEIpUlKTqUqCqKgKgiAIgiCUIh9TRfX/dxVjQRAEQRAEoVQTLaqCIAiCIAilyMfUyigqqoIgCIIgCKXIW36o8v/Kx1QpFwRBEARBEEoR0aIqCIIgCIJQinxEDaqioioIgiAIglCafExd/6KiKgiCIAiCUIp8TOM2P6b3KgiCIAiCIJQiokVVEARBEAShFJFI5CUdwn9GVFQFQRAEQRBKkY9oiKro+hcEQRAEQRA+TKJFVRDeovLK0tXFMqK2dkmHUCgGWqXr+vbyLFPSIRRKSmZkSYdQKImlLF6Ap/e6l3QIheLotaGkQyiUv4/0LukQCqXef3AOMetfEARBEARB+CB9RPVU0fUvCIIgCIIgfJhEi6ogCIIgCEIpIv2ImlRFRVUQBEEQBKEU+YjqqaLrXxAEQRAEQfgwiRZVQRAEQRCEUkTM+hcEQRAEQRA+SB9RPVVUVAVBEARBEEqTj6miKsaoCoIgCIIgCB8k0aIqCIIgCIJQiojlqQRBEARBEIQP0kdUTxVd/4IgCIIgCMKHSbSoCoIgCIIglCISibykQ/jPiIqqIAiCIAhCKfIxdf2LiqrwwTpz5gx169alRYsW7N27t6TDeavPy9rRr4ITVnra3IlO5PszD7j+MkFt2o6eNsxq4K2yLS1TRoWVJ9Wmn1HHg8/K2vPTmQesuvmsWOK9uu84F3cEkhwbj6WrAw37d8bWy1Vt2huHTnE76BxRoWEAWLs7UbtH2zzpo5+Ec3LNTp7dvI8sS4a5ky2tx/XD2Mq8yPFe2HOcs9uPkBgTj00ZBz4Z1Bl7bxe1aS8fOM31I+eIfKyI19bDiYY92+abfv/8TVw+cIqmAzpSvX2jIscKIJfLmTdvHVu2HCI+Pgl//7JMnz4UV1f7fPc5f/4Gy5Zt58aNB7x8Gc2CBZNo2rSWSppDh06zceN+bt58QGxsAjt2/EHZsm7vFN+i+TvYvvUYCQnJVKrsyaSpX+LiYvvG/TauD2TViv1ERcbh5e3M+Ek98KuQ9/xyuZzhg3/n1Mnr/DbvKxo38Qfg7p1QVizdx+XL94iNScTewZLOXRvS48tP3njebRtPsWHVMaIjE3D3smPUhA74+jnnm/7IoassXXCQ8OcxODpbMmRkK2rVK6t8fdmiQwQeuEJEeCyaWpp4+zowcHhLylVQPebp47dZ8ddhHgSHoa2tReWqbsyc2/uNsb6Kd112vB5edowuQLx/vxbv0JGtqP1avEsXHSIgO16t7HgHqYkXID09kwFfzCP4bhgrN43Ey8fhrfG+qzrVfRg1uA3+fm7Y2ZjRtf8cdh+68N7Ol58Le45zZltO+dB8cGcc8rnfL2WXDy9DcsqHRr3a5pt+3/xNXNp/imYDOlKjQ/GUD0LBiTGqwgdr2bJlfPXVVxw/fpznz5+XdDhv1NLNiok13Vlw6TEdd1ziTnQSy1qUx1xXK999EtIzqbPujPLRaNNZtemaulhQ0dqYF0lpxRbvvZMXObHiH2p0a0n3OeOwcnVgx3cLSY5VX7F+evM+XvWq0On7r+k6azSGlmb8M2MhiVGxyjSxYS/ZMul3zB1s6PT91/T4fQI1urRAUyv/a1BQt45fInDpP9Tt3oK+f4zFuowDG6cuJCmfeEOvB1OuQRV6zPyKnr+OxtjKjA1TF5IQGZsn7d3TV3l2NwRDc5Mix/m6JUu2sWbNHqZPH8rmzb+ip6dLv35TSUtLz3ef5ORUvL3LMG3a4Dem8ff35ZtvehUpvpXL9rF+3WEmT+vJmg1T0NPTZujA30hLy8h3n4P7zzJn9kYGDW3Phi3T8fJ2YuigOURHxedJu3b1IbXNPrdvhWBmYcSPswaybecP9B/Yhj/nbmPjuoB8zxt44Arzf91Nn0HNWLZxJB7e9owespSYqES16a9fCWHGhPW06Vid5ZtGUq9ROSaOXMXD4HBlGicXK0ZN7MCqbWNYuHIodvbmjB6yhJjonGMGBVzj+8kbaN2+Gis3j2bRqmE0bVk53zhfCThwhXm/7qbvoGasyI531JClRL8h3mkT1tO2Y3VWbhpJ/UblmDByFQ9ei9fZxYoxEzuwZtsYFmXHOzJXvK8s+H0vllbFm5/zY6Cvw/VboYz8dvl/cj51bh6/xOEl/1Dv8xb0nzcWmzIObJiSf/nw+How5epX4YuZX9F7jqJ8WD9lIfFqyoc7p6/y7E4IRhb/zfUsKImkeB6lgaioCh+kxMRENm3axJAhQ2jdujUrV65UeX3Xrl14enqiq6tLo0aNWLVqFRKJhNjYWGWakydPUq9ePfT09HBycuLrr78mKSnpvcTbp7wDm++EsT34BQ9ik5l2MpjUTBmdvPJvnZLLITIlQ/mISslbQbDW12ZKbQ++OXqHDFnxjUm6tOso5ZrVolyTmlg42dF4cDc0dbS5GXhGbfoWo3pRsWV9rMo4Yu5oS9Ohn4NczpNrd5Vpzqzfg2uVctTt1QFrNydM7axwq+6HvqlRkeM9t+MolZrXpmKzmlg529FyWFc0dbS5evhftenbj+1Fldb1sHFzxNLJhlZfdUcukxFy9Z5KuoTIWA79tZX23/REQ1OjyHG+IpfLWb16F0OGdKVp05r4+JRh9uxRREREExCgPmaABg2qMmrUlzRrVivfNB06NGb48O7UqlWpSPGtW3OYAYPa0qixP17eTnw/cwAvI2I4Gngp3/3WrDrEp53r06FjPdw9HPh2Wk90dbXZsf2ESro7t0NZs+ogM77vlzf+T+szfmIPqlbzwdHJmtZta9OuQ10CAy7me96Na47T9tMatO5QjTLuNoz99lN0dbXYs+Oc2vRb1p2kRm1vPu/dEFc3GwYMb4FXWQe2bTylTPNJq8pUq+mFg6MFbh62fPVNW5ISU3kQrGhly8zM4o+fdzFsVBs6dK2Fs6sVZdxtaNK84huv7at4231agzbZ8Y779lN03hDv5ux4e2THO3B4C7zfEu/XueJ95czJO5w7c4/ho9u8Nc7icCjoKjN+3cyug/99K+orZ/85SuUWtamUXT60Gt4VLV1trhxSf691HNuLqm3qYeuuKB/afK2+fIiPjOXg4q10GNsTqUbxlQ/FQVpMj9KgtMQpfGQ2b96Mj48P3t7efPHFFyxfvhy5XFFRe/ToEZ07d6ZDhw5cvXqVQYMGMXnyZJX9Hzx4QIsWLejUqRPXrl1j06ZNnDx5kuHDhxd7rFpSCeUsjTj9PFa5TQ6cfhZLZZv8K2n6Whoc6VadoM9qsLCZLx6m+iqvS4BfGvqw7NoT7scmF1u8WRmZRDx4gnPFnKEHEqkU5wrehN8NKdAxMtPTycrKQsfQAAC5TMajCzcxtbfmnxkL+LvXRDaO+5UHZ68WS7xh95/gWkk13jKVvHl251GBjpGRlo4sS4auUc41lstk7PptDTU+bYKVi12R43zd06cvePkyhtq1Kym3GRkZULGiF5cv3ynWc72LZ09fEhkZR42a5ZTbjIz08avgztWr99Xuk5Geye1bIdSolbOPVCqlRk1frr22T0pKGpPG/cXEb78ocKteYmIyJiaG6s+bkcm928+oWtNT5bxVa3py89pjtfvcuPZYJT1Ajdpe3MgnfUZGJju3/YuhkS4eXoqhGfduP+NlRBwSqYQ+XX+nfZPvGDN0qUqrbH7Huqsm3mo1PfM9/41rj6lWxHgBoqMSmDVjK1N//AzdN/Tm/D95VT6UyVU+uL5D+aCXq3zYOWcNtToVf/kgFI6oqAofpGXLlvHFF18A0KJFC+Li4jh27BgAf/31F97e3vzyyy94e3vz2Wef0bt3b5X9Z86cSY8ePRg5ciSenp7Url2befPmsXr1alJTU/M9b1paGvHx8SoPWUb+XbUAZrpaaEolRKWopotKTcdST1vtPo/ikpl0/C5DD99kbNAdJBIJG9tVwkY/J/2Aik5kyuSsvlm8wx5SEpKQy2TomxirbNc3NSIpNm8XrjonV+/E0MxEWdlNjkskIzWNC9sP41K5LB2nD8O9RgX2/LyMpzeCixRvcrwiXoNcLbMGpkYkxajv2svt6MpdGJobq3yYndkagFRDSrV2DYoUnzovX8YAYGFhqrLdwsKUyMiYYj9fYUVGxgFgYamaB8wtjInKfi23mNgEsrJkWFio7mNhYUJkZE6++fXnDVSs7E6jxv4FiuXK5WAOHTjPp13U/x3iYpLIypJhbqFakTW3MCQqUv3fPzoyAbNc6c0sjIjOlf7UsVs0qzmZxtUmsXnNCX5fPBBTM8WXr+dPowFYvvgQvQY24ec/+2JkrMdX/RcRH5f/F8fYN8Sb+/yvROUTb+73d+rYLZrUnEzDapPYuOYEc1+LVy6X88OUTXToUpOy5Zzyje//TX7lg6GpEYkFLB+OrMhbPpx+j+VDcRBd/4JQgu7evcu5c+fo3r07AJqamnTr1o1ly5YpX69WrZrKPtWrV1d5fvXqVVauXImhoaHy0bx5c2QyGY8e5f8te+bMmZiYmKg8ovevK+Z3CFciEth5P4I70UmcD4/jq8O3iE7J4LOyim/u5SwM6VnOgYnH777lSP+989sOce/kJVpP6I+mtqLV5lVrt1t1P/zbNcaqjCPVOn1CmarluH5Q/QSx/8rpLYe5dfwSnSfnxBt2P5Tzu47RZuQXSIqhtN61K4jKlbsoH5mZmUU+ZnHau+cMtaoOVj4yM7Pey3mCjlzm3NnbjB3/eYHS3w9+yqiv5jFoSDtq1yn/XmJ6E/9qHqzYPIpFq4dRo443U8euUY57lWXn6Z79m9CwaQV8fB2Z9F03JBIJRw4VvafgXeNdtXkUf60eRs063kwZu0Y57nXL+lMkJ6XRs1/jEomttDq1+TA3j1+iy7evlQ/BoZzbeYx2o4qnfHgfJMX0KA3ErH/hg7Ns2TIyMzOxt8/p0pLL5ejo6DB//vwCHSMxMZFBgwbx9ddf53nN2Tn/mbcTJ05k9OjRKtuqrFM/ruyVmNQMMmVyLHK1nlroahOZ8ubW2Fcy5XJuRyXibKwHQFVbEyz0tDj6WQ1lGk2phPE13OhZ3oEmm94c05voGRkgkUpJjlNtPU2OTcDA1DifvRQu7gjkwvYAPp0xHCvXnJnEekYGSDWkWDipjsk1d7Tl+e0H7xwrgL6xIt7cEyOSYhMwMHvz+Nd/twdyZmsAn/8wDOsyOfE+ufmApLhE5veZptwml8kIXLaD8zuPMWz59ELF2LhxdSpW9FI+T09XjDeOiorF2jpnxYOoqFh8fAo/Q7+oGjaqhJ9fznnTMxQV6ajIeKysTJXbo6Pi8fJR3xpnZmqEhoaUqFwTp6Ki4rDMbpk9d/Y2T5+8pF6tYSppvhk5n8pVvFi2coJy24P7zxjY7xc+7dKQAYPb5Ru7iZkBGhrSPBORoqMSsbBU//c3tzTKM9EqJioB81zp9fS1cXS2xNHZkvIVXPis7c/s2XGOL/s1xjI7raubjTK9trYmdg7mvAiPzTde0zfEm/v8r1jkE2/u95c73q7Z8fbs15iL5+9z49pjGlabqLJPv8/n8Umrykz54bN8Yy7N8isfEmMTMHxL+XBmWyCntwbQ48dh2LxWPoRmlw/zequWDwHLdnBu5zG+WjG9WN/Du/hA68/vhaioCh+UzMxMVq9ezZw5c/jkE9Xlajp06MCGDRvw9vZm3759Kq+dP39e5bm/vz+3bt3Cw8OjUOfX0dFBR0dHZZtUS333/SsZMjk3IxOoZW9K4OMoQPFNtZaDKWsL2G0vlYCXuQHHnii6G3fef8Hp56pdxMta+LHz/gu233tRwHejnoaWJtbuTjy5dg/3GoqJIXKZjCfX71GhZb1897vwTwDntx6kw9Sh2HioVvY1tDSx8XAh5lmEyvbY5xEYFXFpKg0tTew8nAi5eg/vWhWU8YZcvUuVNvXz3e/M1gBObz7EZ98Nwc5TNd7yjarjWlF1ebCNUxfh17gaFZrWoLAMDfUxNHxtfJtcjpWVGWfOXFUuHZWYmMzVq/fo3r1VoY9fVAYGehgY6KnEZ2lpwrmzt/Ap65wdXwrXrz2gSzf1y+9oaWtS1teVc//eUi41JZPJOHf2Np91bwJA3/6t+bSz6t+kc4cpfDO+Ow0aVlJuu3//GQP7zqZtuzp8NaLTG2PX0tLEq6wDF8/ep37j8srzXjx7n08/q612n/IVXLhwNpiuX+Tk5/P/BlO+gvrlh16RyWSkpysq8d6+jmhra/Ik5CUV/csAkJmRRfjzGGztzN4Yr3d2vA1ei/fC2ft0eku83V6L91wh4x01vj0Dh7VQvhb5Mo5RQ5by3ewelHvDslil3avy4dGVXOXDlbtUfUP5cHprAKc2HaL790Owz1U++DWurjIMAGDD1EX4NapGxWaFLx+EohEVVeGDsmfPHmJiYujXrx8mJqoTMTp16sSyZcvYvHkzv/32G+PHj6dfv35cuXJFuSrAq26a8ePHU7NmTYYPH07//v0xMDDg1q1bHD58uMCtsoWx4sYzfq7vzY3IRK69jKdXOUf0NKVsz5548XMDb14kpfHbhRAAhlV25kpEAo/jUzDW1qRfBUfsDXXYcleRPjYtk9g01e7jDJmcyOQMHsWlFDle/3aNODRvLdbuzth6unB5TxAZqWn4NqkJwME/VmNobkqdLxUtXRe2H+bfDftoProXxtYWJMUoWtW0dHXQ1lNU7P07NGH/nBU4+Lrj6OfF48u3eHj+Bp2+z9uqXVjVOzRi9+9rsfN0wt7LhXM7g8hITVdWKnfNWYORhQmNeiviPbP1MMfX7qP92F6Y2FiQmB2vdna8+sYG6BsbqJxDQ1MDAzMjLBxtKCqJRELPnu1YtGgTLi72ODra8Mcfa7G2Nqdp05rKdL16TaZZs1p88YVihnZSUgqhoTmzuJ8+fcHt2w8xMTHE3t4agNjYBMLCXhIRofhS8+iRYl1dS0szrKzyr0Dljq/Hl81Y8tdunJ1tcHC0ZMGf/2BlbUajJjljSwf2nU3jJv581qMpAF/2+oQpk5biW86V8n5urFtziJSUNNp3rKuIwcpE7QQqWzsLHBytAEV3/4C+s6ldpzxf9mpO5EvFmFiphgRzc/Ut+p99WZ8fp2zCp5wjZcs7sXntCVJS0mndQTEE6PvJG7CyNmHwCMWXgC496jK83yI2rDpG7fplCThwhTs3nzJuSmcAUpLTWb00kDoNfbG0NCY2NontG08TGRFPo2aKyo6BoS7tu9Rk2aJDWNuaYGtvxvqVinHyjT6p8Mbr+9mX9fkhO17f8k5sWnuC1JR02mTH+112vEOy4+3aoy5D+y1ifa54x78W76qlgdRt6IuFpTFxsUlsy463cXa8uSvP+tnj3R0cLbC2MX1jvEVhoK+Du2tOT4qrkxUVfF2IiU3kyfOo93be19Xo2IhdvynKBwcvF85mlw+vKpU7s8uHxtnlw+kthzm2dh8dxvXC1NqCxOjs8kEv//JBqlF85UNx+IgaVEVFVfiwLFu2jKZNm+appIKiojp79mwSEhLYunUrY8aM4Y8//qBWrVpMnjyZIUOGKFtDK1SowLFjx5g8eTL16tVDLpfj7u5Ot27d3kvc+x++xFxXi6/9XbDS1+Z2VCL9D9xQLjllZ6ijHPMGYKytyfd1PbHS1yYuLZObkQl8tvsKD4pxdv+beNWtQkp8Iv9u3EtyTAKWZRzoMHWosus/4WWMytisawdOkpWZyb7Zy1SOU6NbS2p+pviw9ahZkcaDunF++2GClm3DzN6a1uP64eDrXuR4fev7kxyXyPG1+0iKicfGzZFu3w3B0EwRb/zLGCTSnHgv7TtFVmYW22eqru1Yt3sL6vf4b1o0BwzoREpKKlOnzic+PokqVXxZunQGOjo5LfRPnoQTE5PTlX7jxn169pykfD5zpuJ6d+zYmFmzRgFw5MhZJk78Q5lm1KjZAAwf3p2vvirY2FCA3v1akZKSzvfTV5KQkExlfy8W/jUaHZ2c2eJPnkQQE5vTJd28ZQ1iohNYNH8HkZFxePs4s/Cv0VhYFnyNycOHLhATncDe3WfYuztnOTQ7ewv2H/5V7T5NWlQiNiaJpQsPKhbQ97ZnzsL+mFsounZfhMcife3v71fJlWkzP2fJ/IP8/ed+HJ0tmTm3F26eigqVVEPC40cR7N91gbjYJIxNDShbzpEFK4bi5pFT6Ro2qg0aGlK+n7yRtLQMfP2c+WPJIIyNVVfoyK1pdrxLsuP19Lbnt7fEO2Pm5/w9/yB/Zcc7a24v3HPFuy87XhNTA3zKObIwV7wlwb+CG4c2T1U+nz2tJwBrthxj4JjF/0kM5bLLh2OvlQ/dXysf4nKVZxezy4dtP6mWD/U+b0GD/6h8KCrpR1RTlcjl8uJbnFEQSsiPP/7I4sWLefLkSbEf23vp8WI/5vs0onb+qxp8iAy0SlcR1MuzTEmHUCgpmZElHUKhJJayeKH0zUp29NpQ0iEUyt9Hepd0CIXypUfz936O58m7i+U49vpti+U475NoURVKpYULF1KtWjUsLCw4deoUv/zyy3tZI1UQBEEQPjQfUYOqqKgKpVNwcDA//PAD0dHRODs7M2bMGCZOnPj2HQVBEAShlJNISldPVFGIiqpQKv3+++/8/vvvJR2GIAiCIAjvkaioCoIgCIIglCKi618QBEEQBEH4IIkF/wVBEARBEIQP0kdUTy11q2oIgiAIgiAIHwnRoioIgiAIglCKfEytjKKiKgiCIAiCUIp8TGNUP6ZKuSAIgiAIglCKiBZVQRAEQRCEUuXjaVIVFVVBEARBEIRSRPIRVVRF178gCIIgCILwQRItqoIgCIIgCKWIRPLxtDN+PO9UEARBEATh/4KkmB6Ft2DBAlxdXdHV1aVGjRqcO3fujem3bNmCj48Purq6+Pn5sW/fvkKdTyKXy+XvFKkgfCQ2PzxQ0iEUyrzrhiUdQqFsaBpT0iEUiqyUlZix6aVrLNveUJ2SDqHQ6tmml3QIhRKSWLo6Uwc2XlnSIRRKSuiG936O2PT9xXIcU+2WhUq/adMmevbsyeLFi6lRowZz585ly5Yt3L17F2tr6zzpT58+Tf369Zk5cyZt2rRh/fr1/Pzzz1y6dIny5csX6JyiRVUQBEEQBKEUkRTTv8L67bffGDBgAH369MHX15fFixejr6/P8uXL1ab/448/aNGiBWPHjqVs2bJ8//33+Pv7M3/+/AKfU1RUBUEQBEEQSpXi6fpPS0sjPj5e5ZGWlqb2jOnp6Vy8eJGmTZsqt0mlUpo2bcqZM2fU7nPmzBmV9ADNmzfPN706oqIqCIIgCIJQikgk0mJ5zJw5ExMTE5XHzJkz1Z4zMjKSrKwsbGxsVLbb2NgQHh6udp/w8PBCpVendA1UEQRBEARBEIrFxIkTGT16tMo2HZ0Pa5y4qKgKgiAIgiCUKsUzSVJHR6fAFVNLS0s0NDR48eKFyvYXL15ga2urdh9bW9tCpVdHdP0LgiAIgiCUIiUxmUpbW5sqVaoQGBio3CaTyQgMDKRWrVpq96lVq5ZKeoDDhw/nm14d0aIqCIIgCIIgvNXo0aPp1asXVatWpXr16sydO5ekpCT69OkDQM+ePXFwcFCOcx0xYgQNGjRgzpw5tG7dmo0bN3LhwgX+/vvvAp9TVFQFQRAEQRBKkXdZWqo4dOvWjZcvXzJ16lTCw8OpVKkSBw4cUE6YCg0NRSrN6ayvXbs269ev59tvv2XSpEl4enqyY8eOAq+hCqKiKgiCIAiCUMqU3MjN4cOHM3z4cLWvBQUF5dnWpUsXunTp8s7nE2NUBUEQBEEQhA+SaFEVBEEQBEEoRSSS0vXTyEUhKqqCIAiCIAilysdTURVd/4IgCIIgCMIHSbSoCoIgCIIglCIlNeu/JIiKqqD05MkTpk2bxoEDB4iMjMTOzo4OHTowdepULCwsCnSMkJAQypQpw+XLl6lUqdL7DfgDc3b3CU5uPUJiTDy2bg60HtIJR28XtWkv7D/NlcDzvHgcBoC9hxPNerdRps/KzCJg1V7uXbhFTFgUuga6uFX25pM+bTG2MCmWeD8tY0d3DwfMdbR5EJ/E79cecDs28a37NXGwZEZVH46HRTHp3G3l9pPt66pNv+DmIzbcf1ao2HZuOsXm1UFERyXg7mXH8HEd8SnvnG/6Y4evsnLRAcKfx+DgbMmAr1tTo25ZlTSPH75g6by9XL30EFlmFs5uNkz7pRc2dmYAjB6wkGsXH6rs06ZTTUZO7vzWeHdtPsWW7HjdPO0Y9pZ4j2fH+yIsBgcnS/p/3Zrqr8X7SZVv1O7Xf0RruvZsBMCXbX7kRViMyut9h7fisz6N3xqvOge2nmT3uiBioxNw8bCn7+iOeJRT/x6ePAxn05IDPLrzlJfhMfQa0Z7Wn9VXSXNo+2kObT/Ny7BoABzdbOnctxmVa5VVd8hCu3PwGDd2B5ISG4+5iwPV+3TBysNVbdp7gad4cPwcsU+eA2BRxpnK3duqpE+Jjefi+p08v3ab9KQUbMp6UKNPF4ztrIsl3iP/nOTgxqPERSfg5G5P9xEdcSurvnx49iicncv38/jeU6LCY+g2vD3NujRQSTO+2/dEhcfk2bdRhzr0GNWpyPFe2HOcM9sU5ZlNGQeaD+6MQz7l2aUDp7l+5BwvQxTlma2HE416tc03/b75m7i0/xTNBnSkRodGRY61MOpU92HU4Db4+7lhZ2NG1/5z2H3own8aQ/H4eDrERUVVAODhw4fUqlULLy8vNmzYQJkyZbh58yZjx45l//79/Pvvv5ibm5d0mB+s68cusf/vf2j3VVccvV05syOIVd8uYsSSyRiaGuVJ/+jaffwa+tO6bBk0tbU4sSWAVZMX8dXiCRhbmpKRlk7Ygyc07N4cWzd7UhNS2PfXdtbNWMKQeeorMYXR2N6S4eXK8Ou1+9yKSaCrmwO/1SpP98CLxKZn5LufrZ4Ow8qV4UpkXJ7X2h04q/K8po0ZEyp5cux5ZKFiO3rwCot/28WISZ0o6+fMtnUnmDBsCSv+GYeZed5refNqCD9OWke/4S2pWc+XIwcuM230ShatH0kZDzsAnj+JZGS/BbRsX52eg5tjYKBDyMMXaOuoFoGtOtag95Dmyuc6utpvjTfo0BX++m0XX0/qhE95Z7avP8Gk4UtYtj3/eH+avI6+r+Ldf5npY1ayYF1OvBsPTlXZ5/zpO/z23RbqNa6gsr3n4Oa06lhD+VzP4N1+o/t0wGVWz9vFgHGd8SznzN5NJ/hx1N/M3TgeEzXvIS01HRt7C2o1rsiqP3aqPaa5lQmfD22NnZMlcjkc23ee2eNWMHvVaJzcCv7zieo8On2R86v/oWb/blh5unJr31ECflpAh9+nomeSN97wm8GUqV0Fa+8uaGhpcn3nYQ7/uID2cyZjYG6KXC7n6K9/I9HQoPE3g9DS1+XWniMc+uFP2s/5Fi3dov32+bkjl9m8YCdfjO6Cm68zAVuOM/ebv/lh7QSMzfLGm56ajpW9BVUbVmLT/B1qj/ntX6OQZcmUz589Cue3MYup0rBikWIFuHn8EoeX/EPL4d1w8Hbh3I5jbJiykCF/f4uBmvLs8fVgytWvguMgRXl2emsA66csZNDCiRhbmqqkvXP6Ks/uhGBUTF+4C8tAX4frt0JZvSmITUvGlEgMxeFjalH9eKrkwhsNGzYMbW1tDh06RIMGDXB2dqZly5YEBATw7NkzJk+eDChmGu7YsUNlX1NTU1auXAlAmTJlAKhcuTISiYSGDRsq0y1fvpxy5cqho6ODnZ2dyjpsoaGhtG/fHkNDQ4yNjenatavK7wNPnz6dSpUqsXz5cpydnTE0NGTo0KFkZWUxe/ZsbG1tsba25scff1SJLTY2lv79+2NlZYWxsTGNGzfm6tWrxXjlFE7/E0TVlrXx/6Qm1i62tP2qK1o62lw69K/a9F3G96RGm3rYuTti5WRDhxHdkctkPLhyDwBdAz16/zQMv/qVsXK0wamsK62HdOJ58BNiI6KLHO9nHg7sfhzOvtAIQhJS+OXqfVKzsmjjYpPvPlJgahVvlt0J5Xlyap7Xo9MyVB51bS24FBnH8+S0QsW2bd0xWnWsQYv21XFxs2Xk5E7o6GpxYOd5tem3rz9BtVredOvVCBc3G/oMbYGHjwM7N51Splm+4AA16vgwcGQbPH0csHeypHaDcnkqkrq62phbGisfBoa6b4937TFadqxB83aKeEdMUsR7MJ94d2xQxNu1ZyOcy9jQOzveXZtz4n09BnNLY04H3aRiVXfsHFV7NvQNdFTS6em9W4Vqz4bjNGlXk0ZtquNYxpYB4zqhraPF0T3n1Kb38HXmy6/aUqdZZbS01Ld3VK1XDv/aZbFzssLe2Yrug1uhq6dN8I3H7xTj627tPYJnk9p4NqqFqaMdtfp/hoa2NvePnlGbvv7XvfFpXh9zV0dMHGypPbgHyOWEX78LQHxYBC+DQ6jZ/zMsPVwwsbehZv9uZKVn8OjUxSLHe3jzMeq1qUndVtWxd7XlizGd0dbV4uQ+9de3TFlnugxpR/UmldHUVn99jUwNMbEwVj6unbmJlYMF3pXcixzv2X+OUrlFbSo1q4mVsx2thndFS1ebK/mUZx3H9qJqm3rYujti6WRDm68V5VnI1Xsq6eIjYzm4eCsdxvZEqqFR5DjfxaGgq8z4dTO7DpbGVtSPk6ioCkRHR3Pw4EGGDh2Knp6eymu2trb06NGDTZs2IZfL33qsc+cUBW9AQABhYWFs374dgEWLFjFs2DAGDhzI9evX2bVrFx4eHoDit4Lbt29PdHQ0x44d4/Dhwzx8+JBu3bqpHPvBgwfs37+fAwcOsGHDBpYtW0br1q15+vQpx44d4+eff+bbb7/l7Nmclr0uXboQERHB/v37uXjxIv7+/jRp0oTo6KJX9l7JzMjkefAT3Cp5KbdJpVLcK3nx5HZIgY6RkZZOVpYMfSP9fNOkJacikUjQNcg/TUFoSiR4mRhy4WWscpscuPAylnJqWnde6e3tTGx6BntDX+Sb5hUzHS1q25ix9/Hb074uIyOTe7ef4V9D9Vr61/Dk1jX1FZxb1x/jX8NTZVu1Wt7K9DKZjLMnb+PoYsX4oX/Tuck0hvf8g1NHb+Q5VuD+S3zaeCr9u/zC0j/3kZqS/tZ4g+88o3J11XgrV/fk9vV84r32mMq54q1ay5vb+by/mKgEzp28TYv21fO8tmnlUTo1nsqQz39j8+qjZGVmvTFedTIzMnl49yl+1XJikkql+FXz4l4xVCoBZFkyTh2+TFpqOl5+6ruDCyorM5Ooh0+w9/NWbpNIpdj7efMy+FHBjpGWjiwzC21Dxb0ky8wEQOO1SrdEKkWqpUnE3QdFijczI5PH957iW0U1j5St4sXDmyFFOvbr5/j38CXqtqxR5GWLsjIyCbv/hDKVVK+vayVvnt0p2PXNSEtHliVD77XyTC6TsXPOGmp1aoKVi12RYhQUjUbF8SgNRNe/QHBwMHK5nLJl1Y8dK1u2LDExMbx8+fKtx7KysgLAwsICW9uc7r0ffviBMWPGMGLECOW2atWqARAYGMj169d59OgRTk5OAKxevZpy5cpx/vx5ZTqZTMby5csxMjLC19eXRo0acffuXfbt24dUKsXb25uff/6Zo0ePUqNGDU6ePMm5c+eIiIhAR0fR0vTrr7+yY8cOtm7dysCBA/PEn5aWRlqaagtgRlo6Wjr5dwEnxychk8kwzFXJMzQzIvJpxFuvGcCh5bswMjfGrbK32tcz0jM4tHwXfg380TV4eyvfm5joaKEplRCdptrFH52WgUs+FeUK5sa0cbGhT9DlAp2jpZM1yZlZHAsrXLd/XGwSsiwZZuaGKtvNzI14EqL+WsZEJmBmoXrtTS0MiY5KACA2OpGU5DQ2rjhC76EtGTCiNedP32X6N6v49e/BVKyiaIFq3MIfGzszLKyMeRQcxpJ5e3kaEsH0Ob3zjTf+VbwWueK1eEO8UQl5WnJNzXPize3wngvoG+hQt7Gfyvb2n9XF08cBIxN9bl0NYfn8/URHJjB4dLt8433TezBVE9PzxwXLv/kJvR/G5IHzyEjPRFdPm29m9cGxTNG6/dPiE5HLZOjm6uLXNTEm7nnBvhhdXLcTPXMT7P18ADCxt8XA0oxLG3ZRa0B3NHW1ubX3KMlRsaTE5B3mUhiJcYrrm7uL39jMiPDQol3fVy6fuEFyYgp1WlYr8rGS45OQy2R5uvgNTY2IelKw63tkxS4MzY1VKruntwYg1ZBSrV2DN+wpFFzpqGQWB1FRFZQK0mL6LiIiInj+/DlNmjRR+/rt27dxcnJSVlIBfH19MTU15fbt28qKqqurK0ZGOYWnjY0NGhoaKr8rbGNjQ0SEovC/evUqiYmJeSaCpaSk8OCB+laSmTNnMmPGDJVtnb/uQZcRXxTiHRfO8c2HuX7sMn1nD0dLWyvP61mZWWz6aSVyObQd3vW9xZEfPU0NvvX3YvaV+8SlZxZon9bONhx6+pJ02fvJU4Uhy87XtRqWp/MXigk/Ht4O3Loawp6tZ5QV1Tadair3cfO0w9zSiLGD/+L5k0jsnSz/+8CzHdh5jsYt/dHWUc0bnb/I+cB387RHU0uTP37cSt/hrdDOp7v4v2bvYsUvq8aQnJTCv0euseD7DcxYOLTIldWiuL7jEI9OX6T5tBFoZN9vUk0NGo0ZwKnF69jYbxwSqRQ7P28cKvmWWJyFcXLfWcpX98HUsmTGfb7u1ObD3Dx+iS9nfYVm9vUNCw7l3M5j9J83rtS04gkfjg+jNBNKlIeHBxKJhNu3b9OxY8c8r9++fRszMzOsrKyQSCR5KrQZGflPvgHyDCd4V1paqh/UEolE7TaZTDHBIDExETs7O7W/PWxqaqr2HBMnTmT06NEq23Y/y7v/6/SNDZBKpSTGqLaIJcYk5Gllze3k1iOc2BxI75+GYlvGIc/rikrqCmIjouk7a3iRW1MB4tIyyJTJMc9V8THX0SIqNW9Xt4O+LvYGusyqkfOhLc3+rAlqW4fPAy+qjFmtYG6Mi5E+0y7cLXRsJqYGSDWkxESrrj4QE52AmYWx2n3MLI2IydUaGRuViHl2K6uJqQEamlJc3FTH3zqXsebGlZB8Y/HxU8x4f/YkKt+KqvGreKNyxRuVgLllPvFaGBETnSve6Jx4X3f98kOePn7J5Flf5hunMt7yzmRlyXjxPBon14LPVH/1HmLVxGSqJqbC0NTSxDb72rn5OPHg9hP2bTrBwAnv/rvfOsaGSKRSUuNU402Ni0fPVP01f+XG7gCu7zzMJ98Ox9xF9X6zcHOm3eyJpCenIMvMRNfYiL2Tf8HCLf/VGwrC0ERxfeNzlQ/xMQlqJ6oVVlR4NLcu3mPo932KfCxQlGcSqZSk2FzlWezby7Mz2wI5vTWAHj8Ow+a18iz05gOS4hKZ13uacptcJiNg2Q7O7TzGVyumF0vsHxPJRzRy8+N5p0K+LCwsaNasGQsXLiQlJUXltfDwcNatW0e3bt2QSCRYWVkRFhamfD04OJjk5GTlc21tRRd5VlbOWDkjIyNcXV0JDAxUe/6yZcvy5MkTnjx5otx269YtYmNj8fV99xYNf39/wsPD0dTUxMPDQ+Vhaam+4qGjo4OxsbHK403d/qD4MLb3dOLhlZyJAzKZjIdX7uFU1jXf/U5sCSRow0F6fj8YB6+8H4avKqlRz1/S56dh6BsbFOyNv0WmXM69uESqWJkqt0mAKlam3IzJ2/0cmpjMl0cu0SfosvJxMjyaS5Fx9Am6TESK6lCJNi423IlN4H58UqFj09LSxKusA5fOBSu3yWQyLp+7j28F9WMbff1cuPxaeoCLZ+8p02tpaeLt68TTXF3xT0Mjsc5emkqdB3ezlzKyzP/DWUtLE08fB66cV433yvn7lM1nLKZvhbzxXjp7j7Jq3t+BHefwLOuIu5d9vjG8Hq9UKsE017CJt9HU0sTN25EbF1Tfw40LwXiVL9p40txkcjkZGQVrlc+PhqYmFm5OhF3P+SIkl8kIu3EPK88y+e53Y+dhrm07QLOJQ7F0z/99aevroWtsRHxYBFEPQnGqWiHftAWhqaWJi5cjty+qXt87l4JxK+dapGMDnNx/DmNTQyrULJ5lvzS0NLHzcOLRa+WZXCYj5MpdHHzyv76ntwZwcuNBun83GHtP1fLMr3F1Bs4fz4A/xykfRhYm1Pq0CZ9/P6RY4v74SIrp8eETFVUBgPnz55OWlkbz5s05fvw4T5484cCBAzRr1gwHBwflbPrGjRszf/58Ll++zIULFxg8eLBKq6a1tTV6enocOHCAFy9eDwJR8wAAQhpJREFUEBenGN81ffp05syZw7x58wgODubSpUv8+eefADRt2hQ/Pz969OjBpUuXOHfuHD179qRBgwZUrVr1nd9T06ZNqVWrFh06dODQoUOEhIRw+vRpJk+ezIULxTvjs3bHhlw8cIbLh88RERrO7vlbSE9Lx7+ZYumgrb+u5dCK3cr0xzcHELh6Lx1HdcfUxpyE6HgSouNJy670ZWVmsfHH5TwLfkLncT2RyWTKNJlF/KAH2Hj/GW1dbGnhZI2LoR7fVHRHT0NDOVHqW38vBmWv8Zguk/MoIVnlkZiRSXJmFo8Sksl8rYVdX1ODRvaW7C7kJKrXderRgH3/nOXQ7vM8fviCP37aTmpKOi3aKYaAzJqygaV/7lOm//Tzepw/c5cta4IIfRTBqsUHuXfrKe271VGm6dqzIUGHrrJ3+788C41kx8aTnDl+i3ZdagOK5avWLjnMvVtPCX8ezeljN/l56kYq+Lvh9pZKYqcvcuINffSCeTMV8TbPjnf21A0sey3eDt3rceH0XbZmx7v6L0W87brWUTluUmIqxwOu0rJD3klUt66FsH39cR7ce07Y0ygC911i8W87adzSHyPjwk+2a9O9PoG7zhK09zxPQ16wdPY20lLTadhGce75M9azfuFeZfrMjExC7j0j5N4zMjOziH4ZR8i9Z4Q/yRmTvH7hXm5dfkBEWDSh98MUzy89oF5z/0LHl5tv68bcO3Ka+8f+JfZpOP8u3URmWhoeDRXDN07MX83F9TnLZl3feZjLm/dSZ0gPDK0tSImNJyU2nozUnC9ZIWcuEX7zHgkvIgk9f41DP87HqVoFHCoWvQLYrGsDju/9l1MHzvM85AVrf9tKWko6dVoqru+yH9ez7e89yvSZGZmEBj8jNPgZmRlZxEbGERr8jBdPVecJyGQyTu0/T60W1dDQLL5Z9DU6NuLywdNcDThLZGg4+xZsJiM1nYrZ5dnOOWs4snKXMv3pLYc5tmYvbUZ+jqm1BYnR8SRGx5OeXZ7pGxtg7Wqv8pBqaGBgZoSFY/4rjbwPBvo6VPB1oYKvonxzdbKigq8LTvYFWytc+O+Jrn8BAE9PTy5cuMC0adPo2rUr0dHR2Nra0qFDB6ZNm6ZcQ3XOnDn06dOHevXqYW9vzx9//MHFiznLt2hqajJv3jy+++47pk6dSr169QgKCqJXr16kpqby+++/880332BpaUnnzoqF1CUSCTt37uSrr76ifv36SKVSWrRooazIviuJRMK+ffuYPHkyffr04eXLl9ja2lK/fn1sbIq3cPRr4E9SXCKBa/eRGB2PnbsjPb8fjKGZoisyLiIG6Wtjs87vPZVdGV2hcpxGPVrQ+IuWxEfFcudfxaz0hcNmq6Tp+/NwylRQnTVeWEeeR2Kqo0V/H2fMdbS5H5/EmH9vEJM9wcpGT0c5trMwmjpYIgECnr594l1+GjWvRFxMIisXHSQmKgF3b3tmzu+vnDAVER6DVJpzLctVdGXSjz1YsfAAy+fvx8HZkhm/9VauSQpQt7EfIyZ1YuOKIyz4ZQdOLtZM+6UnfpUVLUSaWppcOhvMtvUnSE1Jx9rGlHqN/ejRv+lb4234iSLe1YsV8bp52fPjn6rxvj4ur1xFVyb+2IOViw6wYsF+7J0tmT5HNV5QrM+KHBo1r5znnFpamgQdvMKavw6RkZGJrb05n35en05fvNtEldpNKxMfk8TmpQeJjYrH1dOBSb8PUE6winwRi+S1ax4dGc+4Xr8pn+9eH8Tu9UH4VnZn+sKhAMTFJLLguw3ERMWjb6iHi7sdk+cOoEJ19RMGC6NM7SqkxidyZfNeUmITMHd1oOnEYcqu/6SoaJV47x4+gSwzk6Dflqkcp2LnllTq0hpQLPh/fs12UmMT0DMzxr1+DSp0alHkWAGqN65MYmwiO5cfID46HicPB0b+MlDZ9R8VEaMSb2xkPN/1n6N8fnBjEAc3BuFVyZ1xfwxTbr99MZjoFzHUbZX3y0xRlKvvT3JcIsfW7iMpJh4bN0e6fzckpzx7qZqnL+5TlGfbflqucpx6n7egQY9WxRpbUflXcOPQ5px1imdP6wnAmi3HGDhmcUmFVWgf01hfifx9zaARhP8Tmx8eKOkQCmXe9cJ1/Za0DU3z/rrOh+wDmB9WKLHppesDbW9o0RbXLwn1bN+8jNmHJiSxdLVRDWy8sqRDKJSU0A3v/RzpsqKv7wugLa1SLMd5n0TXvyAIgiAIgvBBKl1fqwRBEARBED5yH9Osf1FRFQRBEARBKFVK15CeohAVVUEQBEEQhFJE8hFVVD+etmNBEARBEAShVBEtqoIgCIIgCKXIx7Q8laioCoIgCIIglCofT4f4x/NOBUEQBEEQhFJFtKgKgiAIgiCUIh/TZCpRURUEQRAEQShVPp6Kquj6FwRBEARBED5IokVVEARBEAShFBGz/gVBEARBEIQP1MfTIf7xvFNBEARBEAShVBEtqoIgCIIgCKXIxzTrH7kgCP+51NRU+bRp0+SpqaklHUqBiHjfLxHv+1Xa4pXLS1/MIl7hfZHI5XJ5SVeWBeFjEx8fj4mJCXFxcRgbG5d0OG8l4n2/RLzvV2mLF0pfzCJe4X0RY1QFQRAEQRCED5KoqAqCIAiCIAgfJFFRFQRBEARBED5IoqIqCCVAR0eHadOmoaOjU9KhFIiI9/0S8b5fpS1eKH0xi3iF90VMphIEQRAEQRA+SKJFVRAEQRAEQfggiYqqIAiCIAiC8EESFVVBEARBEAThgyQqqoIgCIIgCMIHSVRUBUEQBEEQhA+SqKgKgpCvzMxMAgIC+Ouvv0hISADg+fPnJCYmlnBk/3+ysrK4cuUKMTExJR2KIBRYeno6d+/eJTMzs6RDeavY2FiWLl3KxIkTiY6OBuDSpUs8e/ashCMT3kQsTyUI/5EnT54gkUhwdHQE4Ny5c6xfvx5fX18GDhxYwtHl9fjxY1q0aEFoaChpaWncu3cPNzc3RowYQVpaGosXLy7pENU6ceIEf/31Fw8ePGDr1q04ODiwZs0aypQpQ926dUs6PKWRI0fi5+dHv379yMrKokGDBpw+fRp9fX327NlDw4YNSzrEUmvXrl0FSteuXbv3HMm7SU9PJyIiAplMprLd2dm5hCLKKzk5ma+++opVq1YBKMuHr776CgcHByZMmFDCEaq6du0aTZs2xcTEhJCQEO7evYubmxvffvstoaGhrF69uqRDFPIjFwThP1G3bl356tWr5XK5XB4WFiY3NjaW16pVS25paSmfMWNGCUeXV/v27eVffPGFPC0tTW5oaCh/8OCBXC6Xy48ePSr38PAo4ejU27p1q1xPT0/ev39/uY6OjjLmP//8U96yZcsSjk6Vg4OD/Pz583K5XC7/559/5Pb/a+/e43K+//+BP66r6KCDUBTpIEMM0WbOk2Oaw9jYNOQwxxF9hc3ZnDc0bHLKaZMMc15zJmkKESMdKSlMLqmUDu/fH/1cc+2qtO3jer3L4367Xbdb1+v9vt32uBldz+v1fr2eLxsb6datW9LMmTOlNm3aCE5XvLS0NOmzzz6TrK2tJT09PUmpVGq85EKhULzyJae8L8TExEjt2rXT+nOVY96JEydKLVu2lEJCQqQqVaqo/63t27dPat68ueB02jp37iz5+vpKkiRp/D4LDQ2V7OzsBCajV9EXXSgTvSmuX7+Od999FwCwa9cuNGnSBKGhoTh69CjGjBmD2bNnC06oKSQkBOfPn0flypU1xu3t7WX7qGzBggXw9/fHkCFDsHPnTvV427ZtsWDBAoHJtP3555+oVasWAODIkSP4+OOP8dZbb2H48OH47rvvBKcrnpeXF5KSkjBr1ixYW1tDoVCIjlSsv89ElhdeXl7Q19fHoUOHZP3nCwD79u1DUFAQ3nvvPY2cjRs3Rnx8vMBkxYuIiMC6deu0xmvXro20tDQBiaisWKgS6UheXp76uL7jx4+rHzs2bNgQqampIqMVq7CwEAUFBVrjd+/ehampqYBEr3br1i106NBBa9zc3BwqlUr3gUpRs2ZN3LhxA9bW1ggODsbatWsBFD1S1dPTE5yueOfOnUNISAiaN28uOkqFdOXKFVy6dAkNGzYUHeWVHj58CCsrK63xrKwsWRbYBgYGyMjI0BqPiYmBpaWlgERUVixUiXSkcePG8Pf3h4eHB44dO4avv/4aQNHmpOrVqwtOp61bt27w8/PD+vXrAQAKhQKZmZmYM2cOevbsKThd8WrVqoW4uDjY29trjJ87dw6Ojo5iQpVg2LBhGDBggHrmrEuXLgCACxcuyLZQsbW1hVQOtjWcPXu2TPcV96VGJGdnZ/z555+iY5SJq6srDh8+jAkTJgCAujjduHEjWrduLTJasXr37o358+dj165dAIryJiUlYdq0aejfv7/gdFQq0WsPiN4Up06dkqpWrSoplUpp2LBh6vEvv/xS+vDDDwUmK15ycrLk7OwsNWrUSNLX15fee+89qXr16lKDBg2k+/fvi45XrEWLFknOzs7S77//LpmamkohISHSjz/+KFlaWkqrVq0SHU/Lzz//LK1YsUJKTk5Wj23ZskXat2+fwFQl++2336Ru3bpJiYmJoqOU6sWazhfrO8vLGtUTJ05IrVu3lk6dOiX9+eef0pMnTzRechISEiKZmJhIY8aMkQwNDSVvb2+pa9euUpUqVaSLFy+KjqdFpVJJXbp0kapWrSrp6elJtra2UqVKlaQOHTpImZmZouNRKbjrn0iHCgoKkJGRAQsLC/XY7du3YWxsXOxjNNHy8/MRFBSEq1evIjMzEy1atICnpyeMjIxERyuWJElYtGgRFi9ejOzsbABFj/ymTJminsGWM5VKhapVq4qOUSILCwtkZ2cjPz8fxsbGqFSpksb1Fy1/RKtevTpMTU3h5eWFwYMHo0aNGsXeZ25uruNkpVMqizpG/v3RuSRJUCgUxS7FESk+Ph5LlizR+P0wbdo0vP3226KjlejcuXOIiopS533xJIPki4UqkQ7l5+fj9OnTiI+Px6BBg2Bqaop79+7BzMwMJiYmouOVawUFBQgNDUXTpk1hbGyMuLg4ZGZmwtnZWZZ/tkuXLoW9vT0GDhwIABgwYAD27NkDa2trHDlyBE2bNhWcUNuLVkQlGTp0qI6SlO758+f45ZdfEBAQgJCQEPTs2RMjRoxAjx49ZLl+8oUzZ86Uer1jx446SkIkHyxUiXSkvPUl3bp1K2rUqAEPDw8AwNSpU7F+/Xo4OzsjMDAQdnZ2ghNqMzQ0xM2bN+Hg4CA6yis5ODjgp59+Qps2bXDs2DEMGDAAQUFB2LVrF5KSknD06FHRESuEpKQkbNmyBVu3bkVubi6GDh2KefPmQV+fWzT+i+I2JgFFs8EGBgZa3ULkICIiAqdOnSq2R+2KFSsEpaJXYaFKpCN9+/aFqakpNm3ahOrVq+Pq1atwdHTE6dOn8fnnnyM2NlZ0RA0NGjTA2rVr4ebmhrCwMHTu3Bl+fn44dOgQ9PX1sXfvXtERtbi6umLp0qXo3Lmz6CivZGRkhJiYGNja2sLb2xs5OTlYt24dYmJi0KpVK9mcUJWRkQEzMzP1z6V5cZ8cJSYmYsSIEThz5gwePnyIatWqiY5ULJVKhU2bNuHmzZsAijZhDh8+XJbLFEqbna5Tpw68vLwwZ84c9ZIGkRYtWoSZM2eiQYMGqFmzpkZ2hUKBkydPCkxHpeFXSiIdKW99SZOTk+Hk5ASgqGfiRx99hFGjRqFt27ayPTVpwYIF6vWoLVu2RJUqVTSuy6mQsrCwQHJyMmxtbREcHKzu8ypJkqzWIlpYWCA1NRVWVlaoWrVqscWJXNdQ5ubmYs+ePQgICEBYWBg8PDxw+PBh2RapFy9eRPfu3WFkZKTuubxixQosXLgQR48eRYsWLQQn/MuWLVswY8YMeHl5qbOGh4dj69atmDlzJh4+fIhvv/0WBgYG+OqrrwSnBb777jsEBATAy8tLdBT6h1ioEulIeetLamJigkePHqFu3bo4evQofHx8ABQ9Xn/27JngdMV70Tard+/eGgWVHAupfv36YdCgQahfvz4ePXoEd3d3AEBkZKT6C4IcnDx5Ul3YnTp1SnCasgkPD8fmzZuxc+dO2NvbY9iwYdi1a5dsC9QXJk+ejN69e2PDhg3qpQn5+fkYOXIkJk2aVOa2W7qwdetWLF++HAMGDFCP9erVC2+//TbWrVuHEydOoG7duli4cKEsClWlUom2bduKjkH/Ah/9E+nIwIEDYW5ujvXr18PU1BRRUVGwtLREnz59ULduXWzevFl0RA2enp6Ijo6Gi4sLAgMDkZSUhOrVq+PAgQP46quvcP36ddERtZSnzSh5eXn47rvvkJycDC8vL7i4uAAAVq5cCVNTU4wcOVJwwvJLqVSibt26GDp0KFq2bFnifS8O3ZALIyMjREZGavXRvXHjBlxdXdWdLOTAyMgIUVFRqF+/vsZ4bGwsmjVrhuzsbCQmJqJx48ayyL1s2TLcu3cPfn5+oqPQP8RClUhH7t69i+7du0OSJMTGxsLV1RWxsbGoUaMGzp49K7v2VCqVCjNnzkRycjLGjh2LHj16AADmzJmDypUrY8aMGYITki5ERUWV+V65dCooy5pIuc2wA0WnlW3fvh3dunXTGP/tt98wZMgQ3L9/X1AybW+99Rb69euHJUuWaIxPnz4dv/zyC27duoWLFy+iT58+sljaVFhYCA8PD8TExMDZ2VmrtZoc19xTERaqRDqUn5+PnTt3avTxk3Nf0vLmVY9G5XYS0fbt27Fu3TokJCQgLCwMdnZ28PPzg4ODA/r06SM6HoC/Ns286qNCjoVfeTNx4kT88ssv+Pbbb9GmTRsAQGhoKHx9fdG/f39ZzQYeOHAAH3/8MRo2bIh33nkHQNEa25s3b2LPnj344IMPsHbtWsTGxspiR/0XX3yBjRs3olOnTlqbqQDI7okW/YWFKhGVqLzsQH6huJm0lz+Q5FRIrV27FrNnz8akSZOwcOFCXL9+HY6OjupWSnJZD3rnzp0y3yu3lmWPHj1SH0+cnJyMDRs2ICcnB7169UL79u0Fp9P2/Plz+Pr6wt/fH/n5+QCASpUqYezYsViyZAkMDAwEJ9R0+/Zt+Pv7IyYmBkBRp5DRo0cjMzMTTZo0EZxOk6mpKXbu3Klut0flBwtVotfowIEDcHd3R6VKlXDgwIFS75XbernidiBHRETg2bNnstuB/MKTJ0803ufl5SEyMhKzZs3CwoULZdW2ytnZGYsWLVK3LXvRruz69et4//33y82Z73J07do19OrVC8nJyahfvz527tyJHj16ICsrC0qlEllZWdi9ezf69u0rOmqxsrOzER8fDwCoV68ejI2NBSd6tYyMDAQGBiIgIAAXL16U1ZdCoOhL1G+//aa1/pfkj4Uq0WukVCqRlpYGKyurUtfNyfGxafv27eHk5FTsDuSEhARZ7UB+lTNnzsDHxweXLl0SHUXNyMgI0dHRsLOz0yhUY2Nj0bRpU1l2Vti2bVup14cMGaKjJKVzd3eHvr4+pk+fju3bt+PQoUPo3r07NmzYAACYMGECLl26hN9//11w0vLv7Nmz2LRpE/bs2QMbGxv069cP/fv3Vy8HkIvNmzcjODgYmzdvLheFP/2FhSoRFas87UB+lejoaLi6uiIzM1N0FDVnZ2csXrwYffr00ShUV69ejc2bN+Py5cuiI2qxsLDQeJ+Xl4fs7GxUrlwZxsbGSE9PF5RMU40aNXDy5Ek0bdoUmZmZMDMzQ0REhLoDQHR0NN577z2oVCqxQVHUpmzLli0wMzNDv379Sr1XLht+0tLSsGXLFmzatAkZGRkYMGAA/P39cfXqVTg7O4uOVywXFxfEx8dDkiTY29trbaaS4783KsI+qkRULDMzMyQlJWkVqsnJybLs+wpo71CXJAmpqalYsmQJmjdvLiZUCXx8fDB+/Hjk5ORAkiSEh4cjMDAQixcvxsaNG0XHK1Zxp2XFxsZi7Nix8PX1FZCoeOnp6ahVqxaAon7AVapU0SiyLSws8PTpU1HxNJibm6vXUZuZmZV62pMc9OrVC2fPnoWHhwf8/PzQo0cP6Onpye4I6L+T6zIPKgOJiHRiwoQJ0nfffac1vnr1asnb21v3gV5hwoQJUp06daSdO3dKSUlJUlJSkhQYGCjVqVNHlnklSZIUCoWkVColhUKh8WrdurV08+ZN0fG0/Pjjj5KTk5M6Z+3ataWNGzeKjvWPRURESA0aNBAdQ02hUEgPHjxQvzcxMZESEhLU79PS0iSlUikiWrmnp6cnTZ48WYqJidEY19fXl/744w9Bqagi44wqkY7s2bOn2A1Vbdq0wZIlS2TVegYAvv32WygUCgwZMqTYHchylJiYqPFeqVTC0tIShoaGghKVztPTE56ensjOzkZmZqbseumWlb6+Pu7duyc6hgYvLy/1LvmcnByMGTNGfaRubm6uyGglcnNzw969e1G1alWN8YyMDPTt21cW59GfO3cOmzZtQsuWLdGoUSMMHjwYn3zyiehYZXbp0iWNLiYvDtog+eIaVSIdMTQ0xPXr17WOx4yLi0OTJk2Qk5MjKFnpyuMO5JepVCqtD376d/7+RUv6/0sr1qxZA1tbW/z666+CkmkaNmxYme6TW+/MlzdfvuzBgweoXbs28vLyBCXTlpWVhaCgIAQEBCA8PBwFBQVYsWIFhg8fLsulQQ8ePMAnn3yC06dPq38fqFQqdOrUCTt37oSlpaXYgFQiFqpEOtKkSROMGTMGX3zxhcb46tWrsXbtWty4cUNQsuI9efIEBQUFWuejp6enQ19fH2ZmZoKSlWzp0qWwt7fHwIEDAQADBgzA7t27YW1tjSNHjqBZs2aCE/7l/v37mDJlCk6cOIEHDx5oNdSXWxcIQLtPrUKhgKWlJdzc3LB8+XJYW1sLSla+vVhb3bx5c5w8eVLj31xBQQGCg4Oxbt063L59W1DC0t26dQubNm3C9u3boVKp0LVr11e249O1gQMHIiEhAdu2bUOjRo0AFG0MHTp0KJycnBAYGCg4IZWEhSqRjgQEBOCLL76Ar68v3NzcAAAnTpzA8uXL4efnh88//1xwQk3u7u7o1asXxo0bpzHu7++PAwcO4MiRI4KSlczBwQE//fQT2rRpg2PHjmHAgAEICgrCrl27kJSUhKNHj4qOqObu7o6kpCR88cUXsLa21tpEI5eTqej1e3H6F4BiTwAzMjLC6tWrMXz4cF1H+0cKCgpw8OBBBAQEyK5QNTc3x/Hjx7XaZoWHh6Nbt26y6ABBxWOhSqRDa9euxcKFC9Xr+ezt7TF37lzZ9J98WbVq1RAaGqqefXghOjoabdu2xaNHjwQlK5mRkRFiYmJga2sLb29v5OTkYN26dYiJiUGrVq2K3bUuiqmpKUJCQmTXjeCfKCgowLVr12BnZ6fVuorK7s6dO5AkCY6OjggPD9d4DF25cmVYWVlBT09PYMLyr6R/b5GRkejYsSMyMjLEBKNXKrkDORH9z40dOxZ3797F/fv3kZGRgYSEBFkWqUDRhpMXm6helpeXJ8tm9EBR26Hk5GQAQHBwMLp06QKgaJZKbo/SbW1ti509k7NJkyZh06ZNAIqK1A4dOqBFixawtbXF6dOnxYYrx+zs7GBvb4/CwkK4urrCzs5O/bK2tmaR+j/g5uYGb29vjU1/KSkpmDx5sqxOrCNtLFSJBLC0tISJiYnoGKV69913sX79eq1xf39/deN0uenXrx8GDRqErl274tGjR3B3dwdQNGvy901sovn5+WH69OmyXXdYnN27d6vX+R48eBC3b99GdHQ0Jk+ejBkzZghOV/4tXrwYAQEBWuMBAQFYunSpgEQVx5o1a5CRkQF7e3vUq1cP9erVg4ODAzIyMrB69WrR8agUfPRPpCPlbfNMaGgounTpgnfeeUc943DixAlERETg6NGjaN++veCE2vLy8vDdd98hOTkZXl5e6tYzK1euhKmpKUaOHCk44V8sLCyQnZ2N/Px8GBsba52UI5dTnl5maGiIuLg41KlTB6NGjYKxsTH8/PyQmJiIZs2a8fHpf2Rvb48dO3agTZs2GuMXLlzAJ598otV+jf4ZSZJw/PhxREdHAwAaNWqkfupC8sVClUhHyuPmmStXruCbb77BlStXYGRkhKZNm+LLL79E/fr1RUcr97Zs2VLqKURDhw7VYZqysbOzw4YNG9C5c2c4ODhg7dq18PDwwB9//IF27drJag1weWRoaIibN2/CwcFBYzwhIQHOzs6ybWFH9Dqx4T+Rjpw7d67cbZ5p3rw5fvrpJ9Exymzr1q2oUaMGPDw8AABTp07F+vXr4ezsjMDAQNjZ2QlO+BcvL68Sr8l1DfCwYcMwYMAA9RetF7NRFy5c0Dpql/45W1tbhIaGahWqoaGhsLGxEZSqYpg4cSKcnJwwceJEjfE1a9YgLi5Odgeu0F+4RpVIR8rb5pmkpKRSX3K0aNEiGBkZAQDCwsLw/fffY9myZahRowYmT54sOJ2mv39gvpCVlYWePXvqOE3ZzJ07Fxs3bsSoUaMQGhqqPvlJT08P06dPF5yu/Pv8888xadIkbN68GXfu3MGdO3cQEBCAyZMny659XXmzZ88etG3bVmu8TZs22L17t4BEVFZ89E+kI0ePHsXy5cuxbt062Nvbi47zSi/3diyO3NbUAoCxsTGio6NRt25dTJs2Dampqdi2bRv++OMPvP/++3j48KHoiGr16tXDZ599hnnz5qnHsrKy0KNHDwBASEiIqGgkiCRJmD59OlatWoXnz58DKFoOMG3aNMyePVtwuvKtvJ4MSHz0T6QzAwcORHZ2tvoYUrlvnomMjNR4n5eXh8jISKxYsQILFy4UlKp0JiYmePToEerWrYujR4/Cx8cHQNGHlNwep7/YkGZhYYFJkybh6dOn6N69O/T19WVzFGlxTpw4od4QWFhYqHGtuB3rVHYKhQJLly7FrFmzcPPmTRgZGaF+/frqmWv695ycnBAcHKx1MuCvv/4KR0dHQamoLFioEulIeVsDVdxxo66urrCxscE333yDfv36CUhVuq5du2LkyJFwcXFBTEyM+hH6H3/8IbtZ7Hr16iE4OBidOnWCUqlEYGAgDAwMcPjwYVSpUkV0vGLNmzcP8+fPh6ura7EbAul/w8TEROsEJfpvfHx88MUXX+Dhw4fFngxI8sVH/0T0j8TFxaFZs2bIysoSHUWLSqXCzJkzkZycjLFjx6ofo8+ZMweVK1eWZa/PsLAwdO3aFa1atcKhQ4fUa2zlyNraGsuWLcPgwYNFR6mQsrKysGTJkhJnrBMSEgQlqxjK08mA9BcWqkQC5OTkqNegvWBmZiYoTfH+3hNTkiSkpqZi7ty5iI6OxpUrV8QEK8dcXFyKnYW8c+cOrKysNIrUy5cv6zJamVSvXh3h4eGoV6+e6CgV0qeffoozZ85g8ODBxc5Ye3t7C0pWsTx8+BBGRkayP3SFivDRP5GOZGVlYdq0adi1axcePXqkdV1um5OqVq2q9UEpSRJsbW2xc+dOQaleLSQkBOvWrUNCQgJ+/vln1K5dG9u3b4eDgwPatWsnNFvfvn2F/vf/q5EjR2LHjh2YNWuW6CgV0q+//orDhw8Xuzud/hs3Nzfs3bsXVatWhaWlpXo8IyMDffv2xcmTJwWmo9KwUCXSkalTp+LUqVNYu3YtBg8ejO+//x4pKSlYt24dlixZIjqellOnTmm8VyqVsLS0hJOTE/T15fmrY8+ePRg8eDA8PT1x+fJl5ObmAgCePHmCRYsW4ciRI0LzzZkzR+h//7/KycnB+vXrcfz4cTRt2lRrQ+CKFSsEJasYLCwsUK1aNdExKqTTp09rPcUCiv5Os8OGvPHRP5GO1K1bF9u2bcP7778PMzMzXL58GU5OTti+fTsCAwOFF1EVgYuLCyZPnowhQ4bA1NQUV69ehaOjIyIjI+Hu7o60tDTREdUiIiJQWFiIVq1aaYxfuHABenp6cHV1FZSsZJ06dSr1+t+/3NA/8+OPP2L//v3YunUrjI2NRcepEKKiogAUHV5y8uRJjS8CBQUFCA4Oxrp163D79m1BCelV5DktQlQBpaenq9ugmJmZqdtRtWvXDmPHjhUZTe3AgQNlvrd3796vMcm/c+vWLXTo0EFr3NzcHCqVSveBSjF+/HhMnTpVq1BNSUnB0qVLceHCBUHJSsZC9PVavnw54uPjUbNmTdjb22vNWMtx3bLcNW/eHAqFAgqFQr3b/2VGRkZYvXq1gGRUVixUiXTE0dERiYmJqFu3Lho2bIhdu3bh3XffxcGDB1G1alXR8QCUfQ2lQqGQ3ZpaAKhVqxbi4uK0WlGdO3dOdr0Sb9y4gRYtWmiNu7i44MaNGwISlawsrcgUCgX27NmjgzQVV3lfwyxHiYmJkCQJjo6OCA8P11ifWrlyZVhZWUFPT09gQnoVFqpEOjJs2DBcvXoVHTt2xPTp09GrVy+sWbMGeXl5slnb9/d2OOXN559/Dm9vbwQEBEChUODevXsICwvDlClTZLcByMDAAPfv39cqoFNTU2W3Btjc3Fx0hDdCeV/DLEd2dnYAyv/vtjcZ16gSCXLnzh1cunQJTk5OaNq0qeg4ajk5OTh+/Dg++OADAMCXX36p3pQEAPr6+pg/fz4MDQ1FRSyRJElYtGgRFi9ejOzsbABFBeGUKVPw9ddfC06n6dNPP0Vqair279+vLgRVKhX69u0LKysr7Nq1S3BCoopj27ZtpV5nL1X5YqFKRBr8/f1x+PBhHDx4EABgamqKxo0bq3t8RkdHw9fXV308qVwUFBQgNDQUTZs2hbGxMeLi4pCZmQlnZ2dZ9ktMSUlBhw4d8OjRI7i4uAAArly5gpo1a+LYsWOwtbUVnJB0TalUlnralxyX25QXFhYWGu/z8vKQnZ2NypUrw9jYWHZHWNNfWKgS6VB5OCe9ffv2mDp1Knr16gUAGrvngaKdyd9//z3CwsJExiyWoaEhbt68CQcHB9FRyiQrKws//fQTrl69CiMjIzRt2hSffvqp1iYaejPs379f431eXh4iIyOxdetWzJs3DyNGjBCUrGKKjY3F2LFj4evri+7du4uOQyVgoUqkI686J/2XX34RlEyTtbU1wsLC1BuSLC0tERERoX4fExODd955B0+ePBEXsgSurq5YunQpOnfuLDoK0f/Mjh07EBQUpFXI0n938eJFfPbZZ4iOjhYdhUogrxX7RBWYv78/tmzZIvtz0lUqlcaa1IcPH2pcLyws1LguJwsWLFCvR23ZsiWqVKmicV30MbUHDhyAu7s7KlWq9MpWYHJs/0VivPfeexg1apToGBWSvr4+7t27JzoGlYKFKpGOPH/+HG3atBEd45Xq1KmD69evo0GDBsVej4qKQp06dXScqmx69uwJoKjIe3nGWpIkWbTU6tu3L9LS0mBlZVVqKyI5ZCV5ePbsGVatWoXatWuLjlKu/f2LoSRJSE1NxZo1a3hkrcyxUCXSkfJyTnrPnj0xe/ZseHh4aO3sf/bsGebNmwcPDw9B6Uon94b0L69LZrsc+jsLCwutL1hPnz6FsbExfvzxR4HJyr+/fzFUKBSwtLSEm5sbli9fLiYUlQnXqBLpiLe3N7Zt24amTZvK+pz0+/fvo3nz5qhcuTK++OILvPXWWwCKTn1as2YN8vPzERkZiZo1awpOqkmSJMTFxeH58+do0KCB7HqREr3K1q1bNd4rlUpYWlqiVatWWrvW6d95sZTp5cb/JG8sVIl0pLRz0hUKBU6ePKnDNKVLTEzE2LFjcezYMbz4FaFQKNC1a1f88MMPsjvlKTExEb1791af6FSnTh3s2bMHrq6ugpOVrjx0gaDXLyAgAJ6enjAwMBAdpUJSqVSYMWMGgoKC8PjxYwBFs9effPIJFixYIJuTAal4LFSJqETp6emIi4sDADg5OaFatWqCExXvo48+wh9//IHZs2fD0NAQ3377LXJycnDp0iXR0UpUXrpA0Ounp6eH1NRUWFlZAQBsbGxw/vx5raOA6Z9LT09H69atkZKSAk9PTzRq1AhA0RHGO3bsgK2tLc6fP88ZaxljoUpE5V6tWrWwe/dutGvXDkDRMaR16tRBRkaG1s5/ubC2tsayZctk3wWCXj+lUqneZAdo9y6mf2/SpEk4ceIEjh8/rrVcKS0tDd26dUPnzp2xcuVKQQnpVbiIi0hHPvzww2JPnVEoFDA0NISTkxMGDRpU4m57KtmDBw9Qv3599Xtra2sYGRnhwYMHsm3+X166QBCVZ/v27cO6deuKXVNfq1YtLFu2DGPGjGGhKmNK0QGI3hTm5uY4efIkLl++DIVCAYVCgcjISJw8eRL5+fkICgpCs2bNEBoaKjpquaNQKJCZmYmMjAz1S6lU4unTpxpjcvKiCwTRi98HJb2nfy81NRWNGzcu8XqTJk2Qlpamw0T0T3FGlUhHatWqhUGDBmHNmjVQKou+IxYWFsLb2xumpqbYuXMnxowZg2nTpuHcuXOC05YvkiSpuxO8PObi4qL+WQ69SX18fNQ/FxYWYv369Th+/Lisu0DQ6/fi7++L4jQzMxMuLi7q3xMv8Dz6f65GjRq4fft2ib2fExMTZbv2nopwjSqRjlhaWiI0NFSroIqJiUGbNm3w559/4tq1a2jfvj1UKpWYkOXUmTNnynRfx44dX3OS0pXW+eFlcusCQa/X39tSlWTo0KGvOUnFM3z4cMTHx+PYsWOoXLmyxrXc3Fx0794djo6O7LIhYyxUiXTEwsICW7du1Toa88CBAxg6dCgeP36M2NhYvPvuu+oWKkRE9O/dvXsXrq6uMDAwwPjx49GwYUNIkoSbN2/ihx9+QG5uLi5evAhbW1vRUakEfPRPpCODBw/GiBEj8NVXX+Gdd94BAERERGDRokUYMmQIgKKZwdLWU5G2f7L21MzM7DUmKZu/tyIieplKpcLu3bsRHx8PX19fVKtWDZcvX0bNmjV5jOq/UKdOHYSFhWHcuHH48ssvtfpCr1mzhkWqzHFGlUhHCgoKsGTJEqxZswb3798HANSsWRMTJkzAtGnToKenh6SkJCiVyhLXU5E2pVJZ5o0noteoAtqtiIheiIqKQpcuXWBubo7bt2/j1q1bcHR0xMyZM5GUlIRt27aJjliuvXhqBci7LzRpYqFKJMCLWUA5zPCVdy+vT719+zamT58OLy8vtG7dGgAQFhaGrVu3YvHixbJY48dClUrSpUsXtGjRAsuWLdPopXr+/HkMGjQIt2/fFh2RSOdYqBLpUH5+Pk6fPo34+HgMGjQIpqamuHfvHszMzGBiYiI6XrnXuXNnjBw5Ep9++qnG+I4dO7B+/XqcPn1aTLCXKJVKLFiw4JX/vydOnKijRCQX5ubmuHz5MurVq6dRqN65cwcNGjRATk6O6IhEOsc1qkQ6cufOHfTo0QNJSUnIzc1F165dYWpqiqVLlyI3Nxf+/v6iI5Z7YWFhxf45urq6YuTIkQISFc/f3x96enolXlcoFCxU30AGBgbFrrmOiYmBpaWlgERE4rHhP5GOeHt7w9XVFY8fP4aRkZF6/MMPP8SJEycEJqs4bG1tsWHDBq3xjRs3ymrDxMWLF5GYmFjiKyEhQXREEqB3796YP38+8vLyABR9YUlKSsK0adPQv39/wemIxOCMKpGOhISE4Pz581q9/Ozt7ZGSkiIoVcWycuVK9O/fH7/++itatWoFAAgPD0dsbCz27NkjOF0RnjhEJVm+fDk++ugjWFlZ4dmzZ+jYsSPS0tLQunVrLFy4UHQ8IiFYqBLpSGFhYbG7zu/evQtTU1MBiSqenj17IjY2Fj/88AOio6MBAL169cKYMWNkM6PKbQFUEnNzcxw7dgznzp1DVFQUMjMz0aJFC3Tp0kV0NCJhuJmKSEcGDhwIc3NzrF+/HqampoiKioKlpSX69OmDunXrYvPmzaIjkg7MmzcPvr6+MDY2Fh2FZCwnJwcGBgacgac3HgtVIh1JTk5Gjx49IEkSYmNj4erqitjYWNSoUQNnz55lu6L/EZVKhU2bNuHmzZsAgMaNG2P48OEwNzcXnEybSqVCeHg4Hjx4gMLCQo1rLw6BoDdHYWEhFi5cCH9/f9y/fx8xMTFwdHTErFmzYG9vjxEjRoiOSKRzLFSJdCg/Px9BQUG4evWq+rGep6enxuYq+vcuXryI7t27w8jICO+++y6AotO/nj17hqNHj6JFixaCE/7l4MGD8PT0RGZmJszMzDRmzhQKBdLT0wWmIxHmz5+PrVu3Yv78+fj8889x/fp1ODo6IigoCH5+fggLCxMdkUjnWKgS6UBeXh4aNmyIQ4cOoVGjRqLjVFjt27eHk5MTNmzYAH39oiX4+fn5GDlyJBISEnD27FnBCf/y1ltvoWfPnli0aBGXARCAotOS1q1bh86dO2v0UY2Ojkbr1q3x+PFj0RGJdI6bqYh0oFKlSmzWrQMXL17UKFIBQF9fH1OnToWrq6vAZNpSUlIwceJEFqmklpKSAicnJ63xwsJCdcsqojcN+6gS6cj48eOxdOlS5Ofni45SYZmZmSEpKUlrPDk5WXadFbp3746LFy+KjkEy4uzsjJCQEK3x3bt3w8XFRUAiIvE4o0qkIxEREThx4gSOHj2Kt99+G1WqVNG4vnfvXkHJKo6BAwdixIgR+Pbbb9GmTRsAQGhoKHx9fbWOVRXNw8MDvr6+uHHjBt5++21UqlRJ43rv3r0FJSNRZs+ejaFDhyIlJQWFhYXYu3cvbt26hW3btuHQoUOi4xEJwTWqRDoybNiwUq+zPdV/9/z5c/j6+sLf3189c12pUiWMHTsWS5YsgYGBgeCEf1EqS36gpVAoiu25SxVfSEgI5s+fr7Hhcvbs2ejWrZvoaERCsFAles0KCwvxzTff4MCBA3j+/Dnc3Nwwd+5c7vR/jbKzsxEfHw8AqFevHteBkuzl5+dj0aJFGD58OOrUqSM6DpFscI0q0Wu2cOFCfPXVVzAxMUHt2rWxatUqjB8/XnSsCs3Y2BgWFhawsLBgkUrlgr6+PpYtW8Y17ER/wxlVotesfv36mDJlCkaPHg0AOH78ODw8PPDs2bNSH//SP1dYWIgFCxZg+fLlyMzMBACYmpri//7v/zBjxgzhf96rVq3CqFGjYGhoiFWrVpV678SJE3WUiuSiT58+6NevH4YOHSo6CpFssFAles0MDAwQFxencda8oaEh4uLi+Ijvf+zLL7/Epk2bMG/ePLRt2xYAcO7cOcydOxeff/45Fi5cKDSfg4MDLl68iOrVq8PBwaHE+xQKBRISEnSYjOTA398f8+bNg6enJ1q2bKm14ZIb7OhNxEKV6DXT09NDWloaLC0t1WOmpqaIiooqtVihf87Gxgb+/v5aH+j79+/HuHHjkJKSIigZ0atxgx2RNranInrNJEmCl5eXxo7znJwcjBkzRmPGhO2p/rv09HQ0bNhQa7xhw4ayO5L0+vXraNKkSbHX9u3bh759++o2EAlXWFgoOgKR7HCBHNFrNnToUFhZWcHc3Fz9+uyzz2BjY6MxRv9ds2bNsGbNGq3xNWvWoFmzZgISlax79+5ITEzUGt+zZw88PT0FJCIikh/OqBK9ZuyPqjvLli2Dh4cHjh8/jtatWwMAwsLCkJycjCNHjghOp2nkyJHo0qULQkNDUatWLQBAUFAQhg8fji1btogNR0KUtMFOoVDA0NAQTk5O6NChA/T09HScjEgcrlElogrl3r17+P777xEdHQ0AaNSoEcaNGwcbGxvBybRNmDABp06dwtmzZxEcHIyRI0di+/bt6N+/v+hoJICDgwMePnyI7OxsWFhYAAAeP34MY2NjmJiY4MGDB3B0dMSpU6c0NmcSVWQsVImIBPL09ERERARSUlKwY8cO9OnTR3QkEiQwMBDr16/Hxo0bUa9ePQBAXFwcRo8ejVGjRqFt27b45JNPUKtWLezevVtwWiLdYKFKROVaVFRUme9t2rTpa0zyagcOHNAay8vLw+TJk9GtWzeNbgVsRfTmqVevHvbs2YPmzZtrjEdGRqJ///5ISEjA+fPn0b9/f6SmpooJSaRjLFSJqFxTKpVQKBR41a8yObT3KeuBA3LISrpnbGyMs2fPwtXVVWM8IiICHTt2RHZ2Nm7fvo0mTZqoD7Qgqui4mYqIyrXids7LFdsPUWk6deqE0aNHY+PGjXBxcQFQNJs6duxYuLm5AQCuXbvG/sv0RmF7KiIq1+zs7NQvExMT9c9KpRKbNm3CmjVrkJSUBDs7O9FRARR1ITh06JDG2LZt2+Dg4AArKyuMGjUKubm5gtKRSJs2bUK1atXQsmVLGBgYwMDAAK6urqhWrRo2bdoEADAxMcHy5csFJyXSHT76J6Jy79q1a+jVqxeSk5NRv3597Ny5Ez169EBWVhaUSiWysrKwe/duWTTR79GjBzp16oRp06YBKMreokULeHl5oVGjRvjmm28wevRozJ07V2xQEiY6OhoxMTEAgAYNGqBBgwaCExGJw0KViMo9d3d36OvrY/r06di+fTsOHTqE7t27Y8OGDQCK2kBdunQJv//+u+CkgLW1NQ4ePKhehzhjxgycOXMG586dAwD8/PPPmDNnDm7cuCEyJhGRLLBQJaJyr0aNGjh58iSaNm2KzMxMmJmZISIiAi1btgRQNEP13nvvQaVSiQ0KwNDQELGxseo+mO3atYO7uztmzJgBALh9+zbefvttPH36VGRM0hEfHx98/fXXqFKlCnx8fEq9d8WKFTpKRSQf3ExFROVeenq6+nQnExMTVKlSRd0wHQAsLCxkU/jVrFkTiYmJsLW1xfPnz3H58mXMmzdPff3p06eoVKmSwISkS5GRkcjLy1P/XBKFQqGrSESywkKViCqEv3+Qy/WDvWfPnpg+fTqWLl2Kffv2wdjYGO3bt1dfj4qKUjd7p4rv1KlTxf5MREVYqBJRheDl5QUDAwMAQE5ODsaMGYMqVaoAgKx20X/99dfo168fOnbsCBMTE2zduhWVK1dWXw8ICEC3bt0EJiQikg+uUSWicm/YsGFlum/z5s2vOUnZPXnyBCYmJtDT09MYT09Ph4mJiUbxShVXv379ynzv3r17X2MSInnijCoRlXtyKkDLytzcvNjxatWq6TgJifTy3wNJkvDLL7/A3Nxc3RXi0qVLUKlU/6igJapIOKNKREQkA9OmTUN6ejr8/f3VM+0FBQUYN24czMzM8M033whOSKR7LFSJiIhkwNLSEufOndNq8H/r1i20adMGjx49EpSMSBweoUpERCQD+fn5iI6O1hqPjo5GYWGhgERE4nGNKhERkQwMGzYMI0aMQHx8PN59910AwIULF7BkyZIybxgkqmj46J+IiEgGCgsL8e233+K7775DamoqgKIjd729vfF///d/Wh0iiN4ELFSJiIhkJiMjAwBgZmYmOAmRWFyjSkREJBP5+fk4fvw4AgMD1aer3bt3D5mZmYKTEYnBGVUiIiIZuHPnDnr06IGkpCTk5uYiJiYGjo6O8Pb2Rm5uLvz9/UVHJNI5zqgSERHJgLe3N1xdXfH48WMYGRmpxz/88EOcOHFCYDIicbjrn4iISAZCQkJw/vx5reNz7e3tkZKSIigVkVicUSUiIpKBwsJCFBQUaI3fvXsXpqamAhIRicdClYiISAa6desGPz8/9XuFQoHMzEzMmTMHPXv2FBeMSCBupiIiIpKBu3fvonv37pAkCbGxsXB1dUVsbCxq1KiBs2fPwsrKSnREIp1joUpERCQT+fn5CAoKwtWrV5GZmYkWLVrA09NTY3MV0ZuEhSoREZFgv//+Ow4ePIjnz5/Dzc0N7u7uoiMRyQILVSIiIoF2796NgQMHwsjICJUqVUJGRgaWLl2KKVOmiI5GJBwLVSIiIoFatmyJd955B99//z309PSwePFifPPNN0hPTxcdjUg4FqpEREQCmZiY4MqVK3BycgIAPH/+HFWqVEFKSgo3UNEbj+2piIiIBMrOzoaZmZn6feXKlWFoaIjMzEyBqYjkgSdTERERCbZx40aYmJio3+fn52PLli2oUaOGemzixIkiohEJxUf/REREAtnb20OhUJR6j0KhQEJCgo4SEckHC1UiIiIikiWuUSUiIpIplUolOgKRUCxUiYiIZGDp0qUICgpSv//4449RrVo11K5dG1evXhWYjEgcFqpEREQy4O/vD1tbWwDAsWPHcPz4cQQHB8Pd3R2+vr6C0xGJwV3/REREMpCWlqYuVA8dOoQBAwagW7dusLe3R6tWrQSnIxKDM6pEREQyYGFhgeTkZABAcHAwunTpAgCQJAkFBQUioxEJwxlVIiIiGejXrx8GDRqE+vXr49GjR3B3dwcAREZGqk+tInrTsFAlIiKSgZUrV8Le3h7JyclYtmyZ+gCA1NRUjBs3TnA6IjHYR5WIiIiIZIlrVImIiGRi+/btaNeuHWxsbHDnzh0AgJ+fH/bv3y84GZEYLFSJiIhkYO3atfDx8YG7uztUKpV6A1XVqlXh5+cnNhyRICxUiYiIZGD16tXYsGEDZsyYAT09PfW4q6srrl27JjAZkTgsVImIiGQgMTERLi4uWuMGBgbIysoSkIhIPBaqREREMuDg4IArV65ojQcHB6NRo0a6D0QkA2xPRUREJAM+Pj4YP348cnJyIEkSwsPDERgYiMWLF2Pjxo2i4xEJwfZUREREMvHTTz9h7ty5iI+PBwDY2Nhg3rx5GDFihOBkRGKwUCUiIpKZ7OxsZGZmwsrKSnQUIqG4RpWIiEgG3NzcoFKpAADGxsbqIjUjIwNubm4CkxGJwxlVIiIiGVAqlUhLS9OaRX3w4AFq166NvLw8QcmIxOFmKiIiIoGioqLUP9+4cQNpaWnq9wUFBQgODkbt2rVFRCMSjjOqREREAimVSigUCgBAcR/JRkZGWL16NYYPH67raETCsVAlIiIS6M6dO5AkCY6OjggPD4elpaX6WuXKlWFlZaVxUhXRm4SFKhERERHJEnf9ExERycT27dvRtm1b2NjY4M6dOwCAlStXYv/+/YKTEYnBQpWIiEgG1q5dCx8fH/Ts2RMqlQoFBQUAAAsLC/j5+YkNRyQIC1UiIiIZWL16NTZs2IAZM2ZorEl1dXXFtWvXBCYjEoeFKhERkQwkJibCxcVFa9zAwABZWVkCEhGJx0KViIhIBhwcHHDlyhWt8eDgYDRq1Ej3gYhkgA3/iYiIZMDHxwfjx49HTk4OJElCeHg4AgMDsXjxYmzcuFF0PCIh2J6KiIhIJn766SfMnTsX8fHxAAAbGxvMmzcPI0aMEJyMSAwWqkRERDKTnZ2NzMxMWFlZiY5CJBQf/RMREcnIgwcPcOvWLQCAQqHQOKmK6E3DzVREREQy8PTpUwwePBg2Njbo2LEjOnbsCBsbG3z22Wd48uSJ6HhEQrBQJSIikoGRI0fiwoULOHz4MFQqFVQqFQ4dOoSLFy9i9OjRouMRCcE1qkRERDJQpUoV/Pbbb2jXrp3GeEhICHr06MFeqvRG4owqERGRDFSvXh3m5uZa4+bm5rCwsBCQiEg8FqpEREQyMHPmTPj4+CAtLU09lpaWBl9fX8yaNUtgMiJx+OifiIhIEBcXFygUCvX72NhY5Obmom7dugCApKQkGBgYoH79+rh8+bKomETCsD0VERGRIH379hUdgUjWOKNKRERERLLENapEREREJEt89E9ERCQDBQUFWLlyJXbt2oWkpCQ8f/5c43p6erqgZETicEaViIhIBubNm4cVK1Zg4MCBePLkCXx8fNCvXz8olUrMnTtXdDwiIbhGlYiISAbq1auHVatWwcPDA6amprhy5Yp67Pfff8eOHTtERyTSOc6oEhERyUBaWhrefvttAICJiQmePHkCAPjggw9w+PBhkdGIhGGhSkREJAN16tRBamoqgKLZ1aNHjwIAIiIiYGBgIDIakTAsVImIiGTgww8/xIkTJwAAEyZMwKxZs1C/fn0MGTIEw4cPF5yOSAyuUSUiIpKhsLAwhIWFoX79+ujVq5foOERCsFAlIiIiIlliH1UiIiJBDhw4AHd3d1SqVAkHDhwo9d7evXvrKBWRfHBGlYiISBClUom0tDRYWVlBqSx524hCoUBBQYEOkxHJAwtVIiIiIpIlPvonIiISrLCwEFu2bMHevXtx+/ZtKBQKODo6on///hg8eDAUCoXoiERCcEaViIhIIEmS0KtXLxw5cgTNmjVDw4YNIUkSbt68iWvXrqF3797Yt2+f6JhEQnBGlYiISKAtW7bg7NmzOHHiBDp16qRx7eTJk+jbty+2bduGIUOGCEpIJA5nVImIiATq1q0b3NzcMH369GKvL1q0CGfOnMFvv/2m42RE4vFkKiIiIoGioqLQo0ePEq+7u7vj6tWrOkxEJB8sVImIiARKT09HzZo1S7xes2ZNPH78WIeJiOSDhSoREZFABQUF0NcvecuInp4e8vPzdZiISD64mYqIiEggSZLg5eUFAwODYq/n5ubqOBGRfLBQJSIiEmjo0KGvvIc7/ulNxV3/RERERCRLXKNKRERERLLEQpWIiIiIZImFKhERERHJEgtVIiIiIpIlFqpEREREJEssVImIiIhIllioEhEREZEssVAlIiIiIln6f3SCR9kZNAlFAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.heatmap(corr_data, annot=True,cmap=\"YlGnBu\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "5dd3771d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMYAAAPICAYAAAAyoPcyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAADAiklEQVR4nOzde3RU1f3//9ckgUwEkhguuUgCqR8VVO6XGLQWJTVGsFxSFYiFSgqtH6BAWi/pFxCQGkWLgCJUvwi4zIjyK1BFkxaiwMcmxBA+VLwhIDJJYUKBJmNiZwjJ/P7gy5SRhIvM5MxMno+1zlo5e59z8ppZIZu85+x9TC6XyyUAAAAAAACglQkxOgAAAAAAAABgBApjAAAAAAAAaJUojAEAAAAAAKBVojAGAAAAAACAVonCGAAAAAAAAFolCmMAAAAAAABolSiMAQAAAAAAoFWiMAYAAAAAAIBWKczoAN7Q2NioI0eOqEOHDjKZTEbHAYCA53K59M033yghIUEhIXyGIjHWAIC3MdZ4YpwBAO+61HEmKApjR44cUWJiotExACDoVFRUqGvXrkbH8AuMNQDgG4w1ZzDOAIBvXGycuezC2I4dO/Tss8+qvLxcR48e1caNGzVq1Ch3f3OfbixatEiPPPJIk33z5s3T/PnzPdpuuOEGffHFF5eUqUOHDpLOvNjIyMhLOgcA0Dy73a7ExET371cw1gCAtzHWeGKcAQDvutRx5rILY3V1derTp48mTZqkMWPGnNd/9OhRj/2CggJlZ2crMzPzgte96aabtHXr1v8EC7v0aGeLcZGRkQwiAOBFTOX4D8YaAPANxpozGGcAwDcuNs5cdmEsIyNDGRkZzfbHxcV57P/5z3/WHXfcoR/84AcXDhIWdt65AAAAAAAAgK/4dJXLqqoqvfvuu8rOzr7osfv371dCQoJ+8IMfKCsrS1artdljnU6n7Ha7xwYAAAAAAABcDp8WxtauXasOHTo0OeXyXCkpKVqzZo0KCwu1YsUKHTp0SD/84Q/1zTffNHl8Xl6eoqKi3BuLVAIAAAAAAOBy+bQw9uqrryorK0tms/mCx2VkZOi+++5T7969lZ6ervfee0/V1dV66623mjw+NzdXNTU17q2iosIX8QEAAAAAABDEfFYY+5//+R/t27dPv/jFLy773OjoaF1//fU6cOBAk/3h4eHuRSlZnBIAglteXp4GDRqkDh06qEuXLho1apT27dvncYzD4dDUqVPVsWNHtW/fXpmZmaqqqvI4xmq1avjw4brqqqvUpUsXPfLIIzp9+nRLvhQAAAAAfsZnhbFVq1ZpwIAB6tOnz2WfW1tbq4MHDyo+Pt4HyQDjFBcX64EHHlBxcbHRUYCAsX37dk2dOlU7d+7Uli1bVF9fr7vuukt1dXXuY2bNmqV33nlH69ev1/bt23XkyBGPafwNDQ0aPny4Tp06peLiYq1du1Zr1qzR3LlzjXhJAAAAAYu/aRBsLrswVltbqz179mjPnj2SpEOHDmnPnj0ei+Xb7XatX7++2bvFhg0bphdffNG9/9vf/lbbt2/X119/reLiYo0ePVqhoaEaN27c5cYD/JbD4dDixYtVVVWlxYsXy+FwGB0JCAiFhYX6+c9/rptuukl9+vTRmjVrZLVaVV5eLkmqqanRqlWrtHjxYt15550aMGCAVq9ereLiYu3cuVOS9Ne//lWfffaZXn/9dfXt21cZGRl68skntXz5cp06dcrIlwcAABAw+JsGweiyC2O7du1Sv3791K9fP0lSTk6O+vXr5/Gp+7p16+RyuZotbB08eFDHjx9371dWVmrcuHG64YYbdP/996tjx47auXOnOnfufLnxAL+Vn5+vEydOSJJOnDghi8VicCIgMNXU1EiSYmJiJEnl5eWqr69XWlqa+5gePXooKSlJJSUlkqSSkhL16tVLsbGx7mPS09Nlt9v16aefNvl9eAIyAACAJ/6mQTAKu9wThg4dKpfLdcFjpkyZoilTpjTb//XXX3vsr1u37nJjAAGlsrJSFovF/W/H5XLJYrHorrvuUteuXQ1OBwSOxsZGzZw5U7feeqtuvvlmSZLNZlPbtm0VHR3tcWxsbKxsNpv7mHOLYmf7z/Y1JS8vT/Pnz/fyK4A3uVwuPqn+DpfLJafTKenMmqwmk8ngRP7DbDbzfgDAFeBvGgSryy6MAbg8LpdLS5cubbZ90aJF/EcduERTp07VJ598og8//NDn3ys3N1c5OTnufbvdrsTERJ9/X1w6h8OhjIwMo2MgQBQUFCgiIsLoGPBTO3bs0LPPPqvy8nIdPXpUGzdu1KhRoyRJ9fX1mj17tt577z199dVXioqKUlpamp5++mklJCS4r3Hy5ElNnz5d77zzjkJCQpSZmamlS5eqffv2Br0qwHv4mwbBzGeL7wM4w2q1qqysTA0NDR7tDQ0NKisr81ifD0Dzpk2bps2bN+uDDz7w+FQyLi5Op06dUnV1tcfxVVVViouLcx/z3adUnt0/e8x38QRkAGg96urq1KdPHy1fvvy8vm+//Va7d+/WnDlztHv3bm3YsEH79u3TT37yE4/jsrKy9Omnn2rLli3avHmzduzYccFZNEAg4W8aBDPuGAN8LCkpSYMGDdLu3bs9BpLQ0FANGDBASUlJBqYD/J/L5dL06dO1ceNGbdu2TcnJyR79AwYMUJs2bVRUVKTMzExJ0r59+2S1WpWamipJSk1N1e9//3sdO3ZMXbp0kSRt2bJFkZGRuvHGG1v2BcFrzGazCgoKjI7hVxwOh0aPHi1J2rhxo8xms8GJ/AfvBS4kIyOj2TtQo6KitGXLFo+2F198UYMHD5bValVSUpI+//xzFRYWqqysTAMHDpQkvfDCC7rnnnv03HPPedxZBgQi/qZBMKMwBviYyWTSjBkzNHHixCbbueUYuLCpU6fKYrHoz3/+szp06OBeEywqKkoRERGKiopSdna2cnJyFBMTo8jISE2fPl2pqam65ZZbJEl33XWXbrzxRv3sZz/TokWLZLPZNHv2bE2dOlXh4eFGvjxcAZPJxNS4CzCbzbw/gI/U1NTIZDK517csKSlRdHS0uygmSWlpaQoJCVFpaam7YA0EKv6mQTBjKiXQArp27arx48e7BwyTyaTx48frmmuuMTgZ4P9WrFihmpoaDR06VPHx8e7tzTffdB/z/PPPa8SIEcrMzNTtt9+uuLg4bdiwwd0fGhqqzZs3KzQ0VKmpqXrwwQc1YcIELViwwIiXBAAIYA6HQ4899pjGjRvnnmZvs9ncdySfFRYWppiYmGYf8sLTjxFo+JsGwYo7xoAWkpWVpYKCAh0/flydOnXS+PHjjY4EBISLPQlZOnNnzPLly5tcG+asbt266b333vNmNABAK1NfX6/7779fLpdLK1asuKJr8fRjBCL+pkEw4o4xoIWYzWbl5OQoNjZWs2bNYq0TAACAAHK2KHb48GH3OpVnxcXF6dixYx7Hnz59WidPnmz2IS+5ubmqqalxbxUVFT7ND3gDf9MgGHHHGNCChgwZoiFDhhgdAwAAAJfhbFFs//79+uCDD9SxY0eP/tTUVFVXV6u8vFwDBgyQJL3//vtqbGxUSkpKk9cMDw9nnUsEJP6mQbChMAYAAACgVautrdWBAwfc+4cOHdKePXsUExOj+Ph4/fSnP9Xu3bu1efNmNTQ0uNcNi4mJUdu2bdWzZ0/dfffdmjx5slauXKn6+npNmzZNY8eO5YmUAODnKIwBAAAAaNV27dqlO+64w72fk5MjSZo4caLmzZunt99+W5LUt29fj/M++OADDR06VJKUn5+vadOmadiwYQoJCVFmZqaWLVvWIvkBAN8fhTEAAAAArdrQoUMv+LCXS3kQTExMjCwWizdjAQBaAIvvAwAAAAAAoFWiMAYAAAAAAC5JcXGxHnjgARUXFxsdBfAKCmMAAAAAAOCiHA6HFi9erKqqKi1evFgOh8PoSMAVozAGAAAAAAAuKj8/XydOnJAknThxgnX1EBQojAEAAAAAgAuqrKyUxWJxP4zC5XLJYrGosrLS4GTAlaEwBgAAAAAAmuVyubR06dJm2y/lya2Av6IwBgAAAAAAmmW1WlVWVqaGhgaP9oaGBpWVlclqtRqUDLhyFMYAAAAAAECzkpKSNGjQIIWGhnq0h4aGavDgwUpKSjIoGXDlKIwBAAAAAIBmmUwmzZgxo9l2k8lkQCrAOyiMAQAAAACAC+ratavGjx/v0TZ+/Hhdc801BiUCvIPCGAAAAAAAuKgf//jHHvtpaWkGJQG8h8IYAAAAAAC4qN/85jce+7/97W8NSgJ4D4UxAAAAAABwQYWFhfrnP//p0Xbs2DEVFhYalAjwDgpjAAAAAACgWQ0NDXr22Web7Hv22WfV0NDQwokA77nswtiOHTt07733KiEhQSaTSZs2bfLo//nPfy6TyeSx3X333Re97vLly9W9e3eZzWalpKToo48+utxogN8rLi7WAw88oOLiYqOjAAAAAMAl2bx5c7PFr4aGBm3evLmFEwHec9mFsbq6OvXp00fLly9v9pi7775bR48edW9vvPHGBa/55ptvKicnR0888YR2796tPn36KD09XceOHbvceIDfcjgcWrx4saqqqrR48WI5HA6jIwEB4WIfyHz3w5iz27mfanbv3v28/qeffrqFXwkAAEBgGjFihEJDQ5vsCwsL04gRI1o4EeA9l10Yy8jI0MKFCzV69OhmjwkPD1dcXJx7u/rqqy94zcWLF2vy5Ml66KGHdOONN2rlypW66qqr9Oqrr15uPMBv5efn68SJE5KkEydOyGKxGJwICAwX+0Dm3A9ijh49qldffVUmk0mZmZkexy1YsMDjuOnTp7dEfAAAgIAXGhqq++67r8m+n/70p80WzYBA4JM1xrZt26YuXbrohhtu0MMPP+wuBjTl1KlTKi8v93jMa0hIiNLS0lRSUuKLeECLq6yslMVikcvlkiS5XC5ZLBZVVlYanAzwfxf7QObcD2Li4uL05z//WXfccYd+8IMfeBzXoUMHj+PatWvXEvEBAAACXmNjo957770m+9577z01Nja2cCLAe7xeGLv77rv12muvqaioSM8884y2b9+ujIyMZucjHz9+XA0NDYqNjfVoj42Nlc1ma/Icp9Mpu93usQH+yuVyaenSpc22ny2WAbhyVVVVevfdd5WdnX1e39NPP62OHTuqX79+evbZZ3X69OkLXouxBgAA4IzS0tJm/y9kt9tVWlrawokA7wnz9gXHjh3r/rpXr17q3bu3rr32Wm3btk3Dhg3zyvfIy8vT/PnzvXItwNesVqvKysrOa29oaFBZWZmsVqu6detmQDIg+Kxdu1YdOnTQmDFjPNp//etfq3///oqJiVFxcbFyc3N19OhRLV68uNlrMdYAAACckZKSosjIyCaLY1FRUUpJSTEgFeAdXi+MfdcPfvADderUSQcOHGiyMNapUyeFhoaqqqrKo72qqkpxcXFNXjM3N1c5OTnufbvdrsTERO8GB7wkKSlJgwYN0u7duz3unAwNDdWAAQOUlJRkYDoguLz66qvKysqS2Wz2aD93zOjdu7fatm2rX/7yl8rLy1N4eHiT12KsAQAALpeLh2b9P48//rh+97vfNdnudDoNSORfzGazTCaT0THwPfi8MFZZWakTJ04oPj6+yf62bdtqwIABKioq0qhRoySdmb9cVFSkadOmNXlOeHh4s3/IAP7GZDJpxowZmjhxYpPt/PIEvON//ud/tG/fPr355psXPTYlJUWnT5/W119/rRtuuKHJYxhrAACAw+FQRkaG0TH8Wm5urtER/EJBQYEiIiKMjoHv4bLXGKutrdWePXu0Z88eSdKhQ4e0Z88eWa1W1dbW6pFHHtHOnTv19ddfq6ioSCNHjtR//dd/KT093X2NYcOG6cUXX3Tv5+Tk6JVXXtHatWv1+eef6+GHH1ZdXZ0eeuihK3+FgB/o2rWrxo8f7y6CmUwmjR8/Xtdcc43ByYDgsWrVKg0YMEB9+vS56LF79uxRSEiIunTp0gLJAAAAAPiry75jbNeuXbrjjjvc+2enmUycOFErVqzQxx9/rLVr16q6uloJCQm666679OSTT3p86n7w4EEdP37cvf/AAw/on//8p+bOnSubzaa+ffuqsLDwvAX5gUCWlZWlgoICHT9+XJ06ddL48eONjgQEhNraWh04cMC9f/YDmZiYGPdUZLvdrvXr1+sPf/jDeeeXlJSotLRUd9xxhzp06KCSkhLNmjVLDz74oK6++uoWex0AACDwmM1mFRQUGB3DbzgcDveTwu+77z5NmjTJ4ET+47tLeSBwXHZhbOjQoRd8it5f/vKXi17j66+/Pq9t2rRpzU6dBIKB2WxWTk6Oli5dqhkzZvCLE7hEF/pAZs2aNZKkdevWyeVyady4ceedHx4ernXr1mnevHlyOp1KTk7WrFmzPNYPAwAAaIrJZGJ6XDMmTZrEe4Og4PM1xgD8x5AhQzRkyBCjYwAB5WIfyEjSlClTNGXKlCb7+vfvr507d/oiGgAAAIAAd9lrjAEAAAAAAADBgMIYAAAAAAAAWiUKY0ALWrVqle68806tWrXK6CgAAAAAALR6FMaAFlJdXa38/Hw1NjYqPz9f1dXVRkcCAAAAAKBVozAGtJA5c+aosbFRktTY2Ki5c+canAgAAACStGPHDt17771KSEiQyWTSpk2bPPpdLpfmzp2r+Ph4RUREKC0tTfv37/c45uTJk8rKylJkZKSio6OVnZ2t2traFnwVAIDvg8IY0AJ27dqlvXv3erR9/PHH2rVrl0GJAAAAcFZdXZ369Omj5cuXN9m/aNEiLVu2TCtXrlRpaanatWun9PR0ORwO9zFZWVn69NNPtWXLFm3evFk7duxo9onJAAD/EWZ0ACDYNTY2asGCBU32LViwQJs2bVJICDVqAAAAo2RkZCgjI6PJPpfLpSVLlmj27NkaOXKkJOm1115TbGysNm3apLFjx+rzzz9XYWGhysrKNHDgQEnSCy+8oHvuuUfPPfecEhISWuy1AAAuD3+NAz5WWloqu93eZJ/dbldpaWkLJwIAAMClOnTokGw2m9LS0txtUVFRSklJUUlJiSSppKRE0dHR7qKYJKWlpSkkJKTZ/+s5nU7Z7XaPDQDQ8iiMAT6WkpKiyMjIJvvO/qcKAAAA/slms0mSYmNjPdpjY2PdfTabTV26dPHoDwsLU0xMjPuY78rLy1NUVJR7S0xM9EF6AMDFUBgDfCwkJKTZhfafeOIJplECAAC0Qrm5uaqpqXFvFRUVRkcCgFaJv8iBFjBw4ED16tXLo613797q37+/QYkAAABwKeLi4iRJVVVVHu1VVVXuvri4OB07dsyj//Tp0zp58qT7mO8KDw9XZGSkxwYAaHkUxoAW8uSTT7rvDgsJCWl2QX4AAAD4j+TkZMXFxamoqMjddnad2NTUVElSamqqqqurVV5e7j7m/fffV2NjI8tmAICfozAGtJDo6GhlZWUpJCREWVlZio6ONjoSAAAAJNXW1mrPnj3as2ePpDML7u/Zs0dWq1Umk0kzZ87UwoUL9fbbb2vv3r2aMGGCEhISNGrUKElSz549dffdd2vy5Mn66KOP9Le//U3Tpk3T2LFjeSIlAPi5MKMDAK1Jdna2srOzjY4BAACAc+zatUt33HGHez8nJ0eSNHHiRK1Zs0aPPvqo6urqNGXKFFVXV+u2225TYWGhzGaz+5z8/HxNmzZNw4YNU0hIiDIzM7Vs2bIWfy0AgMtDYQwAAABAqzZ06FC5XK5m+00mkxYsWHDBpTBiYmJksVh8EQ8A4ENMpQQAAAAAAECrRGEMAAAAAAAArRKFMQAAAAAAALRKFMYAAAAAAADQKlEYAwAAAAAAQKvEUynhMy6XSw6Hw+gYfsPlcsnpdEqSwsPDZTKZDE7kX8xmM+8JmrRjxw49++yzKi8v19GjR7Vx40aNGjXK3f/zn/9ca9eu9TgnPT1dhYWF7v2TJ09q+vTpeueddxQSEqLMzEwtXbpU7du3b6mXAQAAAMAPURiDzzgcDmVkZBgdAwGioKBAERERRseAH6qrq1OfPn00adIkjRkzpslj7r77bq1evdq9Hx4e7tGflZWlo0ePasuWLaqvr9dDDz2kKVOmyGKx+DQ7AAAAAP9GYQwA4NcyMjIuWmQPDw9XXFxck32ff/65CgsLVVZWpoEDB0qSXnjhBd1zzz167rnnlJCQ4PXMAAAAAAIDhTH4jNlsVkFBgdEx/IbD4dDo0aMlSRs3bpTZbDY4kX/h/cCV2LZtm7p06aKrr75ad955pxYuXKiOHTtKkkpKShQdHe0uiklSWlqaQkJCVFpa6v53+V1Op9M9/VmS7Ha7b18EAAAAgBZHYQw+YzKZmBrXDLPZzHsDeMndd9+tMWPGKDk5WQcPHtTvfvc7ZWRkqKSkRKGhobLZbOrSpYvHOWFhYYqJiZHNZmv2unl5eZo/f76v4wMAAAAw0GU/lXLHjh269957lZCQIJPJpE2bNrn76uvr9dhjj6lXr15q166dEhISNGHCBB05cuSC15w3b55MJpPH1qNHj8t+MQCA1mfs2LH6yU9+ol69emnUqFHavHmzysrKtG3btiu6bm5urmpqatxbRUWFdwIDAAAA8BuXXRg7uwjy8uXLz+v79ttvtXv3bs2ZM0e7d+/Whg0btG/fPv3kJz+56HVvuukmHT161L19+OGHlxsNAAD94Ac/UKdOnXTgwAFJUlxcnI4dO+ZxzOnTp3Xy5Mlm1yWTzqxbFhkZ6bEBAAAACC6XPZXyQosgR0VFacuWLR5tL774ogYPHiyr1aqkpKTmg4SFXfAPFAAALkVlZaVOnDih+Ph4SVJqaqqqq6tVXl6uAQMGSJLef/99NTY2KiUlxcioAAAAAAzm8zXGampqZDKZFB0dfcHj9u/fr4SEBJnNZqWmpiovL6/ZQhoLIgNA61FbW+u++0uSDh06pD179igmJkYxMTGaP3++MjMzFRcXp4MHD+rRRx/Vf/3Xfyk9PV2S1LNnT919992aPHmyVq5cqfr6ek2bNk1jx47liZQAAABAK3fZUykvh8Ph0GOPPaZx48ZdcApKSkqK1qxZo8LCQq1YsUKHDh3SD3/4Q33zzTdNHp+Xl6eoqCj3lpiY6KuXAAAw2K5du9SvXz/169dPkpSTk6N+/fpp7ty5Cg0N1ccff6yf/OQnuv7665Wdna0BAwbof/7nfxQeHu6+Rn5+vnr06KFhw4bpnnvu0W233aaXX37ZqJcEAAAAwE/47I6x+vp63X///XK5XFqxYsUFjz13ambv3r2VkpKibt266a233lJ2dvZ5x+fm5ionJ8e9b7fbKY4BQJAaOnSoXC5Xs/1/+ctfLnqNmJgYWSwWb8YCAAAAEAR8Uhg7WxQ7fPiw3n///ctesDg6OlrXX3+9x9SZc4WHh3vcCQAAAAAAAABcLq9PpTxbFNu/f7+2bt2qjh07XvY1amtrdfDgQffCyQAAAAAAAIC3XXZhrLa2Vnv27NGePXsk/WcRZKvVqvr6ev30pz/Vrl27lJ+fr4aGBtlsNtlsNp06dcp9jWHDhunFF1907//2t7/V9u3b9fXXX6u4uFijR49WaGioxo0bd+WvEAAAAAAAAGjCZU+l3LVrl+644w73/tm1viZOnKh58+bp7bffliT17dvX47wPPvhAQ4cOlSQdPHhQx48fd/dVVlZq3LhxOnHihDp37qzbbrtNO3fuVOfOnS83HgAAAAAAAHBJLrswdrFFkC/Ud9bXX3/tsb9u3brLjQEAQKvjcrnkcDiMjgE/du7PBz8ruBCz2SyTyWR0DAAADOezp1ICAADvcjgcHk9yBi5k9OjRRkeAHysoKFBERITRMQAAMJzXF98HAAAAAAAAAgF3jAEAEIBq+46TK4RhHN/hckmNp898HRImMVUO5zA1nlb7PW8YHQMAAL/C/6gBAAhArpAwKbSN0THgl9oaHQB+6uIrAQMA0PowlRIAAAAAAACtEoUxAAAAAAAAtEoUxgAAAAAAANAqURgDAAAAAABAq0RhDAAAAAAuoKGhQXPmzFFycrIiIiJ07bXX6sknn5TL9Z9HGrhcLs2dO1fx8fGKiIhQWlqa9u/fb2BqAMCloDAGAAAAABfwzDPPaMWKFXrxxRf1+eef65lnntGiRYv0wgsvuI9ZtGiRli1bppUrV6q0tFTt2rVTenq6HA6HgckBABcTZnQAAAAAAPBnxcXFGjlypIYPHy5J6t69u9544w199NFHks7cLbZkyRLNnj1bI0eOlCS99tprio2N1aZNmzR27FjDsgMALozCGAAAAABcwJAhQ/Tyyy/ryy+/1PXXX6+///3v+vDDD7V48WJJ0qFDh2Sz2ZSWluY+JyoqSikpKSopKQmYwpjL5eION1zQuT8f/KzgYsxms0wmk9ExLorCGAAAAABcwOOPPy673a4ePXooNDRUDQ0N+v3vf6+srCxJks1mkyTFxsZ6nBcbG+vu+y6n0ymn0+net9vtPkp/6RwOhzIyMoyOgQAxevRooyPAzxUUFCgiIsLoGBfFGmMAAAAAcAFvvfWW8vPzZbFYtHv3bq1du1bPPfec1q5d+72vmZeXp6ioKPeWmJjoxcQAgEvFHWMAAAAAcAGPPPKIHn/8cfeUyF69eunw4cPKy8vTxIkTFRcXJ0mqqqpSfHy8+7yqqir17du3yWvm5uYqJyfHvW+32/2qOFbbd5xcIfy5iO9wuaTG02e+DgmTAmCaHFqWqfG02u95w+gYl4XfdAAAv7Zjxw49++yzKi8v19GjR7Vx40aNGjVKklRfX6/Zs2frvffe01dffaWoqCilpaXp6aefVkJCgvsa3bt31+HDhz2um5eXp8cff7wlXwoAIEB9++23CgnxnGwTGhqqxsZGSVJycrLi4uJUVFTkLoTZ7XaVlpbq4YcfbvKa4eHhCg8P92nuK+EKCZNC2xgdA36prdEB4MdcRgf4HiiMAQD8Wl1dnfr06aNJkyZpzJgxHn3ffvutdu/erTlz5qhPnz7617/+pRkzZugnP/mJdu3a5XHsggULNHnyZPd+hw4dWiQ/ACDw3Xvvvfr973+vpKQk3XTTTfrf//1fLV68WJMmTZIkmUwmzZw5UwsXLtR1112n5ORkzZkzRwkJCe4PcwAA/onCGADAr2VkZDS7EHBUVJS2bNni0fbiiy9q8ODBslqtSkpKcrd36NDBPdUFAIDL8cILL2jOnDn67//+bx07dkwJCQn65S9/qblz57qPefTRR1VXV6cpU6aourpat912mwoLC2U2mw1MDgC4GBbfBwAElZqaGplMJkVHR3u0P/300+rYsaP69eunZ599VqdPnzYmIAAg4HTo0EFLlizR4cOH9e9//1sHDx7UwoUL1bbtf6aUmUwmLViwQDabTQ6HQ1u3btX1119vYGoAwKXgjjEAQNBwOBx67LHHNG7cOEVGRrrbf/3rX6t///6KiYlRcXGxcnNzdfToUS1evLjZazmdTjmdTve+3W73aXYAAAAALY/CGAAgKNTX1+v++++Xy+XSihUrPPrOfepX79691bZtW/3yl79UXl5eswsf5+Xlaf78+T7NDAAAAMBYTKUEAAS8s0Wxw4cPa8uWLR53izUlJSVFp0+f1tdff93sMbm5uaqpqXFvFRUVXk4NAAAAwGjcMQYACGhni2L79+/XBx98oI4dO170nD179igkJERdunRp9pjw8PBm7yYDAAAAEBwojAEA/Fptba0OHDjg3j906JD27NmjmJgYxcfH66c//al2796tzZs3q6GhQTabTZIUExOjtm3bqqSkRKWlpbrjjjvUoUMHlZSUaNasWXrwwQd19dVXG/WyAAAAAPgBCmMAAL+2a9cu3XHHHe79s+uFTZw4UfPmzdPbb78tSerbt6/HeR988IGGDh2q8PBwrVu3TvPmzZPT6VRycrJmzZrlse4YAAAAgNbpstcY27Fjh+69914lJCTIZDJp06ZNHv0ul0tz585VfHy8IiIilJaWpv3791/0usuXL1f37t1lNpuVkpKijz766HKjAQCC0NChQ+Vyuc7b1qxZo+7duzfZ53K5NHToUElS//79tXPnTlVXV+vf//63PvvsM+Xm5jJNEgAAAMDlF8bq6urUp08fLV++vMn+RYsWadmyZVq5cqVKS0vVrl07paeny+FwNHvNN998Uzk5OXriiSe0e/du9enTR+np6Tp27NjlxgMAAAAAAAAuyWVPpczIyFBGRkaTfS6XS0uWLNHs2bM1cuRISdJrr72m2NhYbdq0SWPHjm3yvMWLF2vy5Ml66KGHJEkrV67Uu+++q1dffVWPP/745UYEACAouVyu/+w01BsXBEBgOuf3hsfvE+D/YZwBcMUCcKzx6hpjhw4dks1mU1pamrstKipKKSkpKikpabIwdurUKZWXlys3N9fdFhISorS0NJWUlDT5fZxOp5xOp3vfbrd78VUAAOCfzh37Ovx9nYFJAAQ6p9Opq666yugY8DOMMwC8KVDGmsueSnkhZ58EFhsb69EeGxvr7vuu48ePq6Gh4bLOycvLU1RUlHtLTEz0QnoAAAAAAAC0JgH5VMrc3FyPp4nZ7XaKYwCAoHfuAwO+6TNWCm1jYBoAAaeh3n0XEA8gQVMYZwBcsQAca7xaGIuLi5MkVVVVKT4+3t1eVVWlvn37NnlOp06dFBoaqqqqKo/2qqoq9/W+Kzw8PGDeYAAAvMVkMv1nJ7QNf7AA+N48fp8A/w/jDABvCpSxxqtTKZOTkxUXF6eioiJ3m91uV2lpqVJTU5s8p23bthowYIDHOY2NjSoqKmr2HAAAAAAAAOBKXfYdY7W1tTpw4IB7/9ChQ9qzZ49iYmKUlJSkmTNnauHChbruuuuUnJysOXPmKCEhQaNGjXKfM2zYMI0ePVrTpk2TJOXk5GjixIkaOHCgBg8erCVLlqiurs79lEoAAAAAAADA2y67MLZr1y7dcccd7v2za31NnDhRa9as0aOPPqq6ujpNmTJF1dXVuu2221RYWCiz2ew+5+DBgzp+/Lh7/4EHHtA///lPzZ07VzabTX379lVhYeF5C/IDAAAAAAAA3nLZhbGhQ4fK5XI1228ymbRgwQItWLCg2WO+/vrr89qmTZvmvoMMAAAAAAAA8DWvrjEGAAAAAAAABAoKYwAAAAAAAGiVKIwBAAAAAACgVaIwBgAAAAAAgFaJwhgAAAAAAABaJQpjAAAAAAAAaJUojAEAAAAAAKBVojAGAAAAAACAVonCGAAAAAAAAFolCmMAAAAAAABolSiMAQD82o4dO3TvvfcqISFBJpNJmzZt8uh3uVyaO3eu4uPjFRERobS0NO3fv9/jmJMnTyorK0uRkZGKjo5Wdna2amtrW/BVAAAAAPBHYUYHAADgQurq6tSnTx9NmjRJY8aMOa9/0aJFWrZsmdauXavk5GTNmTNH6enp+uyzz2Q2myVJWVlZOnr0qLZs2aL6+no99NBDmjJliiwWS0u/HAAAAoKp8bRcRoeA/3G5pMbTZ74OCZNMJmPzwO+Yzv58BBAKYwAAv5aRkaGMjIwm+1wul5YsWaLZs2dr5MiRkqTXXntNsbGx2rRpk8aOHavPP/9chYWFKisr08CBAyVJL7zwgu655x4999xzSkhIaLHXAgBAoGi/5w2jIwBAi2AqJQAgYB06dEg2m01paWnutqioKKWkpKikpESSVFJSoujoaHdRTJLS0tIUEhKi0tLSFs8MAAhM//jHP/Tggw+qY8eOioiIUK9evbRr1y53/6VM7QcA+B/uGAMABCybzSZJio2N9WiPjY1199lsNnXp0sWjPywsTDExMe5jmuJ0OuV0Ot37drvdW7G9gikuaBJTXHABgTi9xV/861//0q233qo77rhDBQUF6ty5s/bv36+rr77afcylTO33d2azWQUFBUbHgB9zOBwaPXq0JGnjxo0B87MNYwTKzweFMQAAmpCXl6f58+cbHaNZTHEBgJbzzDPPKDExUatXr3a3JScnu7++lKn9gcBkMikiIsLoGAgQZrOZnxcEBaZSAgACVlxcnCSpqqrKo72qqsrdFxcXp2PHjnn0nz59WidPnnQf05Tc3FzV1NS4t4qKCi+nBwAEirffflsDBw7Ufffdpy5duqhfv3565ZVX3P2XMrX/u5xOp+x2u8cGAGh53DEGAAhYycnJiouLU1FRkfr27SvpzJTH0tJSPfzww5Kk1NRUVVdXq7y8XAMGDJAkvf/++2psbFRKSkqz1w4PD1d4eLjPX8PlYIoLLoYpLrhU/Gxcnq+++korVqxQTk6Ofve736msrEy//vWv1bZtW02cOPGSpvZ/l7/fmQwArQWFMQCAX6utrdWBAwfc+4cOHdKePXsUExOjpKQkzZw5UwsXLtR1113nXtMlISFBo0aNkiT17NlTd999tyZPnqyVK1eqvr5e06ZN09ixYwPuiZRMccHlYIoL4D2NjY0aOHCgnnrqKUlSv3799Mknn2jlypWaOHHi97pmbm6ucnJy3Pt2u12JiYleyQsAuHQUxgAAfm3Xrl2644473Ptn/4iYOHGi1qxZo0cffVR1dXWaMmWKqqurddttt6mwsNDjboj8/HxNmzZNw4YNU0hIiDIzM7Vs2bIWfy0AgMAUHx+vG2+80aOtZ8+e+tOf/iTJc2p/fHy8+5iqqir3Hc3f5Y93JgNAa0RhDADg14YOHSqXq/nnL5pMJi1YsEALFixo9piYmBhZLBZfxAMAtAK33nqr9u3b59H25Zdfqlu3bpIubWo/AMA/URgDAAAAgAuYNWuWhgwZoqeeekr333+/PvroI7388st6+eWXJZ35kOZiU/sBAP6JwhgAAAAAXMCgQYO0ceNG5ebmasGCBUpOTtaSJUuUlZXlPuZSpvYDAPwPhTEAAAAAuIgRI0ZoxIgRzfZfytR+AID/CTE6AAAAAAAAAGAErxfGunfvLpPJdN42derUJo9fs2bNecdyuzEAAAAAAAB8zetTKcvKytTQ0ODe/+STT/TjH/9Y9913X7PnREZGejzlxWQyeTsWAAAAAAAA4MHrhbHOnTt77D/99NO69tpr9aMf/ajZc0wmk+Li4rwdBQAAAAAAAGiWT9cYO3XqlF5//XVNmjTpgneB1dbWqlu3bkpMTNTIkSP16aef+jIWAAAAAAAA4NvC2KZNm1RdXa2f//znzR5zww036NVXX9Wf//xnvf7662psbNSQIUNUWVnZ7DlOp1N2u91jAwAAAAAAAC6HTwtjq1atUkZGhhISEpo9JjU1VRMmTFDfvn31ox/9SBs2bFDnzp31xz/+sdlz8vLyFBUV5d4SExN9ER8AAAAAAABBzGeFscOHD2vr1q36xS9+cVnntWnTRv369dOBAweaPSY3N1c1NTXuraKi4krjAgAAAAAAoJXxWWFs9erV6tKli4YPH35Z5zU0NGjv3r2Kj49v9pjw8HBFRkZ6bAAAAAAAAMDl8ElhrLGxUatXr9bEiRMVFub54MsJEyYoNzfXvb9gwQL99a9/1VdffaXdu3frwQcf1OHDhy/7TjMAAAAAAADgcoRd/JDLt3XrVlmtVk2aNOm8PqvVqpCQ/9Tj/vWvf2ny5Mmy2Wy6+uqrNWDAABUXF+vGG2/0RTQAAAAAAABAko8KY3fddZdcLleTfdu2bfPYf/755/X888/7IgYAAAAAAADQLJ8+lRIAAAAAAADwVxTGAAAAAAAA0CpRGAMAAAAAAECrRGEMAAAAAAAArRKFMQAAAAAAALRKFMYAAAGve/fuMplM521Tp06VJA0dOvS8vl/96lcGpwYAAABgtDCjAwAAcKXKysrU0NDg3v/kk0/04x//WPfdd5+7bfLkyVqwYIF7/6qrrmrRjAAAAAD8D4UxAEDA69y5s8f+008/rWuvvVY/+tGP3G1XXXWV4uLiWjoaAAAAAD/GVEoAQFA5deqUXn/9dU2aNEkmk8ndnp+fr06dOunmm29Wbm6uvv32WwNTAgAAAPAH3DEGAAgqmzZtUnV1tX7+85+728aPH69u3bopISFBH3/8sR577DHt27dPGzZsaPY6TqdTTqfTvW+3230ZGwAAAIABKIwBAILKqlWrlJGRoYSEBHfblClT3F/36tVL8fHxGjZsmA4ePKhrr722yevk5eVp/vz5Ps8LAAAAwDhMpQQABI3Dhw9r69at+sUvfnHB41JSUiRJBw4caPaY3Nxc1dTUuLeKigqvZgUAAABgPO4YAwAEjdWrV6tLly4aPnz4BY/bs2ePJCk+Pr7ZY8LDwxUeHu7NeAAAAAD8DIUxL3K5XHI4HEbHgJ8692eDnxNcjNls9lg4HhfX2Nio1atXa+LEiQoL+8/wdvDgQVksFt1zzz3q2LGjPv74Y82aNUu33367evfubWBiAAAAAEajMOZFDodDGRkZRsdAABg9erTREeDnCgoKFBERYXSMgLJ161ZZrVZNmjTJo71t27baunWrlixZorq6OiUmJiozM1OzZ882KCkAAAAAf0FhDAAQFO666y65XK7z2hMTE7V9+3YDEgEAAADwdxTGfKS27zi5Qnh7cQ6XS2o8febrkDCJaXL4DlPjabXf84bRMQAAAACg1aBy4yOukDAptI3RMeB32hodAH7s/HudAACAP3r66aeVm5urGTNmaMmSJZLOLKvym9/8RuvWrZPT6VR6erpeeuklxcbGGhsWAHBBIUYHAAAAAIBAUVZWpj/+8Y/nPcBl1qxZeuedd7R+/Xpt375dR44c0ZgxYwxKCQC4VBTGAAAAAOAS1NbWKisrS6+88oquvvpqd3tNTY1WrVqlxYsX684779SAAQO0evVqFRcXa+fOnQYmBgBcDIUxAAAAALgEU6dO1fDhw5WWlubRXl5ervr6eo/2Hj16KCkpSSUlJS0dEwBwGVhjDAAAAAAuYt26ddq9e7fKysrO67PZbGrbtq2io6M92mNjY2Wz2Zq8ntPplNPpdO/b7Xav5gUAXBruGAMAAACAC6ioqNCMGTOUn58vs9nslWvm5eUpKirKvSUmJnrlugCAy0NhDAAAAAAuoLy8XMeOHVP//v0VFhamsLAwbd++XcuWLVNYWJhiY2N16tQpVVdXe5xXVVWluLi4Jq+Zm5urmpoa91ZRUdECrwQA8F1MpQQAAACACxg2bJj27t3r0fbQQw+pR48eeuyxx5SYmKg2bdqoqKhImZmZkqR9+/bJarUqNTW1yWuGh4crPDzc59lxZVwulxwOh9Ex/Ma57wXviyez2SyTyWR0DHwPFMYAAAAA4AI6dOigm2++2aOtXbt26tixo7s9OztbOTk5iomJUWRkpKZPn67U1FTdcsstRkSGlzgcDmVkZBgdwy+NHj3a6Ah+paCgQBEREUbHwPfg9amU8+bNk8lk8th69OhxwXPWr1+vHj16yGw2q1evXnrvvfe8HQsAAAAAfOb555/XiBEjlJmZqdtvv11xcXHasGGD0bEAABfhkzvGbrrpJm3duvU/3ySs+W9TXFyscePGKS8vTyNGjJDFYtGoUaO0e/fu8z6VAQAAAAB/sG3bNo99s9ms5cuXa/ny5cYEgk+YzWYVFBQYHcNvuFwu99NUw8PDmTp4Dm89mAMtzyeFsbCwsGYXmfyupUuX6u6779YjjzwiSXryySe1ZcsWvfjii1q5cqUv4gEAAAAAcFEmk4npcd9x1VVXGR0B8CqfPJVy//79SkhI0A9+8ANlZWXJarU2e2xJSYnS0tI82tLT01VSUtLsOU6nU3a73WMDAAAAAAAALofXC2MpKSlas2aNCgsLtWLFCh06dEg//OEP9c033zR5vM1mU2xsrEdbbGysbDZbs98jLy9PUVFR7i0xMdGrrwEAAAAAAADBz+uFsYyMDN13333q3bu30tPT9d5776m6ulpvvfWW175Hbm6uampq3FtFRYXXrg0AAAAAAIDWwSdrjJ0rOjpa119/vQ4cONBkf1xcnKqqqjzaqqqqLrhGWXh4uMLDw72aEwAAAAAAAK2LT9YYO1dtba0OHjyo+Pj4JvtTU1NVVFTk0bZlyxalpqb6OhoAAAAAAABaMa8Xxn77299q+/bt+vrrr1VcXKzRo0crNDRU48aNkyRNmDBBubm57uNnzJihwsJC/eEPf9AXX3yhefPmadeuXZo2bZq3owEAAAAAAABuXp9KWVlZqXHjxunEiRPq3LmzbrvtNu3cuVOdO3eWJFmtVoWE/KceN2TIEFksFs2ePVu/+93vdN1112nTpk26+eabvR0NAAAAAAAAcPN6YWzdunUX7N+2bdt5bffdd5/uu+8+b0cBALQS8+bN0/z58z3abrjhBn3xxReSJIfDod/85jdat26dnE6n0tPT9dJLL533VGQAAAAArYvP1xgDAKAl3HTTTTp69Kh7+/DDD919s2bN0jvvvKP169dr+/btOnLkiMaMGWNgWgAAgMC0atUq3XnnnVq1apXRUQCv8PlTKQEAaAlhYWFNPtG4pqZGq1atksVi0Z133ilJWr16tXr27KmdO3fqlltuaemoAAAAAam6ulr5+flqbGxUfn6+MjMzFR0dbXQs4IpwxxgAICjs379fCQkJ+sEPfqCsrCxZrVZJUnl5uerr65WWluY+tkePHkpKSlJJSYlRcQEAAALOnDlz1NjYKElqbGzU3LlzDU4EXDkKYwCAgJeSkqI1a9aosLBQK1as0KFDh/TDH/5Q33zzjWw2m9q2bXvep5mxsbGy2WzNXtPpdMput3tsAAAArdWuXbu0d+9ej7aPP/5Yu3btMigR4B1MpQQABLyMjAz3171791ZKSoq6deumt956SxEREd/rmnl5eect6A8AANAaNTY2asGCBU32LViwQJs2bVJICPfdIDDxkwsACDrR0dG6/vrrdeDAAcXFxenUqVOqrq72OKaqqqrJNcnOys3NVU1NjXurqKjwcWoAAAD/VFpa2uzd83a7XaWlpS2cCPAeCmMAgKBTW1urgwcPKj4+XgMGDFCbNm1UVFTk7t+3b5+sVqtSU1ObvUZ4eLgiIyM9NgAAgNYoJSWl2f8LRUVFKSUlpYUTAd5DYQwAEPB++9vfavv27fr6669VXFys0aNHKzQ0VOPGjVNUVJSys7OVk5OjDz74QOXl5XrooYeUmprKEykBAAAuQUhISLML7T/xxBNMo0RAY40xAEDAq6ys1Lhx43TixAl17txZt912m3bu3KnOnTtLkp5//nmFhIQoMzNTTqdT6enpeumllwxODQAAEDgGDhyoXr16eSzA37t3b/Xv39/AVMCVozAGAAh469atu2C/2WzW8uXLtXz58hZKhJbgcrnkcDiMjuFXzn0/eG88mc1mmUwmo2MAQEB78sknNWbMGDU2NiokJKTZBfmBQEJhDAAABCSHw+HxRFJ4Gj16tNER/EpBQcH3fkotAOCM6OhoZWVlKT8/X1lZWYqOjjY6EnDFKIwBAAAAAIBLkp2drezsbKNjAF5DYQwAAAQks9msgoICo2P4FZfLJafTKenMk1WZOvgfZrPZ6AgAEBSKi4u1dOlSzZgxQ0OGDDE6DnDFKIwBAICAZDKZmBrXhKuuusroCACAIOVwOLR48WIdP35cixcvVv/+/fngAQGPZ6oCAAAAAICLys/P14kTJyRJJ06ckMViMTgRcOUojAEAAAAAgAuqrKyUxWKRy+WSdGb6vsViUWVlpcHJgCtDYQwAAAAAADTL5XJp6dKlzbafLZYBgYjCGAAAAAAAaJbValVZWZkaGho82hsaGlRWViar1WpQMuDKURgDAAAAAADNSkpK0qBBgxQaGurRHhoaqsGDByspKcmgZMCVozAGAAAAAACaZTKZNGPGjGbbTSaTAakA7wgzOkAw8ZhX3VBvXBAAgemc3xus0wAAAAB/0rVrV40fP16vv/66XC6XTCaTxo8fr2uuucboaMAVoTDmRU6n0/11h7+vMzAJgEDndDp11VVXGR0DAABIysvL04YNG/TFF18oIiJCQ4YM0TPPPKMbbrjBfYzD4dBvfvMbrVu3Tk6nU+np6XrppZcUGxtrYHLAu7KyslRQUKDjx4+rU6dOGj9+vNGRgCvGVEoAAAAAuIDt27dr6tSp2rlzp7Zs2aL6+nrdddddqqurcx8za9YsvfPOO1q/fr22b9+uI0eOaMyYMQamBrzPbDYrJydHsbGxmjVrlsxms9GRgCvGHWNeFB4e7v76mz5jpdA2BqYBEHAa6t13m577+wQAABirsLDQY3/NmjXq0qWLysvLdfvtt6umpkarVq2SxWLRnXfeKUlavXq1evbsqZ07d+qWW24xIjbgE0OGDNGQIUOMjgF4DYUxL/JYcDC0DYUxAN8bC5gCAOC/ampqJEkxMTGSpPLyctXX1ystLc19TI8ePZSUlKSSkpImC2NOp9NjKRa73e7j1ACApnh9KmVeXp4GDRqkDh06qEuXLho1apT27dt3wXPWrFkjk8nksXFLJgAAAAB/09jYqJkzZ+rWW2/VzTffLEmy2Wxq27atoqOjPY6NjY2VzWZr8jp5eXmKiopyb4mJib6ODgBogtcLY5cy/74pkZGROnr0qHs7fPiwt6MBAAAAwBWZOnWqPvnkE61bd2UP28rNzVVNTY17q6io8FJCAMDl8PpUyovNv2+OyWRSXFyct+MAAAAAgFdMmzZNmzdv1o4dO9S1a1d3e1xcnE6dOqXq6mqPu8aqqqqa/RsnPDycNUUBwA/4/KmU351/35za2lp169ZNiYmJGjlypD799NNmj3U6nbLb7R4bAAAAAPiCy+XStGnTtHHjRr3//vtKTk726B8wYIDatGmjoqIid9u+fftktVqVmpra0nEBAJfBp4WxpubfN+WGG27Qq6++qj//+c96/fXX1djYqCFDhqiysrLJ45mPDwAAAKClTJ06Va+//rosFos6dOggm80mm82mf//735KkqKgoZWdnKycnRx988IHKy8v10EMPKTU1lSdSAoCf82lh7FLn36empmrChAnq27evfvSjH2nDhg3q3Lmz/vjHPzZ5PPPxAQDnupQHvwwdOvS8B7386le/MigxACCQrFixQjU1NRo6dKji4+Pd25tvvuk+5vnnn9eIESOUmZmp22+/XXFxcdqwYYOBqQEAl8Lra4yd1dz8+0vRpk0b9evXTwcOHGiyn/n4AIBznX3wy6BBg3T69Gn97ne/01133aXPPvtM7dq1cx83efJkLViwwL1/1VVXGREXABBgXC7XRY8xm81avny5li9f3gKJAADe4vXCmMvl0vTp07Vx40Zt27btvPn3l6KhoUF79+7VPffc4+14AIAgdKkPfrnqqqt40AsAAAAAN69PpbzY/HtJmjBhgnJzc937CxYs0F//+ld99dVX2r17tx588EEdPnxYv/jFL7wdDwDQCjT34Jf8/Hx16tRJN998s3Jzc/Xtt98aEQ8AAACAn/D6HWMrVqyQdGYtl3OtXr1aP//5zyVJVqtVISH/qcn961//0uTJk2Wz2XT11VdrwIABKi4u1o033ujteACAINfcg1/Gjx+vbt26KSEhQR9//LEee+wx7du3r9n1X5xOp5xOp3ufJyADAAAAwccnUykvZtu2bR77zz//vJ5//nlvRwEAtEJnH/zy4YcferRPmTLF/XWvXr0UHx+vYcOG6eDBg7r22mvPu05eXp7mz5/v87wAAAAAjOPTp1ICANCSzj745YMPPrjog19SUlIkqdkHvfAEZAAAACD4+eyplAAAtJTv8+CXPXv2SJLi4+Ob7OcJyAAAAEDwozAGAAh4U6dOlcVi0Z///Gf3g18kKSoqShERETp48KAsFovuuecedezYUR9//LFmzZql22+/Xb179zY4PQAAAACjUBgDAAS8iz34pW3bttq6dauWLFmiuro6JSYmKjMzU7NnzzYgLQAAAAB/QWEMABDwLvbgl8TERG3fvr2F0gAAAAAIFCy+DwAAAAAAgFaJwhgAAAAAAABaJQpjAAAAAAAAaJUojAEAAAAAAKBVojAGAAAAAACAVonCGAAAAAAAAFolCmMAAAAAAABolSiMAQAAAAAAoFUKMzpAsDI1npbL6BDwLy6X1Hj6zNchYZLJZGwe+B3T2Z8PAAAAAECLoDDmI+33vGF0BAAAAAAAAFwAUykBAAAAAADQKnHHmBeZzWYVFBQYHQN+yuFwaPTo0ZKkjRs3ymw2G5wI/oyfDwAAAADwPQpjXmQymRQREWF0DAQAs9nMzwoAAAAAAAZjKiUAAAAAAABaJQpjAAAAAAAAaJUojAEAAAAAAKBVojAGAAAAAACAVonCGAAAAAAAAFolCmMAAAAAAABolSiMAQAAAAAAoFXyWWFs+fLl6t69u8xms1JSUvTRRx9d8Pj169erR48eMpvN6tWrl9577z1fRQMAtFKXOzYBgWjChAkaOnSoJkyYYHQUoNVhnEFrMHToUPcGBAOfFMbefPNN5eTk6IknntDu3bvVp08fpaen69ixY00eX1xcrHHjxik7O1v/+7//q1GjRmnUqFH65JNPfBEPANAKXe7YBASi/fv3y2q1SpKsVqv2799vcCKg9WCcQWvwy1/+8oL7QCAyuVwul7cvmpKSokGDBunFF1+UJDU2NioxMVHTp0/X448/ft7xDzzwgOrq6rR582Z32y233KK+fftq5cqVF/1+drtdUVFRqqmpUWRkpPdeCOBF//73v5WRkSFJKigoUEREhMGJgOYF4+/Vyx2bvisY3xMEn7S0NJ0+fdq9HxYWpq1btxqYCGhesP1eZZxBa9DUXWLbtm1r8RzApbjU36th3v7Gp06dUnl5uXJzc91tISEhSktLU0lJSZPnlJSUKCcnx6MtPT1dmzZt8nY8tCCXyyWHw2F0DL9x7nvB+3I+s9ksk8lkdAwEqe8zNgGBZuXKlR5FMUk6ffq0Vq5cqV/96lcGpQJaB8YZtAbNTZ0cOnQoxTEENK8Xxo4fP66GhgbFxsZ6tMfGxuqLL75o8hybzdbk8TabrcnjnU6nnE6ne99ut19haviCw+Fw3yEFT6NHjzY6gt/hLjr40vcZmxhrEEjq6+u1bt26JvvWrVun7OxstWnTpoVTAa0H4wyC3cGDBy/af+2117ZQGsC7AvKplHl5eYqKinJviYmJRkcCAAQZxhoEkhdeeOGK+gG0PMYZBJLs7Owr6gf8mdfvGOvUqZNCQ0NVVVXl0V5VVaW4uLgmz4mLi7us43Nzcz2mXtrtdgYSP2Q2m1VQUGB0DL/hcrncnwqGh4czbfA7zGaz0REQxL7P2MRYg0Ayffp0vf322xfsB+A7jDMIdqtWrbpg8WvVqlUtmAbwLq8Xxtq2basBAwaoqKhIo0aNknRm4cmioiJNmzatyXNSU1NVVFSkmTNnutu2bNmi1NTUJo8PDw9XeHi4t6PDy0wmE1PjvuOqq64yOgLQKn2fsYmxBoGkTZs2Gjt2bJPTKcePH880SsDHGGcQ7C42TZJplAhkPplKmZOTo1deeUVr167V559/rocfflh1dXV66KGHJEkTJkzwWJhyxowZKiws1B/+8Ad98cUXmjdvnnbt2tXsIAIAwOW62NgEBLpf/epXCgvz/MwzLCxMU6ZMMSgR0LowziDYNbfAPgvvI9B5/Y4xSXrggQf0z3/+U3PnzpXNZlPfvn1VWFjoXozSarUqJOQ/NbkhQ4bIYrFo9uzZ+t3vfqfrrrtOmzZt0s033+yLeACAVuhiYxMQDFasWKHJkyd77ANoGYwzaA1uuOEG7du3z2MfCHQml8vlMjrElbLb7YqKilJNTY0iIyONjgMAAY/fq+fjPUGgmDBhgqxWq5KSkvTaa68ZHQdoFr9XPfF+IFAMHTrU/TV3i8GfXervVZ/cMQYAAABjUAwDAPgSxTAEG5+sMQYAAAAAAAD4OwpjAAAAAAAAaJUojAEAAAAAAKBVojAGAAAAAACAVikoFt8/+2BNu91ucBIACA5nf58GwYOLvYaxBgC8i7HGE+MMAHjXpY4zQVEY++abbyRJiYmJBicBgODyzTffKCoqyugYfoGxBgB8g7HmDMYZAPCNi40zJlcQfETT2NioI0eOqEOHDjKZTEbHAZplt9uVmJioiooKRUZGGh0HaJbL5dI333yjhIQEhYQw615irEHgYKxBoGCs8cQ4g0DBOINAcanjTFAUxoBAYbfbFRUVpZqaGgYRAIBPMNYAAHyJcQbBho9mAAAAAAAA0CpRGAMAAAAAAECrRGEMaEHh4eF64oknFB4ebnQUAECQYqwBAPgS4wyCDWuMAQAAAAAAoFXijjEAAAAAAAC0ShTGAAAAAAAA0CpRGAMAAAAAAECrRGEMAAAAAAAArRKFMaAFLV++XN27d5fZbFZKSoo++ugjoyMBAIII4wwAwNcYaxBsKIwBLeTNN99UTk6OnnjiCe3evVt9+vRRenq6jh07ZnQ0AEAQYJwBAPgaYw2CkcnlcrmMDgG0BikpKRo0aJBefPFFSVJjY6MSExM1ffp0Pf744wanAwAEOsYZAICvMdYgGHHHGNACTp06pfLycqWlpbnbQkJClJaWppKSEgOTAQCCAeMMAMDXGGsQrCiMAS3g+PHjamhoUGxsrEd7bGysbDabQakAAMGCcQYA4GuMNQhWFMYAAAAAAADQKlEYA1pAp06dFBoaqqqqKo/2qqoqxcXFGZQKABAsGGcAAL7GWINgRWEMaAFt27bVgAEDVFRU5G5rbGxUUVGRUlNTDUwGAAgGjDMAAF9jrEGwCjM6ANBa5OTkaOLEiRo4cKAGDx6sJUuWqK6uTg899JDR0QAAQYBxBgDga4w1CEYUxoAW8sADD+if//yn5s6dK5vNpr59+6qwsPC8xSsBAPg+GGcAAL7GWINgZHK5XC6jQwAAAAAAAAAtjTXGAAAAAAAA0CpRGAMAAAAAAECrRGEMAAAAAAAArRKFMQAAAAAAALRKFMYAAAAAAADQKlEYAwAAAAAAQKtEYQwAAAAAAACtEoUxAAAAAAAAtEoUxgAAAAAAANAqURgDAAAAAABAq0RhDAAAAAAAAK0ShTEAAAAAAAC0ShTGAAAAAAAA0CpRGAMAAAAAAECrRGEMAAAAAAAArRKFMQAAAAAAALRKFMYAAAAAAADQKlEYAwAAAAAAQKtEYQwAAAAAAACtEoUxAAAAAAAAtEoUxgAAAAAAANAqURgDAAAAAABAq0RhDAAAAAAAAK0ShTEAAAAAAAC0ShTGAAAAAAAA0CpRGAMAAAAAAECrRGEMAAAAAAAArRKFMQAAAAAAALRKFMYAAAAAAADQKlEYAwAAAAAAQKtEYQwAAAAALqB79+4ymUznbVOnTpUkORwOTZ06VR07dlT79u2VmZmpqqoqg1MDAC6FyeVyuYwOcaUaGxt15MgRdejQQSaTyeg4ABDwXC6XvvnmGyUkJCgkhM9QJMYaAPC2QBpr/vnPf6qhocG9/8knn+jHP/6xPvjgAw0dOlQPP/yw3n33Xa1Zs0ZRUVGaNm2aQkJC9Le//e2SvwfjDAB416WOM0FRGKusrFRiYqLRMQAg6FRUVKhr165Gx/ALjDUA4BuBONbMnDlTmzdv1v79+2W329W5c2dZLBb99Kc/lSR98cUX6tmzp0pKSnTLLbdc0jUZZwDANy42zoS1YBaf6dChg6QzLzYyMtLgNAAQ+Ox2uxITE92/X8FYAwDeFqhjzalTp/T6668rJydHJpNJ5eXlqq+vV1pamvuYHj16KCkp6YKFMafTKafT6d4/e78C4wwAeMeljjNBURg7e6txZGQkgwgAeBFTOf6DsQYAfCPQxppNmzapurpaP//5zyVJNptNbdu2VXR0tMdxsbGxstlszV4nLy9P8+fPP6+dcQYAvOti44x/T+YHAAAAAD+yatUqZWRkKCEh4Yquk5ubq5qaGvdWUVHhpYQAgMsRFHeMAQAAAICvHT58WFu3btWGDRvcbXFxcTp16pSqq6s97hqrqqpSXFxcs9cKDw9XeHi4L+MCAC4Bd4wBAAAAwCVYvXq1unTpouHDh7vbBgwYoDZt2qioqMjdtm/fPlmtVqWmphoREwBwGa64MLZjxw7de++9SkhIkMlk0qZNmzz6XS6X5s6dq/j4eEVERCgtLU379+/3OObkyZPKyspSZGSkoqOjlZ2drdra2iuNBgAAAABe0djYqNWrV2vixIkKC/vPxJuoqChlZ2crJydHH3zwgcrLy/XQQw8pNTX1kp9ICQAwzhUXxurq6tSnTx8tX768yf5FixZp2bJlWrlypUpLS9WuXTulp6fL4XC4j8nKytKnn36qLVu2aPPmzdqxY4emTJlypdEAAAAAwCu2bt0qq9WqSZMmndf3/PPPa8SIEcrMzNTtt9+uuLg4j+mWAAD/dcWFsYyMDC1cuFCjR48+r8/lcmnJkiWaPXu2Ro4cqd69e+u1117TkSNH3HeWff755yosLNT//b//VykpKbrtttv0wgsvaN26dTpy5MiVxgP8SnFxsR544AEVFxcbHQUAEKQYawDfuOuuu+RyuXT99def12c2m7V8+XKdPHlSdXV12rBhwwXXFwMCGeMMgo1P1xg7dOiQbDab0tLS3G1RUVFKSUlRSUmJJKmkpETR0dEaOHCg+5i0tDSFhISotLS0yes6nU7Z7XaPDfB3DodDixcvVlVVlRYvXuxx1yQAAN7AWAMA8CXGGQQjnxbGbDabJCk2NtajPTY21t1ns9nUpUsXj/6wsDDFxMS4j/muvLw8RUVFubfExEQfpAe8Kz8/XydOnJAknThxQhaLxeBEAIBgw1gDAPAlxhkEo4B8KmVubq5qamrcW0VFhdGRgAuqrKyUxWKRy+WSdGaascViUWVlpcHJAADBgrEGAOBLjDMIVj4tjJ2dV19VVeXRXlVV5e6Li4vTsWPHPPpPnz6tkydPNjsvPzw8XJGRkR4b4K9cLpeWLl3abPvZgQUAgO+LsQYA4EuMMwhmPi2MJScnKy4uTkVFRe42u92u0tJSpaamSpJSU1NVXV2t8vJy9zHvv/++GhsblZKS4st4QIuwWq0qKytTQ0ODR3tDQ4PKyspktVoNSgYACBaMNQAAX2KcQTC74sJYbW2t9uzZoz179kg6s+D+nj17ZLVaZTKZNHPmTC1cuFBvv/229u7dqwkTJighIUGjRo2SJPXs2VN33323Jk+erI8++kh/+9vfNG3aNI0dO1YJCQlXGg8wXFJSkgYNGqTQ0FCP9tDQUA0ePFhJSUkGJQMABAvGGgCALzHOIJhdcWFs165d6tevn/r16ydJysnJUb9+/TR37lxJ0qOPPqrp06drypQpGjRokGpra1VYWCiz2ey+Rn5+vnr06KFhw4bpnnvu0W233aaXX375SqMBfsFkMmnGjBnNtptMJgNSAQCCCWMNAMCXGGcQzK64MDZ06FC5XK7ztjVr1kg68w9lwYIFstlscjgc2rp1q66//nqPa8TExMhiseibb75RTU2NXn31VbVv3/5KowF+o2vXrho/frx7wDCZTBo/fryuueYag5MBAIIFYw0AwJcYZxCsAvKplEAgysrKUseOHSVJnTp10vjx4w1OBAAINow1AABfYpxBMKIwBrQQs9msnJwcxcbGatasWR7TiQEA8AbGGgCALzHOIBiFGR0AaE2GDBmiIUOGGB0DABDEGGsAAL7EOINgwx1jAAAAAAAAaJUojAEAAAAAAKBVojAGAPBrDQ0NmjNnjpKTkxUREaFrr71WTz75pFwul/sYl8uluXPnKj4+XhEREUpLS9P+/fs9rnPy5EllZWUpMjJS0dHRys7OVm1tbUu/HAAAAAB+hMIYAMCvPfPMM1qxYoVefPFFff7553rmmWe0aNEivfDCC+5jFi1apGXLlmnlypUqLS1Vu3btlJ6eLofD4T4mKytLn376qbZs2aLNmzdrx44dmjJlihEvCQAAAICfYPF9AIBfKy4u1siRIzV8+HBJUvfu3fXGG2/oo48+knTmbrElS5Zo9uzZGjlypCTptddeU2xsrDZt2qSxY8fq888/V2FhocrKyjRw4EBJ0gsvvKB77rlHzz33nBISEox5cQAAAAAMxR1jAAC/NmTIEBUVFenLL7+UJP3973/Xhx9+qIyMDEnSoUOHZLPZlJaW5j4nKipKKSkpKikpkSSVlJQoOjraXRSTpLS0NIWEhKi0tLTJ7+t0OmW32z02AAAAAMGFO8YAAH7t8ccfl91uV48ePRQaGqqGhgb9/ve/V1ZWliTJZrNJkmJjYz3Oi42NdffZbDZ16dLFoz8sLEwxMTHuY74rLy9P8+fP9/bLAQAAAOBHuGMMAODX3nrrLeXn58tisWj37t1au3atnnvuOa1du9an3zc3N1c1NTXuraKiwqffDwAAAEDL444xAIBfe+SRR/T4449r7NixkqRevXrp8OHDysvL08SJExUXFydJqqqqUnx8vPu8qqoq9e3bV5IUFxenY8eOeVz39OnTOnnypPv87woPD1d4eLgPXhEAAAAAf8EdYwAAv/btt98qJMRzuAoNDVVjY6MkKTk5WXFxcSoqKnL32+12lZaWKjU1VZKUmpqq6upqlZeXu495//331djYqJSUlBZ4FQAAAAD8EXeMAQD82r333qvf//73SkpK0k033aT//d//1eLFizVp0iRJkslk0syZM7Vw4UJdd911Sk5O1pw5c5SQkKBRo0ZJknr27Km7775bkydP1sqVK1VfX69p06Zp7NixPJESAAAAaMUojAEA/NoLL7ygOXPm6L//+7917NgxJSQk6Je//KXmzp3rPubRRx9VXV2dpkyZourqat12220qLCyU2Wx2H5Ofn69p06Zp2LBhCgkJUWZmppYtW2bESwIAAADgJ0wul8tldIgrZbfbFRUVpZqaGkVGRhodBwACHr9Xz8d7AgDexe9VT7wfAOBdl/p7lTXGAAAAAAAA0CpRGAMAAAAAAECrRGEMAAAAAC7iH//4hx588EF17NhRERER6tWrl3bt2uXud7lcmjt3ruLj4xUREaG0tDTt37/fwMQAgEtBYQwAAAAALuBf//qXbr31VrVp00YFBQX67LPP9Ic//EFXX321+5hFixZp2bJlWrlypUpLS9WuXTulp6fL4XAYmBzwvuLiYj3wwAMqLi42OgrgFTyVEgAAAAAu4JlnnlFiYqJWr17tbktOTnZ/7XK5tGTJEs2ePVsjR46UJL322muKjY3Vpk2bNHbs2BbPDPiCw+HQ4sWLdfz4cS1evFj9+/f3eAo4EIi4YwwAACCI8Ek+4H1vv/22Bg4cqPvuu09dunRRv3799Morr7j7Dx06JJvNprS0NHdbVFSUUlJSVFJS0uQ1nU6n7Ha7xwb4u/z8fJ04cUKSdOLECVksFoMTAVeOwhgAAECQOPtJflVVlRYvXswULsBLvvrqK61YsULXXXed/vKXv+jhhx/Wr3/9a61du1aSZLPZJEmxsbEe58XGxrr7visvL09RUVHuLTEx0bcvArhClZWVslgscrlcks7cKWmxWFRZWWlwMuDKUBgDAAAIEnySD/hGY2Oj+vfvr6eeekr9+vXTlClTNHnyZK1cufJ7XzM3N1c1NTXuraKiwouJAe9yuVxaunRps+1ni2VAIKIwBgAAEAT4JB/wnfj4eN14440ebT179pTVapUkxcXFSZKqqqo8jqmqqnL3fVd4eLgiIyM9NsBfWa1WlZWVqaGhwaO9oaFBZWVl7n8LQCCiMAYAABDg+CQf8K1bb71V+/bt82j78ssv1a1bN0lnFuKPi4tTUVGRu99ut6u0tFSpqaktmhXwhaSkJA0aNEihoaEe7aGhoRo8eLCSkpIMSgZcOQpjAAAAAY5P8gHfmjVrlnbu3KmnnnpKBw4ckMVi0csvv6ypU6dKkkwmk2bOnKmFCxfq7bff1t69ezVhwgQlJCRo1KhRxoYHvMBkMmnGjBnNtptMJgNSAd5BYQwAACDA8Uk+4FuDBg3Sxo0b9cYbb+jmm2/Wk08+qSVLligrK8t9zKOPPqrp06drypQpGjRokGpra1VYWCiz2WxgcsB7unbtqvHjx3u0jR8/Xtdcc41BiQDvMLmC4N56u92uqKgo1dTUMDcfALyA36vn4z2Bv6usrNTEiRM97hoLCwvT2rVr+aMFfonfq554PxAIqqurNWbMGDU2NiokJEQbNmxQdHS00bGAJl3q71XuGAMAAAgCZz/JPzudxWQy8Uk+AMCr/vSnP3k85GXDhg0GJwKuHIUxAACAIJGVlaWOHTtKkjp16nTelBcAAL4vnn6MYEVhDAAAIEiYzWbl5OQoNjZWs2bNYm0jAIBX8PRjBLMwowMAAADAe4YMGaIhQ4YYHQMAEETOPv34u859+nG3bt0MSAZcOe4YAwAAAAAAzeLpxwhmFMYAAAAAAECzTCaTZsyY0Wz72Qe/AIGIwhgAAAAAALggnn6MYEVhDAAAAAAAXFRmZqZHYWzMmDEGJwKuHIUxAAAAAABwUX/605/U2NgoSWpsbNSGDRsMTgRcOQpjAAAAAADggiorK2WxWDzaLBaLKisrDUoEeIfPC2MNDQ2aM2eOkpOTFRERoWuvvVZPPvmkXC6X+xiXy6W5c+cqPj5eERERSktL0/79+30dDQAAIOgUFxfrgQceUHFxsdFRAABBwuVyaenSpc22n/v3PRBofF4Ye+aZZ7RixQq9+OKL+vzzz/XMM89o0aJFeuGFF9zHLFq0SMuWLdPKlStVWlqqdu3aKT09XQ6Hw9fxAAAAgobD4dDixYtVVVWlxYsX838pAIBXWK1WlZWVqaGhwaO9oaFBZWVlslqtBiUDrpzPC2PFxcUaOXKkhg8fru7du+unP/2p7rrrLn300UeSzlSYlyxZotmzZ2vkyJHq3bu3XnvtNR05ckSbNm3ydTwAAICgkZ+frxMnTkiSTpw4cd6UFwAAvo+kpCQNGjRIoaGhHu2hoaEaPHiwkpKSDEoGXDmfF8aGDBmioqIiffnll5Kkv//97/rwww+VkZEhSTp06JBsNpvS0tLc50RFRSklJUUlJSVNXtPpdMput3tsAAAArdnZtV/OTmdxuVys/QIA8AqTyaQZM2Y02372SZVAIPJ5Yezxxx/X2LFj1aNHD7Vp00b9+vXTzJkzlZWVJUmy2WySpNjYWI/zYmNj3X3flZeXp6ioKPeWmJjo2xcBAADgx1j7BQDga127dtX999/v0Xb//ffrmmuuMSgR4B0+L4y99dZbys/Pl8Vi0e7du7V27Vo999xzWrt27fe+Zm5urmpqatxbRUWFFxMDAAAEFtZ+AQC0hNOnT19wHwhEPi+MPfLII+67xnr16qWf/exnmjVrlvLy8iRJcXFxkqSqqiqP86qqqtx93xUeHq7IyEiPDQAAoLVi7RcAgK9VVlbq//v//j+PtvXr1zNlHwHP54Wxb7/9ViEhnt8mNDRUjY2NkqTk5GTFxcWpqKjI3W+321VaWqrU1FRfxwMAAAh4rP0CAPAll8ulZ5555ryp+c21A4HE54Wxe++9V7///e/17rvv6uuvv9bGjRu1ePFijR49WtKZ/7DNnDlTCxcu1Ntvv629e/dqwoQJSkhI0KhRo3wdDwAAICh07dpV48ePdxfBTCaTxo8fz9ovAIArdvjwYe3du7fJvr179+rw4cMtnAjwnjBff4MXXnhBc+bM0X//93/r2LFjSkhI0C9/+UvNnTvXfcyjjz6quro6TZkyRdXV1brttttUWFgos9ns63gAAABBIysrSwUFBTp+/Lg6deqk8ePHGx0JAADAr5lcQXDPo91uV1RUlGpqalhvDAC8gN+r5+M9QaAoLi7W0qVLNWPGDA0ZMsToOECz+L3qifcD/qyhoUF33XXXeQ95kc4slfTXv/71vHUuAaNd6u9Vn98xBgAAgJYzZMgQCmIAAK/66KOPmiyKSWeKZh999BFrhCNg+XyNMQAAAAAAELhSUlKaveMmKipKKSkpLZwI8B4KYwAAAAAAoFkhISEe64Sf64knnlBICKUFBC5+egEAAAAAwAUNHDhQvXr18mjr3bu3+vfvb1AiwDsojAEAAADABcybN08mk8lj69Gjh7vf4XBo6tSp6tixo9q3b6/MzExVVVUZmBjwjSeffNJ9d1hISIgWLFhgcCLgylEYAwAAAICLuOmmm3T06FH39uGHH7r7Zs2apXfeeUfr16/X9u3bdeTIEY0ZM8bAtIBvREdHKysrSyEhIcrKylJ0dLTRkYArxlMpAQAAAOAiwsLCFBcXd157TU2NVq1aJYvFojvvvFOStHr1avXs2VM7d+7ULbfc0tJRAZ/Kzs5Wdna20TEAr6EwBgAAAAAXsX//fiUkJMhsNis1NVV5eXlKSkpSeXm56uvrlZaW5j62R48eSkpKUklJCYWxAOdyueRwOIyO4TdcLpecTqckKTw8XCaTyeBE/sNsNvN+BCgKYwAAAABwASkpKVqzZo1uuOEGHT16VPPnz9cPf/hDffLJJ7LZbGrbtu15U8piY2Nls9mavabT6XQXGCTJbrf7Kj6ugMPhUEZGhtExEAAKCgoUERFhdAx8DxTGAAAAAOACzi2M9O7dWykpKerWrZveeuut7/2HcF5enubPn++tiACA74nCGAAAAABchujoaF1//fU6cOCAfvzjH+vUqVOqrq72uGusqqqqyTXJzsrNzVVOTo573263KzEx0Zex8T2YzWYVFBQYHcNvOBwOjR49WpK0ceNGmc1mgxP5D96LwEVhDAAAAAAuQ21trQ4ePKif/exnGjBggNq0aaOioiJlZmZKkvbt2yer1arU1NRmrxEeHq7w8PCWiozvyWQyMT2uGWazmfcGQYHCGAAAAABcwG9/+1vde++96tatm44cOaInnnhCoaGhGjdunKKiopSdna2cnBzFxMQoMjJS06dPV2pqKgvvA0AACDE6AAAAF/OPf/xDDz74oDp27KiIiAj16tVLu3btcve7XC7NnTtX8fHxioiIUFpamvbv3+9xjZMnTyorK0uRkZGKjo5Wdna2amtrW/qlAD5XXFysBx54QMXFxUZHAYJGZWWlxo0bpxtuuEH333+/OnbsqJ07d6pz586SpOeff14jRoxQZmambr/9dsXFxWnDhg0GpwYAXAruGAMA+LV//etfuvXWW3XHHXeooKBAnTt31v79+3X11Ve7j1m0aJGWLVumtWvXKjk5WXPmzFF6ero+++wz93oPWVlZOnr0qLZs2aL6+no99NBDmjJliiwWi1EvDfA6h8OhxYsX6/jx41q8eLH69+/PmieAF6xbt+6C/WazWcuXL9fy5ctbKBEAwFsojAEA/NozzzyjxMRErV692t2WnJzs/trlcmnJkiWaPXu2Ro4cKUl67bXXFBsbq02bNmns2LH6/PPPVVhYqLKyMg0cOFCS9MILL+iee+7Rc889p4SEhJZ9UYCP5Ofn68SJE5KkEydOyGKxaNKkSQanAgAA8F9MpQQA+LW3335bAwcO1H333acuXbqoX79+euWVV9z9hw4dks1mU1pamrstKipKKSkpKikpkSSVlJQoOjraXRSTpLS0NIWEhKi0tLTlXgzgQ5WVlbJYLHK5XJLOFI0tFosqKysNTgYAAOC/KIwBAPzaV199pRUrVui6667TX/7yFz388MP69a9/rbVr10qSbDabJCk2NtbjvNjYWHefzWZTly5dPPrDwsIUExPjPua7nE6n7Ha7xwb4K5fLpaVLlzbbfrZYBgAAAE8UxgAAfq2xsVH9+/fXU089pX79+mnKlCmaPHmyVq5c6dPvm5eXp6ioKPeWmJjo0+8HXAmr1aqysjI1NDR4tDc0NKisrExWq9WgZAAAAP6NwhgAwK/Fx8frxhtv9Gjr2bOn+w/9uLg4SVJVVZXHMVVVVe6+uLg4HTt2zKP/9OnTOnnypPuY78rNzVVNTY17q6io8MrrAXwhKSlJgwYNUmhoqEd7aGioBg8erKSkJIOSAQAA+DcKYwAAv3brrbdq3759Hm1ffvmlunXrJunMQvxxcXEqKipy99vtdpWWlio1NVWSlJqaqurqapWXl7uPef/999XY2KiUlJQmv294eLgiIyM9NsBfmUwmzZgxo9l2k8lkQCoAAAD/R2EMAODXZs2apZ07d+qpp57SgQMHZLFY9PLLL2vq1KmSzvzhP3PmTC1cuFBvv/229u7dqwkTJighIUGjRo2SdOYOs7vvvluTJ0/WRx99pL/97W+aNm2axo4dyxMpETS6du163t2VN954o6655hqDEgEAAPi/MKMDAABwIYMGDdLGjRuVm5urBQsWKDk5WUuWLFFWVpb7mEcffVR1dXWaMmWKqqurddttt6mwsFBms9l9TH5+vqZNm6Zhw4YpJCREmZmZWrZsmREvCfCJyspKffrppx5tn376qSorK9W1a1eDUgEAAPg3CmMAAL83YsQIjRgxotl+k8mkBQsWaMGCBc0eExMTI4vF4ot4gOHOPn2yqSmTS5cu1aJFi5hOCQAA0ASmUgIAAAQ4nkoJAADw/VAYAwAACHA8lRIAAOD7oTAGAAAQ4HgqJQAAwPdDYQwAACAIdO3aVePHj3cXwUwmk8aPH89TKQEAAC6AwhgAAECQyMrKUseOHSVJnTp10vjx4w1OBAAA4N8ojAEAAAQJs9msm2++WZJ00003yWw2G5wIAADAv1EYAwAACBLV1dXavn27JGn79u2qrq42NhAAAICfozAGAAAQJP7P//k/crlckiSXy6XZs2cbnAgAAMC/URgDAAAIArt27dKnn37q0fbJJ59o165dBiUCAADwfxTGAAAAAlxjY6PmzZvXZN+8efPU2NjYsoEAAAACRJjRARC8XC6XHA6H0TH8hsvlktPplCSFh4fLZDIZnMi/mM1m3hMA+J527typ2traJvtqa2u1c+dODRkypIVTAQAA+D8KY/AZh8OhjIwMo2MgQBQUFCgiIsLoGAAQkOLj46+oHwAAoLViKiUAAECA6969u66//vom+3r06KHu3bu3bCAAAIAAwR1j8Bmz2ayCggKjY/gNh8Oh0aNHS5I2btwos9lscCL/wvsBAN+fyWTS3Llz9eCDD57XN2fOHKaqAwAANIPCGHzGZDIxNa4ZZrOZ9wYA4FVdu3bVfffdp/Xr17vb7r//fl1zzTUGpgIAAPBvLTKV8h//+IcefPBBdezYUREREerVq5fHo8NdLpfmzp2r+Ph4RUREKC0tTfv372+JaAAAAEEjOztbbdu2lSS1bdtWkyZNMjgRAACAf/N5Yexf//qXbr31VrVp00YFBQX67LPP9Ic//EFXX321+5hFixZp2bJlWrlypUpLS9WuXTulp6fzREMAAIDLdHZqOlPUAQAALs7nhbFnnnlGiYmJWr16tQYPHqzk5GTddddduvbaayWduVtsyZIlmj17tkaOHKnevXvrtdde05EjR7Rp0yZfxwMAAAga+fn5+uabbyRJ33zzjSwWi8GJgOD09NNPy2QyaebMme42h8OhqVOnqmPHjmrfvr0yMzNVVVVlXEgAwCXxeWHs7bff1sCBA3XfffepS5cu6tevn1555RV3/6FDh2Sz2ZSWluZui4qKUkpKikpKSpq8ptPplN1u99gAAABas8rKSlksFrlcLklnPny0WCyqrKw0OBkQXMrKyvTHP/5RvXv39mifNWuW3nnnHa1fv17bt2/XkSNHNGbMGINSAgAulc8LY1999ZVWrFih6667Tn/5y1/08MMP69e//rXWrl0rSbLZbJKk2NhYj/NiY2Pdfd+Vl5enqKgo95aYmOjbFwEAAODHXC6Xli5d2mz72WIZgCtTW1urrKwsvfLKKx5Lw9TU1GjVqlVavHix7rzzTg0YMECrV69WcXGxdu7caWBiAMDF+Lww1tjYqP79++upp55Sv379NGXKFE2ePFkrV6783tfMzc1VTU2Ne6uoqPBiYgAAgMBitVpVVlamhoYGj/aGhgaVlZXJarUalAwILlOnTtXw4cM9ZrtIUnl5uerr6z3ae/TooaSkpGZnwQAA/IPPC2Px8fG68cYbPdp69uzp/g9aXFycJJ03/76qqsrd913h4eGKjIz02AAAAFqrpKQkDRo0qMm+wYMHKykpqYUTAcFn3bp12r17t/Ly8s7rs9lsatu2raKjoz3aLzQLhuVhAMA/+Lwwduutt2rfvn0ebV9++aW6desmSUpOTlZcXJyKiorc/Xa7XaWlpUpNTfV1PAAAgIBnMpk0bNiwJvvuvPNOmUymFk4EBJeKigrNmDFD+fn5XnviK8vDAIB/8HlhbNasWdq5c6eeeuopHThwQBaLRS+//LKmTp0qSe6nuSxcuFBvv/229u7dqwkTJighIUGjRo3ydTwAAICA19jYqJdeeqnJvpdeekmNjY0tnAgILuXl5Tp27Jj69++vsLAwhYWFafv27Vq2bJnCwsIUGxurU6dOqbq62uO8C82CYXkYAPAPYb7+BoMGDdLGjRuVm5urBQsWKDk5WUuWLFFWVpb7mEcffVR1dXWaMmWKqqurddttt6mwsNBrn8YAAAAEs9LS0manYXEnPnDlhg0bpr1793q0PfTQQ+rRo4cee+wxJSYmqk2bNioqKlJmZqYkad++fbJarc3+2wsPD1d4eLjPswMALsznhTFJGjFihEaMGNFsv8lk0oIFC7RgwYKWiAMAABBUUlJS1L59e9XW1p7X1759e6WkpBiQCggeHTp00M033+zR1q5dO3Xs2NHdnp2drZycHMXExCgyMlLTp09XamqqbrnlFiMiAwAuUYsUxgAAAOA7JpNJCQkJ+vLLL8/rS0hIYI0xoAU8//zzCgkJUWZmppxOp9LT05ud4gwA8B8UxgAAAAKc1WptsigmnXnokdVqdT/4CIB3bNu2zWPfbDZr+fLlWr58uTGBAADfi88X3wcAAIBvXXPNNVfUDwAA0FpRGAMAAAhwmzdvvqJ+AACA1orCGAAAQIDr3bv3FfUDAAC0VhTGAAAAAlxycnKz0yW7du2q5OTkFk4EAAAQGFh8HwAAIAjExMToH//4x3ntV199tQFpAAQil8slh8NhdAz4sXN/PvhZwcWYzeaAeDI2hTEAAIAAZ7VatXfv3ib79u7dy1MpAVwSh8OhjIwMo2MgQIwePdroCPBzBQUFioiIMDrGRTGVEgAAIMAlJSVp0KBBCgnx/K9dSEiIBg8erKSkJIOSAQAA+DfuGAMAAAhwJpNJM2bM0MSJEz3aQ0JCNGPGjICYxgDAv9T2HSdXCH8u4jtcLqnx9JmvQ8Ikxhd8h6nxtNrvecPoGJeF33QAAABBoGvXrrr//vv1xhv/+c/o/fff3+yi/ABwIa6QMCm0jdEx4JfaGh0AfsxldIDvgamUAAAAAAAAaJUojAEAAASByspKvfXWWx5tb731liorKw1KBAAA4P8ojAEAAAQ4l8ulpUuXNtvucgXixAYAAADfozAGAAAQ4KxWq8rKytTQ0ODR3tDQoLKyMlmtVoOSAQAA+DcKYwAAAAEuKSlJgwYNUmhoqEd7aGioBg8erKSkJIOSAQAA+DcKYwAAAAHOZDJpxowZzbabTCYDUgEAAPg/CmMAAABBoGvXrho/fry7CGYymTR+/Hhdc801BicDAADwXxTGAAAAgkRmZqZHYWzMmDEGJwIAAPBvFMYAAACCxJ/+9Cc1NjZKkhobG7VhwwaDEwEAAPg3CmMAAABBoLKyUhaLxaPNYrGosrLSoEQAAAD+j8IYAABAgHO5XFq6dGmz7S6Xy4BUAAAA/o/CGAAgYDz99NMymUyaOXOmu83hcGjq1Knq2LGj2rdvr8zMTFVVVXmcZ7VaNXz4cF111VXq0qWLHnnkEZ0+fbqF0wO+Y7VaVVZWpoaGBo/2hoYGlZWVyWq1GpQMAADAv4UZHQAAgEtRVlamP/7xj+rdu7dH+6xZs/Tuu+9q/fr1ioqK0rRp0zRmzBj97W9/k3SmMDB8+HDFxcWpuLhYR48e1YQJE9SmTRs99dRTRrwUwOuSkpLUq1cv7d2797y+3r17KykpyYBUAAKNx92lDfXGBQEQuM753REod6xTGAMA+L3a2lplZWXplVde0cKFC93tNTU1WrVqlSwWi+68805J0urVq9WzZ0/t3LlTt9xyi/7617/qs88+09atWxUbG6u+ffvqySef1GOPPaZ58+apbdu2Rr0soEUEyn9KARjP6XS6v+7w93UGJgEQDJxOp6666iqjY1wUUykBAH5v6tSpGj58uNLS0jzay8vLVV9f79Heo0cPJSUlqaSkRJJUUlKiXr16KTY21n1Menq67Ha7Pv3002a/p9PplN1u99gAf2W1Wpu8W0yS9u7dy1RKAACAZnDHGADAr61bt067d+9WWVnZeX02m01t27ZVdHS0R3tsbKxsNpv7mHOLYmf7z/Y1Jy8vT/Pnz7/C9EDLYColAG8IDw93f/1Nn7FSaBsD0wAISA317jtOz/2d4s8ojAEA/FZFRYVmzJihLVu2yGw2t+j3zs3NVU5OjnvfbrcrMTGxRTMA3sBUSgCXymQy/WcntA2FMQBXxON3ih9jKiUAwG+Vl5fr2LFj6t+/v8LCwhQWFqbt27dr2bJlCgsLU2xsrE6dOqXq6mqP86qqqhQXFydJiouLO+8plWf3zx7TlPDwcEVGRnpsgL9iKiXgWytWrFDv3r3d40FqaqoKCgrc/ZfyhGQAgH+iMAYA8FvDhg3T3r17tWfPHvc2cOBAZWVlub9u06aNioqK3Ofs27dPVqtVqampkqTU1FTt3btXx44dcx+zZcsWRUZG6sYbb2zx1wT4QmJiYrPF28jISO52BK5Q165d9fTTT6u8vFy7du3SnXfeqZEjR7rXqpw1a5beeecdrV+/Xtu3b9eRI0c0ZswYg1MDAC4FUykBAH6rQ4cOuvnmmz3a2rVrp44dO7rbs7OzlZOTo5iYGEVGRmr69OlKTU3VLbfcIkm66667dOONN+pnP/uZFi1aJJvNptmzZ2vq1KkBs+4BcDEVFRXNPiDCbreroqJC3bp1a+FUQPC49957PfZ///vfa8WKFdq5c6e6du160SckAwD8F3eMAQAC2vPPP68RI0YoMzNTt99+u+Li4rRhwwZ3f2hoqDZv3qzQ0FClpqbqwQcf1IQJE7RgwQIDUwPedXbx/aaw+D7gXQ0NDVq3bp3q6uqUmpp6SU9IbgpPPwYA/8AdYwCAgLJt2zaPfbPZrOXLl2v58uXNntOtWze99957Pk4G+CcW3we8Y+/evUpNTZXD4VD79u21ceNG3XjjjdqzZ89Fn5DcFJ5+DAD+gTvGAAAAAhyL7wO+d8MNN2jPnj0qLS3Vww8/rIkTJ+qzzz773tfLzc1VTU2Ne6uoqPBiWgDApeKOMQAAgAB3dvH9pqZisfg+4B1t27bVf/3Xf0mSBgwYoLKyMi1dulQPPPCA+wnJ5941du4TkpsSHh7OWpcA4Ae4YwwAACDAXcri+wC8q7GxUU6nUwMGDLjoE5IBAP6LO8YAAAAC3NnF95uaTsni+8CVy83NVUZGhpKSkvTNN9/IYrFo27Zt+stf/qKoqKiLPiEZAOC/KIwBAAAEMRbfB67csWPHNGHCBB09elRRUVHq3bu3/vKXv+jHP/6xpDNPSA4JCVFmZqacTqfS09P10ksvGZwaAHApKIwBAAAEuEtZfL9bt24tnAoIHqtWrbpg/6U8IRkA4J9afI2xp59+WiaTSTNnznS3ORwOTZ06VR07dlT79u2VmZmpqqqqlo4GAAAQkJKSkjRo0CCFhHj+1y4kJESDBw9mKiUAAEAzWvSOsbKyMv3xj39U7969PdpnzZqld999V+vXr1dUVJSmTZumMWPG6G9/+1tLxgMAAAhIJpNJM2bM0M9+9rPz+mbMmCGTyWRAKgCBzNR4WkzExnlcLqnx9JmvQ8Ikxhd8h+nsz0cAabHCWG1trbKysvTKK69o4cKF7vaamhqtWrVKFotFd955pyRp9erV6tmzp3bu3MmClQAAAJfou+uJNTY2ssYYgO+l/Z43jI4AAC2ixaZSTp06VcOHD1daWppHe3l5uerr6z3ae/TooaSkJJWUlDR5LafTKbvd7rEBAAC0Vi6XS0uXLm2yb+nSpRTHAAAAmtEid4ytW7dOu3fvVllZ2Xl9NptNbdu2VXR0tEd7bGysbDZbk9fLy8vT/PnzfREVAAAg4Fit1ib/nyWdWcqCxfcBXAqz2ayCggKjY8CPORwOjR49WpK0ceNGmc1mgxPBnwXKz4fPC2MVFRWaMWOGtmzZ4rU3JTc3Vzk5Oe59u92uxMREr1wbAAAg0CQmJqp9+/aqra09r699+/b8PwnAJTGZTIqIiDA6BgKE2Wzm5wVBwedTKcvLy3Xs2DH1799fYWFhCgsL0/bt27Vs2TKFhYUpNjZWp06dUnV1tcd5VVVViouLa/Ka4eHhioyM9NgAAABaK6vV2mRRTDqzzqvVam3hRAAAAIHB53eMDRs2THv37vVoe+ihh9SjRw899thjSkxMVJs2bVRUVKTMzExJ0r59+2S1WpWamurreAAAAAHvYmuIscYYAABA03xeGOvQoYNuvvlmj7Z27dqpY8eO7vbs7Gzl5OQoJiZGkZGRmj59ulJTU3kiJQAAwCVoaGi4on4AAIDWqkUW37+Y559/XiEhIcrMzJTT6VR6erpeeuklo2MBAAA/5nK55HA4jI7hF7Zs2XLR/muuuaaF0vgns9ksk8lkdAwAAOBnDCmMbdu2zWPfbDZr+fLlWr58uRFxAABAAHI4HMrIyDA6RkB488039eabbxodw1AFBQUsEg0AAM7j88X3AQAAAAAAAH/kF1MpAQAALpfZbFZBQYHRMfzGkSNHlJ2dfV77qlWrlJCQYEAi/2I2m42OAAAA/BCFMQAAEJBMJhNT485x7bXXavjw4Xr33XfdbSNHjtS1115rYCoAAAD/xlRKAACAIPGLX/zC/XVYWJgefvhhA9MAAAD4PwpjAAAAQeLc6YL/5//8H6YPAgAAXASFMQAAgCB0yy23GB0BAADA71EYAwAAAAAAQKtEYQwAAAAAAACtEoUxAAAAAAAAtEoUxgAAAAAAANAqURgDAAAAAABAqxRmdIBg4nK55HA4jI4BP3XuzwY/J7gYs9ksk8lkdAwAAAAACGoUxrzI4XAoIyPD6BgIAKNHjzY6AvxcQUGBIiIijI4BAAAAAEGNqZQAAAAAAABolbhjzEdq+46TK4S3F+dwuaTG02e+DgmTmCaH7zA1nlb7PW8YHQMAAAAAWg0qNz7iCgmTQtsYHQN+p63RAeDHXEYHAAAATcrLy9OGDRv0xRdfKCIiQkOGDNEzzzyjG264wX2Mw+HQb37zG61bt05Op1Pp6el66aWXFBsba2ByAMDFMJUSAAAAAC5g+/btmjp1qnbu3KktW7aovr5ed911l+rq6tzHzJo1S++8847Wr1+v7du368iRIxozZoyBqQEAl4I7xgAAAADgAgoLCz3216xZoy5duqi8vFy33367ampqtGrVKlksFt15552SpNWrV6tnz57auXOnbrnlFiNiAwAuAXeMAQAAAMBlqKmpkST9/+3df3ST9cH//1daaFKgDQMkAdsC9+YERPlRSynsZoxVO+Y8onUHBQdD5jbXcgPdPbfuONh0W6e7LeAsMDcF/UoG857gRIvTOvHMFqxl7MCcbN5jpB0kCPdIoLdJsbm+f/ghGmmRH0muJNfzcc51TvO+rlx9Nda86SvXj0GDBkmS2tradOrUKZWXl0e3GT16tIqKitTS0tLjPsLhsILBYMwCAEg+ijEAAAAAOEeRSERLly7VtGnTNG7cOEmSz+dTTk6OBg4cGLOty+WSz+frcT91dXVyOp3RpbCwMNHRAQA9oBgDAAAAgHNUVVWlffv2adOmTRe1n9raWgUCgejS3t4ep4QAgPPBNcYAAAAA4BxUV1dr27ZteuWVV1RQUBAdd7vd6urq0vHjx2OOGvP7/XK73T3uy263y263JzoyAOAjcMQYAAAAAJyFYRiqrq7Wli1b9NJLL2nUqFEx64uLi9W3b181NTVFx/bv3y+v16uysrJkxwUAnAeOGAMAAACAs6iqqpLH49HTTz+tvLy86HXDnE6ncnNz5XQ6tWjRItXU1GjQoEHKz8/X4sWLVVZWxh0pASDFUYwBAAAAwFmsXbtWkjRjxoyY8fXr1+vLX/6yJGnlypXKyspSZWWlwuGwKioqtGbNmiQnRbwZhqFQKGR2jJTxwdeC1yWWw+GQzWYzOwYuAMUYAAAAAJyFYRgfuY3D4VBDQ4MaGhqSkAjJEgqFNGvWLLNjpKQbb7zR7AgppbGxUbm5uWbHwAXgGmMAAAAAAACwJI4YAwAAAACgBw6HQ42NjWbHSBmGYSgcDkt6786qnDr4PofDYXYEXCCKMQAAAAAAemCz2Tg97kP69etndgQgrjiVEgAAAAAAAJZEMQYASGl1dXUqKSlRXl6ehg4dqtmzZ2v//v0x24RCIVVVVWnw4MEaMGCAKisr5ff7Y7bxer267rrr1K9fPw0dOlTf+ta39O677ybzRwEAAACQYijGAAApbceOHaqqqtLOnTv1wgsv6NSpU7r22mvV2dkZ3WbZsmV65pln9OSTT2rHjh06dOiQbrrppuj67u5uXXfdderq6lJzc7Mee+wxbdiwQcuXLzfjRwIAAACQIrjGGAAgpW3fvj3m8YYNGzR06FC1tbVp+vTpCgQCeuSRR+TxeDRz5kxJ0vr16zVmzBjt3LlTU6ZM0e9+9zu98cYbevHFF+VyuTRhwgTde++9+va3v63vf//7ysnJMeNHAwAAAGAyirE4Mgzj/Qfdp8wLAiA9feB9I+b9BDECgYAkadCgQZKktrY2nTp1SuXl5dFtRo8eraKiIrW0tGjKlClqaWnRlVdeKZfLFd2moqJCd955p/785z9r4sSJZ3yfcDgcveuSJAWDwUT9SAAAAABMQjEWRx/8AyrvT5tMTAIg3YXDYe7404NIJKKlS5dq2rRpGjdunCTJ5/MpJydHAwcOjNnW5XLJ5/NFt/lgKXZ6/el1Pamrq9MPfvCDOP8EAAAAAFIJ1xgDAKSNqqoq7du3T5s2Jf7Dh9raWgUCgejS3t6e8O8JAAAAILk4YiyO7HZ79OsT42+RsvuamAZA2uk+FT3a9IPvJ3hPdXW1tm3bpldeeUUFBQXRcbfbra6uLh0/fjzmqDG/3y+32x3d5rXXXovZ3+m7Vp7e5sPsdjv/HQAAAIAMRzEWRzab7f0H2X0pxgBcsJj3E4szDEOLFy/Wli1b9PLLL2vUqFEx64uLi9W3b181NTWpsrJSkrR//355vV6VlZVJksrKyvSjH/1IR44c0dChQyVJL7zwgvLz8zV27Njk/kAAAAAAUgbFGAAgpVVVVcnj8ejpp59WXl5e9JpgTqdTubm5cjqdWrRokWpqajRo0CDl5+dr8eLFKisr05QpUyRJ1157rcaOHasvfelLuv/+++Xz+XT33XerqqqKo8IAAAAAC0v4Ncbq6upUUlKivLw8DR06VLNnz9b+/ftjtgmFQqqqqtLgwYM1YMAAVVZWRk9xAQBY29q1axUIBDRjxgwNGzYsumzevDm6zcqVK/WFL3xBlZWVmj59utxut5566qno+uzsbG3btk3Z2dkqKyvTbbfdpvnz5+uee+4x40cCAAAAkCISfsTYjh07VFVVpZKSEr377rv67ne/q2uvvVZvvPGG+vfvL0latmyZnn32WT355JNyOp2qrq7WTTfdpFdffTXR8QAAKc4wjI/cxuFwqKGhQQ0NDb1uM2LECD333HPxjAYAAAAgzSW8GNu+fXvM4w0bNmjo0KFqa2vT9OnTFQgE9Mgjj8jj8WjmzJmSpPXr12vMmDHauXNn9DQYAAAAAAAAIJ4SfirlhwUCAUnSoEGDJEltbW06deqUysvLo9uMHj1aRUVFamlp6XEf4XBYwWAwZgEAAAAAAADOR1KLsUgkoqVLl2ratGkaN26cJMnn8yknJ0cDBw6M2dblckUvsPxhdXV1cjqd0aWwsDDR0QEAAAAAAJBhklqMVVVVad++fdq0adNF7ae2tlaBQCC6tLe3xykhAAAAAAAArCLh1xg7rbq6Wtu2bdMrr7yigoKC6Ljb7VZXV5eOHz8ec9SY3++X2+3ucV92u112uz3RkQEAAAAAAJDBEn7EmGEYqq6u1pYtW/TSSy9p1KhRMeuLi4vVt29fNTU1Rcf2798vr9ersrKyRMcDAAAAAACARSX8iLGqqip5PB49/fTTysvLi143zOl0Kjc3V06nU4sWLVJNTY0GDRqk/Px8LV68WGVlZdyREgAAAAAAAAmT8GJs7dq1kqQZM2bEjK9fv15f/vKXJUkrV65UVlaWKisrFQ6HVVFRoTVr1iQ6GgAAAAAAACws4cWYYRgfuY3D4VBDQ4MaGhoSHQcAAAAAAACQlOS7UgIAAAAAAACpgmIMAAAAAAAAlkQxBgAAAABn8corr+j666/X8OHDZbPZtHXr1pj1hmFo+fLlGjZsmHJzc1VeXq6//e1v5oQFAJwXijEAAAAAOIvOzk6NHz++12si33///XrwwQe1bt067dq1S/3791dFRYVCoVCSkwIAzlfCL74PAADiwzAM/sjCWX3w94PfFZyNw+GQzWYzO0bamDVrlmbNmtXjOsMwtGrVKt1999264YYbJEmPP/64XC6Xtm7dqltuuSWZUQEA54liDACANBEKhXr9wwz4sBtvvNHsCEhhjY2Nys3NNTtGRjhw4IB8Pp/Ky8ujY06nU6WlpWppaem1GAuHwwqHw9HHwWAw4VkBAGfiVEoAAAAAuEA+n0+S5HK5YsZdLld0XU/q6urkdDqjS2FhYUJzAgB6xhFjAACkoZMTbpWRxTSODzEMKfLue19n9ZE4VQ4fYIu8qwF7fmV2DPw/tbW1qqmpiT4OBoOUYwBgAv5FDQBAGjKy+kjZfc2OgZSUY3YApCjD7AAZyu12S5L8fr+GDRsWHff7/ZowYUKvz7Pb7bLb7YmOBwD4CJxKCQAAAAAXaNSoUXK73WpqaoqOBYNB7dq1S2VlZSYmAwCcC44YAwAAAICzOHnypN56663o4wMHDmjPnj0aNGiQioqKtHTpUv3whz/UZZddplGjRul73/uehg8frtmzZ5sXGgBwTijGAAAAAOAsXn/9dX3mM5+JPj59bbAFCxZow4YNuuuuu9TZ2amvfvWrOn78uD71qU9p+/btcjgcZkUGAJwjijEAAAAAOIsZM2bIMHq/SpvNZtM999yje+65J4mpAADxwDXGAAAAAAAAYEkUYwAAAAAAALAkijEAAAAAAABYEsUYAAAAAAAALIliDAAAAAAAAJZEMQYAAAAAAABLohgDAAAAAACAJVGMAQAAAAAAwJIoxgAAAAAAAGBJFGMAAAAAAACwJIoxAAAAAAAAWBLFGAAAAAAAACyJYgwAAAAAAACWRDEGAAAAAAAAS6IYAwAAAAAAgCVRjAEAAAAAAMCSKMYAAAAAAABgSRRjAAAAAAAAsCSKMQAAAAAAAFhSH7MDAACAc2MYxvsPuk+ZFwRAevrA+0bM+wkAABZGMQYAQJoIh8PRr/P+tMnEJADSXTgcVr9+/cyOAQCA6TiVEgAAAAAAAJbEEWMAAKQJu90e/frE+Fuk7L4mpgGQdrpPRY82/eD7CQAAVkYxBgBAmrDZbO8/yO5LMQbggsW8nwAAYGGcSgkAAAAAAABLSqlirKGhQSNHjpTD4VBpaalee+01syMBADII8wwAIJGYZ2AFM2fO1IwZMzRz5kyzowBxkTLF2ObNm1VTU6MVK1Zo9+7dGj9+vCoqKnTkyBGzowEAMgDzDAAgkZhnYAWNjY2KRCKSpEgkosbGRpMTARcvZYqx+vp63XHHHVq4cKHGjh2rdevWqV+/fnr00UfNjgYAyADMMwCARGKegRXcd999Z30MpKOUuPh+V1eX2traVFtbGx3LyspSeXm5WlpaTEx24WyRd2WYHcJshiFF3jU7BdJFVh/J4hcCtvH/S8Iwz2Qo5hmcD+YZ5pkEysR5BviwhQsX9jq+fv36JKcB4iclirGjR4+qu7tbLpcrZtzlcunNN988Y/twOKxwOBx9HAwGE57xfA3Y8yuzIwAA/p/znWek1J9rmGcAIHVk4jwDfFBnZ6cOHDjQ47oDBw6os7NT/fv3T3IqID5S5lTK81FXVyen0xldCgsLzY4EAMgwzDUAgERinkE6ueOOOy5qPZDKUuKIsSFDhig7O1t+vz9m3O/3y+12n7F9bW2tampqoo+DwWBKTCQOh4OLD36AYRgxn4IBZ2O322Wz+CkuH+RwOMyOkFHOd56RUnOuYZ6JxTyD88E8E4t5Jr4yZZ4BevOLX/xC11133VnXA+kqJYqxnJwcFRcXq6mpSbNnz5b03h0umpqaVF1dfcb2drtddrs9ySk/ms1mU25urtkxUkq/fv3MjgAA5z3PSKk51zDPnIl5BkAqyJR5BuhN//79NWrUqB5Pp/z4xz/OaZRIaylRjElSTU2NFixYoKuvvlqTJ0/WqlWr1NnZ2esF/gAAOB/MMwCARGKeQaZbv369ZsyYccb4I488kvwwQBylTDE2Z84cvf3221q+fLl8Pp8mTJig7du3n3EBSwAALgTzDAAgkZhnYAXf/va3dd9998U8BtKdzTCMtL/bezAYlNPpVCAQUH5+vtlxACDt8b56Jl4TAIgv3ldj8XogXcycOVORSERZWVl66aWXzI4D9Opc31dT5ogxAAAAAACQ2ijDkGmyzA4AAAAAAAAAmIFiDAAAAAAAAJZEMQYAAAAAAABLohgDAAAAAACAJWXExfdP31gzGAyanAQAMsPp99MMuHFx3DDXAEB8MdfEYp4BgPg613kmI4qxEydOSJIKCwtNTgIAmeXEiRNyOp1mx0gJzDUAkBjMNe9hngGAxPioecZmZMBHNJFIRIcOHVJeXp5sNpvZcYBeBYNBFRYWqr29Xfn5+WbHAXplGIZOnDih4cOHKyuLs+4l5hqkD+YapAvmmljMM0gXzDNIF+c6z2REMQaki2AwKKfTqUAgwCQCAEgI5hoAQCIxzyDT8NEMAAAAAAAALIliDAAAAAAAAJZEMQYkkd1u14oVK2S3282OAgDIUMw1AIBEYp5BpuEaYwAAAAAAALAkjhgDAAAAAACAJVGMAQAAAAAAwJIoxgAAAAAAAGBJFGMAAAAAAACwJIoxIIkaGho0cuRIORwOlZaW6rXXXjM7EgAggzDPAAASjbkGmYZiDEiSzZs3q6amRitWrNDu3bs1fvx4VVRU6MiRI2ZHAwBkAOYZAECiMdcgE9kMwzDMDgFYQWlpqUpKSvTQQw9JkiKRiAoLC7V48WJ95zvfMTkdACDdMc8AABKNuQaZiCPGgCTo6upSW1ubysvLo2NZWVkqLy9XS0uLickAAJmAeQYAkGjMNchUFGNAEhw9elTd3d1yuVwx4y6XSz6fz6RUAIBMwTwDAEg05hpkKooxAAAAAAAAWBLFGJAEQ4YMUXZ2tvx+f8y43++X2+02KRUAIFMwzwAAEo25BpmKYgxIgpycHBUXF6upqSk6FolE1NTUpLKyMhOTAQAyAfMMACDRmGuQqfqYHQCwipqaGi1YsEBXX321Jk+erFWrVqmzs1MLFy40OxoAIAMwzwAAEo25BpmIYgxIkjlz5ujtt9/W8uXL5fP5NGHCBG3fvv2Mi1cCAHAhmGcAAInGXINMZDMMwzA7BAAAAAAAAJBsXGMMAAAAAAAAlkQxBgAAAAAAAEuiGAMAAAAAAIAlUYwBAAAAAADAkijGAAAAAAAAYEkUYwAAAAAAALAkijEAAAAAAABYEsUYAAAAAAAALIliDAAAAAAAAJZEMQYAAAAAAABLohgDAAAAAACAJVGMAQAAAAAAwJIoxgAAAAAAAGBJFGMAAAAAAACwJIoxAAAAAAAAWBLFGAAAAAAAACyJYgwAAAAAAACWRDEGAAAAAAAAS6IYAwAAAAAAgCVRjAEAAAAAAMCSKMYAAAAAAABgSRRjAAAAAAAAsCSKMQAAAAAAAFgSxRgAAAAAAAAsiWIMAAAAAAAAlkQxBgAAAAAAAEuiGAMAAAAAAIAlUYwBAAAAAADAkijGAAAAAAAAYEkUYwAAAAAAALAkijEAAAAAAABYEsUYAAAAAAAALKlPvHdYV1enp556Sm+++aZyc3M1depU3Xfffbr88st7fc6GDRu0cOHCmDG73a5QKHRO3zMSiejQoUPKy8uTzWa7qPwAAMkwDJ04cULDhw9XVhafoUjMNQAQb8w1AIBUEPdibMeOHaqqqlJJSYneffddffe739W1116rN954Q/379+/1efn5+dq/f3/08fn80XHo0CEVFhZeVG4AwJna29tVUFBgdoyUwFwDAInBXAMAMFPci7Ht27fHPN6wYYOGDh2qtrY2TZ8+vdfn2Ww2ud3uC/qeeXl5kt6bVPPz8y9oHwCA9wWDQRUWFkbfX8FcAwDxxlwDAEgFcS/GPiwQCEiSBg0adNbtTp48qREjRigSiWjSpEn68Y9/rCuuuKLHbcPhsMLhcPTxiRMnJL131Bl/rABA/HDK4PtOvxbMNQAQX8w1AAAzJfRk/kgkoqVLl2ratGkaN25cr9tdfvnlevTRR/X000/riSeeUCQS0dSpU9XR0dHj9nV1dXI6ndGFU1sAAAAAAABwvmyGYRiJ2vmdd96pxsZG/eEPfziv6wacOnVKY8aM0a233qp77733jPUfPmLs9GHYgUCAT/EBIA6CwaCcTifvqx/AawIA8cX7KgAgFSTsVMrq6mpt27ZNr7zyynlfTLNv376aOHGi3nrrrR7X2+122e32eMQEAAAAAACARcX9VErDMFRdXa0tW7bopZde0qhRo857H93d3dq7d6+GDRsW73gAAAAAAACApAQUY1VVVXriiSfk8XiUl5cnn88nn8+nd955J7rN/PnzVVtbG318zz336He/+53+/ve/a/fu3brtttt08OBBfeUrX4l3PMBUzc3NmjNnjpqbm82OAgDIUMw1AAAA5y7uxdjatWsVCAQ0Y8YMDRs2LLps3rw5uo3X69Xhw4ejj//1r3/pjjvu0JgxY/T5z39ewWBQzc3NGjt2bLzjAaYJhUKqr6+X3+9XfX29QqGQ2ZEAABmGuQYAAOD8xP0aY+dyLf+XX3455vHKlSu1cuXKeEcBUsrGjRt17NgxSdKxY8fk8Xh0++23m5wKAJBJmGsAAADOT9yPGANwpo6ODnk8nmhxbBiGPB6POjo6TE4GAMgUzDUAAADnj2IMSDDDMLR69epex8/lKEsAAM6GuQYAAODCUIwBCeb1etXa2qru7u6Y8e7ubrW2tsrr9ZqUDMgM3d3d+t73vqdRo0YpNzdXH//4x3XvvffGFAGGYWj58uUaNmyYcnNzVV5err/97W8mpgbii7kGAADgwlCMAQlWVFSkkpISZWdnx4xnZ2dr8uTJKioqMikZkBnuu+8+rV27Vg899JD+8pe/6L777tP999+vn/3sZ9Ft7r//fj344INat26ddu3apf79+6uiooILkyNjMNcAAABcGIoxIMFsNpuWLFnS67jNZjMhFZA5mpubdcMNN+i6667TyJEjdfPNN+vaa6/Va6+9Jum9o8VWrVqlu+++WzfccIOuuuoqPf744zp06JC2bt1qbnggTphrAAAALgzFGJAEBQUFmjt3bvQPE5vNprlz5+rSSy81ORmQ/qZOnaqmpib99a9/lST96U9/0h/+8AfNmjVLknTgwAH5fD6Vl5dHn+N0OlVaWqqWlpZe9xsOhxUMBmMWIJUx1wAAAJw/ijEgSebNm6e8vDxJUl5enubOnWtyIiAzfOc739Ett9yi0aNHq2/fvpo4caKWLl2qefPmSZJ8Pp8kyeVyxTzP5XJF1/Wkrq5OTqczuhQWFibuhwDiZN68eRo8eLAkaciQIcw1AAAAH4FiDEii0xcD5+5gQPz8+te/1saNG+XxeLR792499thj+q//+i899thjF7Xf2tpaBQKB6NLe3h6nxEDiOBwO1dTUyOVyadmyZXI4HGZHAgAASGl9zA4AWMXGjRt18uRJSdLJkyfl8Xh0++23m5wKSH/f+ta3okeNSdKVV16pgwcPqq6uTgsWLJDb7ZYk+f1+DRs2LPo8v9+vCRMm9Lpfu90uu92e0OxAIkydOlVTp041OwYAAEBa4IgxIAk6Ojrk8XhijhjzeDzq6OgwORmQ/v7v//5PWVmx01l2drYikYgkadSoUXK73WpqaoquDwaD2rVrl8rKypKaFQAAAEBqoRgDEswwDK1evbrXcU6rBC7O9ddfrx/96Ed69tln9Y9//ENbtmxRfX29brzxRknvXYB86dKl+uEPf6jf/va32rt3r+bPn6/hw4dr9uzZ5oYHAAAAYCpOpQQSzOv1qrW19Yzx7u5utba2yuv1asSIESYkAzLDz372M33ve9/TN77xDR05ckTDhw/X1772NS1fvjy6zV133aXOzk599atf1fHjx/WpT31K27dv5/pLAAAAgMXZjAw4XCUYDMrpdCoQCCg/P9/sOEAMwzB01113qa2tLXpql/TeqV7FxcW67777ZLPZTEwInIn31TPxmgBAfPG+CgBIBZxKCSSYzWbTkiVLzjhl0jAMLVmyhFIMAAAAAACTUIwBJjEMg+uLAQAAAABgIooxIMFOX2T/w0eG2Ww2Lr4PAAAAAICJKMaABDt98f0PXl9MkiKRSPTi+wAAAAAAIPkoxoAEKyoqUklJibKzs2PGs7OzNXnyZBUVFZmUDAAAAAAAa6MYAxLs9MX3exvn4vsAAAAAAJiDYgxIgoKCAs2dOzdagtlsNs2dO1eXXnqpyckAAAAAALAuijEgSebNm6fBgwdLkoYMGaK5c+eanAgAAAAAAGujGAOSxOFwqKamRi6XS8uWLZPD4TA7EgAAAAAAltbH7ACAlUydOlVTp041OwYAAAAAABBHjAEAAAAAAMCiKMYAAAAAAABgSRRjAAAAAAAAsCSKMQAAAAAAAFgSxRiQRM3NzZozZ46am5vNjgIAAAAAgOVRjAFJEgqFVF9fL7/fr/r6eoVCIbMjAQAAAABgaRRjQJJs3LhRx44dkyQdO3ZMHo/H5EQAAAAAAFgbxRiQBB0dHfJ4PDIMQ5JkGIY8Ho86OjpMTgYAAAAAgHVRjAEJZhiGVq9e3ev46bIMAAAAAAAkF8UYkGBer1etra3q7u6OGe/u7lZra6u8Xq9JyQAAAAAAsDaKMSDBioqKVFJSouzs7Jjx7OxsTZ48WUVFRSYlAwAAAADA2ijGgASz2WxasmRJr+M2m82EVACATNXc3Kw5c+aoubnZ7CgAAAApj2IMSIKCggLNnTs3WoLZbDbNnTtXl156qcnJAACZJBQKqb6+Xn6/X/X19QqFQmZHAgAASGkUY0CSzJs3T4MHD5YkDRkyRHPnzjU5EQAg02zcuFHHjh2TJB07dkwej8fkRAAAAKmNYgxIEofDoZqaGrlcLi1btkwOh8PsSACADNLR0SGPxxO927FhGPJ4POro6DA5GQAAQOqiGAOSaOrUqdq8ebOmTp1qdhQAQAYxDEOrV6/udfx0WQYAAIBYFGMAAABpzuv1qrW1Vd3d3THj3d3dam1tldfrNSkZAABAaqMYAwAASHNFRUUqKSlRdnZ2zHh2drYmT56soqIik5IBAACkNooxAACANGez2bRkyZJex0/fFRkAAACx4l6M1dXVqaSkRHl5eRo6dKhmz56t/fv3f+TznnzySY0ePVoOh0NXXnmlnnvuuXhHAwAAyFgFBQVn3PF47ty5uvTSS01KBAAAkPriXozt2LFDVVVV2rlzp1544QWdOnVK1157rTo7O3t9TnNzs2699VYtWrRIf/zjHzV79mzNnj1b+/bti3c8AEAGGjlypGw22xlLVVWVJCkUCqmqqkqDBw/WgAEDVFlZKb/fb3JqIP4qKyuVlfXeP++ysrJ00003mZwIAAAgtdmMBN+m6O2339bQoUO1Y8cOTZ8+vcdt5syZo87OTm3bti06NmXKFE2YMEHr1q37yO8RDAbldDoVCASUn58ft+wAYFXp9r769ttvx1x0fN++fbrmmmv0+9//XjNmzNCdd96pZ599Vhs2bJDT6VR1dbWysrL06quvnvP3SLfXBNb0yCOP6IknnpBhGLLZbPrSl76k22+/3exYQI94XwUApIKEX2MsEAhIkgYNGtTrNi0tLSovL48Zq6ioUEtLS4/bh8NhBYPBmAUAYF2XXHKJ3G53dNm2bZs+/vGP69Of/rQCgYAeeeQR1dfXa+bMmSouLtb69evV3NysnTt3mh0diJuOjg55PB6d/szTMAx5PB51dHSYnAwAACB1JbQYi0QiWrp0qaZNm6Zx48b1up3P55PL5YoZc7lc8vl8PW5fV1cnp9MZXQoLC+OaGwCQvrq6uvTEE0/o9ttvl81mU1tbm06dOhXzAczo0aNVVFTU6wcwEh/CIL0YhqHVq1f3Op7gEwQAAADSVkKLsaqqKu3bt0+bNm2K635ra2sVCASiS3t7e1z3DwBIX1u3btXx48f15S9/WdJ7H77k5ORo4MCBMdud7QMYiQ9hkF68Xq9aW1tjTimWpO7ubrW2tsrr9ZqUDAAAILUlrBirrq7Wtm3b9Pvf/14FBQVn3dbtdp9xEWS/3y+3293j9na7Xfn5+TELAADSe9dYmjVrloYPH35R++FDGKSToqIilZSU9Lhu8uTJKioqSnIiAACA9BD3YswwDFVXV2vLli166aWXNGrUqI98TllZmZqammLGXnjhBZWVlcU7HgAggx08eFAvvviivvKVr0TH3G63urq6dPz48Zhtz/YBjMSHMEgvNptNn/3sZ3tc99nPflY2my3JiQAAANJD3IuxqqoqPfHEE/J4PMrLy5PP55PP59M777wT3Wb+/Pmqra2NPl6yZIm2b9+uBx54QG+++aa+//3v6/XXX1d1dXW84wEAMtj69es1dOhQXXfdddGx4uJi9e3bN+YDmP3798vr9fIBDDJGJBLRmjVrelzX0NCgSCSS5EQAAADpIe7F2Nq1axUIBDRjxgwNGzYsumzevDm6jdfr1eHDh6OPp06dKo/Ho4cffljjx4/Xf//3f2vr1q1nvWA/AAAfFIlEtH79ei1YsEB9+vSJjjudTi1atEg1NTX6/e9/r7a2Ni1cuFBlZWWaMmWKiYmB+Nm1a1evN4gIBoPatWtXkhMBAACkhz4fvcn5OZe7Hr388stnjH3xi1/UF7/4xXjHAVJKc3OzVq9erSVLlmjq1KlmxwEyyosvviiv16vbb7/9jHUrV65UVlaWKisrFQ6HVVFR0evRNUA6Ki0tVX5+fo/lmNPpVGlpqQmpAAAAUl9C70oJ4H2hUEj19fXy+/2qr69XKBQyOxKQUa699loZhqFPfvKTZ6xzOBxqaGjQ//7v/6qzs1NPPfXUWa8vBqSbrKwsfeMb3+hx3Te+8Q1lZfFPPgAAgJ7wryQgSTZu3Khjx45Jko4dOyaPx2NyIgBApjAM44wbGZ324osvntMR/QAAAFZEMQYkQUdHhzweT/QPE8Mw5PF41NHRYXIyAEAm8Hq9am1t7XFda2urvF5vkhMBAACkB4oxIMEMw9Dq1at7HedTfADAxSoqKlJJSckZp0xmZWVp8uTJKioqMikZAABAaqMYAxLs9Kf43d3dMePd3d18ig8AiAubzaYlS5YoEonEjEciES1ZskQ2m82kZAAAAKmNYgxIsNOf4mdnZ8eMZ2dn8yk+ACBu9u3b1+P43r17k5wEAAAgfVCMAQl2+lP83sb5FB8AcLG6u7v105/+tMd1P/3pT884ahkAAADvoRgDkqCgoEBz586NlmA2m01z587VpZdeanIyAEAm2LZtW6/lV3d3t7Zt25bkRAAAAOmBYgxIknnz5mnw4MGSpCFDhmju3LkmJwIAZIovfOELZ5yyf1qfPn30hS98IcmJAAAA0kMfswMAVuFwOFRTU6PVq1dryZIlcjgcZkcCgLRmGIZCoZDZMVLG0qVL9cADD/Q43tXVZUKi1OJwOLh8AQAAOIPNMAzD7BAXKxgMyul0KhAIKD8/3+w4AJD2eF89E69J6nnnnXc0a9Yss2MgTTQ2Nio3N9fsGPgA3lcBAKmAUymBJGpubtacOXPU3NxsdhQAAAAAACyPUymBJAmFQqqvr9fRo0dVX1+vSZMmcTolAFwEh8OhxsZGs2OklFAopBtvvFGSNG3aNN19990mJ0odzLkAAKAnFGNAkmzcuFHHjh2TJB07dkwej0e33367yakAIH3ZbDZOjTuLu+++m9cHAADgI3AqJZAEHR0d8ng8On1JP8Mw5PF41NHRYXIyAAAAAACsi2IMSDDDMLR69epexzPg/hcAAAAAAKQlijEgwbxer1pbW9Xd3R0z3t3drdbWVnm9XpOSAQAAAABgbRRjQIIVFRWppKRE2dnZMePZ2dmaPHmyioqKTEoGAAAAAIC1UYwBCWaz2bRkyZIeT5lcsmSJbDabCakAAAAAAADFGJAEBQUFuuKKK2LGrrjiCl166aUmJQIAAAAAABRjQBJ0dHTojTfeiBl74403uCslAAAAAAAmohgDEuz03ScjkUjMeHd3N3elBAAAAADARBRjQIKdvivlhwswwzC4KyUAAAAAACaiGAMSrKioSJ/85Cd7XHf55ZdzV0oAAAAAAExCMQYkmGEYOnToUI/r/vnPf3IqJQAAAAAAJqEYAxJs165dOnnyZI/rTp48qV27diU5EQAAAAAAkCjGgIQrLS1Vfn5+j+ucTqdKS0uTnAgAAAAAAEgUY0DCZWVlafny5T2uW7FihbKy+N8QAAAAAAAz8Bc5kARXX321rrzyypixq666SpMmTTIpEQAAAAAAoBgDkuTee++NHh2WlZWle+65x+REAAAAAABYG8UYkCQDBw7U9OnTJUnTp0/XwIEDzQ0EAAAAAIDFUYwBSRIKhbRv3z5J0r59+xQKhUxOBGSOf/7zn7rttts0ePBg5ebm6sorr9Trr78eXW8YhpYvX65hw4YpNzdX5eXl+tvf/mZiYgAAAACpgGIMSJKNGzfq2LFjkqRjx47J4/GYnAjIDP/61780bdo09e3bV42NjXrjjTf0wAMP6GMf+1h0m/vvv18PPvig1q1bp127dql///6qqKigoAYAAAAsro/ZAQAr6OjokMfjkWEYkt47esXj8ejaa69VQUGByemA9HbfffepsLBQ69evj46NGjUq+rVhGFq1apXuvvtu3XDDDZKkxx9/XC6XS1u3btUtt9yS9MwAAAAAUgNHjAEJZhiGVq9e3ev46bIMwIX57W9/q6uvvlpf/OIXNXToUE2cOFG/+MUvousPHDggn8+n8vLy6JjT6VRpaalaWlp63W84HFYwGIxZAAAAAGQWijEgwbxer1pbW9Xd3R0z3t3drdbWVnm9XpOSAZnh73//u9auXavLLrtMzz//vO688079x3/8hx577DFJks/nkyS5XK6Y57lcrui6ntTV1cnpdEaXwsLCxP0QAAAAAExBMQYkWFFRkUpKSpSdnR0znp2drcmTJ6uoqMikZEBmiEQimjRpkn784x9r4sSJ+upXv6o77rhD69atu6j91tbWKhAIRJf29vY4JQYAAACQKijGgASz2WxasmRJr+M2m82EVEDmGDZsmMaOHRszNmbMmOjRmG63W5Lk9/tjtvH7/dF1PbHb7crPz49ZAAAAAGQWijEgCQoKCjR37txoCWaz2TR37lxdeumlJicD0t+0adO0f//+mLG//vWvGjFihKT3LsTvdrvV1NQUXR8MBrVr1y6VlZUlNSsAAACA1EIxBiTJvHnzNHjwYEnSkCFDNHfuXJMTAZlh2bJl2rlzp3784x/rrbfeksfj0cMPP6yqqipJ7xXRS5cu1Q9/+EP99re/1d69ezV//nwNHz5cs2fPNjc8AAAAAFNRjAFJ4nA4VFNTI5fLpWXLlsnhcJgdCcgIJSUl2rJli371q19p3Lhxuvfee7Vq1SrNmzcvus1dd92lxYsX66tf/apKSkp08uRJbd++nf8PAQAAAIuzGYZhmB3iYgWDQTmdTgUCAa4BAwBxwPvqmXhNkA7eeecdzZo1S5LU2Nio3NxckxMBveN9FQCQCuJ+xNgrr7yi66+/XsOHD5fNZtPWrVvPuv3LL78sm812xuLz+eIdDQAAAAAAAIiKezHW2dmp8ePHq6Gh4byet3//fh0+fDi6DB06NN7RANM1Nzdrzpw5am5uNjsKAAAAAACW1yfeO5w1a1b0EP7zMXToUA0cODDecYCUEQqFVF9fr6NHj6q+vl6TJk3i+kYAAAAAAJgoZS6+P2HCBA0bNkzXXHONXn311bNuGw6HFQwGYxYg1W3cuFFHjx6VJB09elQej8fkRAAAAAAAWJvpxdiwYcO0bt06/eY3v9FvfvMbFRYWasaMGdq9e3evz6mrq5PT6YwuhYWFSUwMnL+Ojg5t3LgxZmzjxo3q6OgwKREAAAAAADC9GLv88sv1ta99TcXFxZo6daoeffRRTZ06VStXruz1ObW1tQoEAtGlvb09iYmB82MYhlavXq0P3wA2Eon0OA4AAAAAAJLD9GKsJ5MnT9Zbb73V63q73a78/PyYBUhVXq9Xra2tZxRghmGotbVVXq/XpGQAAAAAAFhbShZje/bs0bBhw8yOAcRFYWFhr+Vtfn4+pwIDAAAAAGCSuN+V8uTJkzFHex04cEB79uzRoEGDVFRUpNraWv3zn//U448/LklatWqVRo0apSuuuEKhUEi//OUv9dJLL+l3v/tdvKMBpmhvb+/1BhHBYFDt7e0aMWJEklMBAAAAAIC4F2Ovv/66PvOZz0Qf19TUSJIWLFigDRs26PDhwzGnjnV1demb3/ym/vnPf6pfv3666qqr9OKLL8bsA0hnp48Y66kc44gxAAAAAADME/dibMaMGWe9mPiGDRtiHt91112666674h0DSBkcMQYAAAAAQGpKyWuMAZmkqKhIJSUlPa6bPHmyioqKkpwIAAAAAABIFGNAwtlsNs2ZM6fHdXPmzJHNZktyIgAAAAAAIFGMAQlnGIYefvjhHtf9/Oc/P+upxwAAAAAAIHEoxoAE+8c//qG//vWvPa7761//qn/84x/JDQQAAAAAACRRjAEJd+jQoYtaDwAAAAAAEoNiDEiw4cOHX9R6AAAAAACQGBRjQIKNHDlSI0eO7HHdqFGjel0HAAAAAAASi2IMSIK8vLwexwcMGJDkJAAAAAAA4DSKMSDBvF6v9u7d2+O6vXv3yuv1JjkRAAAAAACQKMaAhCsqKlJJSUmP6yZPnqyioqIkJwIAAAAAABLFGJBwNptNn/3sZ3tcN3PmTNlstiQnAgAAAAAAEsUYkHCRSERr1qzpcd2aNWsUiUSSnAgAAAAAAEgUY0DC7dq1S8FgsMd1wWBQu3btSnIiAAAAAAAgUYwBCVdaWtrr3ScHDBig0tLSJCcCAAAAAAASxRiQcDabTZdcckmP6y655BKuMQYAAAAAgEkoxoAEO3jwoA4cONDjugMHDujgwYNJTgQAAAAAACSKMSDhDMO4qPUAAAAAACAxKMYAAAAAAABgSRRjAAAAAAAAsCSKMSDBPuri+lx8H7h43//+92Wz2WKW0aNHR9eHQiFVVVVp8ODBGjBggCorK+X3+01MDAAAACAVUIwBCTZixAgVFBT0uK6goEAjRoxIciIgM11xxRU6fPhwdPnDH/4QXbds2TI988wzevLJJ7Vjxw4dOnRIN910k4lpAQAAAKSCPmYHADJdJBLRoUOHelx36NAhRSIRZWdnJzkVkHn69Okjt9t9xnggENAjjzwij8ejmTNnSpLWr1+vMWPGaOfOnZoyZUqyowIAAABIERwxBiTYM888o0gk0uO6SCSiZ555JsmJgMz0t7/9TcOHD9e//du/ad68efJ6vZKktrY2nTp1SuXl5dFtR48eraKiIrW0tJgVFwAAAEAK4IgxIMGuuuqqi1oP4KOVlpZqw4YNuvzyy3X48GH94Ac/0L//+79r37598vl8ysnJ0cCBA2Oe43K55PP5et1nOBxWOByOPg4Gg4mKDwAAAMAkFGNIGMMwFAqFzI5hOrfbrREjRujgwYNnrBsxYoTcbrfeeecdE5KlFofDwY0IcMFmzZoV/fqqq65SaWmpRowYoV//+tfKzc29oH3W1dXpBz/4QbwiAgAAAEhBFGNImFAoFPPHKs508OBBff7znzc7RkpobGy84AID+LCBAwfqk5/8pN566y1dc8016urq0vHjx2OOGvP7/T1ek+y02tpa1dTURB8Hg0EVFhYmMjYAAACAJOMaYwCAjHPy5En9z//8j4YNG6bi4mL17dtXTU1N0fX79++X1+tVWVlZr/uw2+3Kz8+PWQAAAABkFo4YQ8I4HA41NjaaHSNlBAIB3XLLLZKknJwcbd68WQ6Hw+RUqYPXAhfjP//zP3X99ddrxIgROnTokFasWKHs7GzdeuutcjqdWrRokWpqajRo0CDl5+dr8eLFKisr446UAAAAgMVRjCFhbDYbp8b1ora2Vh/72MfMjgFkjI6ODt166606duyYLrnkEn3qU5/Szp07dckll0iSVq5cqaysLFVWViocDquiokJr1qwxOTUAAAAAs1GMASbgKBUgvjZt2nTW9Q6HQw0NDWpoaEhSIgAAAADpgGuMAQAAAAAAwJIoxgAAAAAAAGBJFGMAAAAAAACwJIoxAAAAAAAAWBLFGAAAAAAAACyJYgwAAAAAAACWRDEGAAAAAAAAS6IYAwAAAAAAgCVRjAEAAAAAAMCSKMYAAAAAAABgSRRjAAAAAAAAsKS4F2OvvPKKrr/+eg0fPlw2m01bt279yOe8/PLLmjRpkux2uz7xiU9ow4YN8Y4FAAAAAAAAxIh7MdbZ2anx48eroaHhnLY/cOCArrvuOn3mM5/Rnj17tHTpUn3lK1/R888/H+9oAAAAAAAAQFSfeO9w1qxZmjVr1jlvv27dOo0aNUoPPPCAJGnMmDH6wx/+oJUrV6qioiLe8QAAAAAAAABJKXCNsZaWFpWXl8eMVVRUqKWlxaREAAAAAAAAsIK4HzF2vnw+n1wuV8yYy+VSMBjUO++8o9zc3DOeEw6HFQ6Ho4+DwWDCcwIAAAAAACCzmH7E2IWoq6uT0+mMLoWFhWZHAgAAAAAAQJoxvRhzu93y+/0xY36/X/n5+T0eLSZJtbW1CgQC0aW9vT0ZUQEAAAAAAJBBTD+VsqysTM8991zM2AsvvKCysrJen2O322W32xMdDQAAAAAAABks7keMnTx5Unv27NGePXskSQcOHNCePXvk9XolvXe01/z586Pbf/3rX9ff//533XXXXXrzzTe1Zs0a/frXv9ayZcviHQ0AAAAAAACIinsx9vrrr2vixImaOHGiJKmmpkYTJ07U8uXLJUmHDx+OlmSSNGrUKD377LN64YUXNH78eD3wwAP65S9/qYqKinhHAwAAAAAAAKLifirljBkzZBhGr+s3bNjQ43P++Mc/xjsKAAAAAAAA0CvTL74PAAAAAAAAmIFiDAAAAAAAAJZEMQYAAAAAAABLohgDAAAAAACAJVGMAQAAAAAAwJIoxgAAAAAAAGBJFGMAAAAAAACwpD5mBwAAAOfGMAyFQiGzYyCFffD3g98VnI3D4ZDNZjM7BgAApqMYAwBklJ/85Ceqra3VkiVLtGrVKknvFQTf/OY3tWnTJoXDYVVUVGjNmjVyuVzmhj1PoVBIs2bNMjsG0sSNN95odgSksMbGRuXm5podAwAA03EqJQAgY7S2turnP/+5rrrqqpjxZcuW6ZlnntGTTz6pHTt26NChQ7rppptMSgkAAAAgVXDEGAAgI5w8eVLz5s3TL37xC/3whz+MjgcCAT3yyCPyeDyaOXOmJGn9+vUaM2aMdu7cqSlTppgV+aKcnHCrjCymcXyIYUiRd9/7OquPxKly+ABb5F0N2PMrs2MAAJBS+Bc1ACAjVFVV6brrrlN5eXlMMdbW1qZTp06pvLw8OjZ69GgVFRWppaUlbYsxI6uPlN3X7BhISTlmB0CKMswOAABACqIYAwCkvU2bNmn37t1qbW09Y53P51NOTo4GDhwYM+5yueTz+XrdZzgcVjgcjj4OBoNxywsAAAAgNXCNMQBAWmtvb9eSJUu0ceNGORyOuO23rq5OTqczuhQWFsZt3wAAAABSA8UYACCttbW16ciRI5o0aZL69OmjPn36aMeOHXrwwQfVp08fuVwudXV16fjx4zHP8/v9crvdve63trZWgUAgurS3tyf4JwEAAACQbJxKCQBIa5/97Ge1d+/emLGFCxdq9OjR+va3v63CwkL17dtXTU1NqqyslCTt379fXq9XZWVlve7XbrfLbrcnNDsAAAAAc1GMAQDSWl5ensaNGxcz1r9/fw0ePDg6vmjRItXU1GjQoEHKz8/X4sWLVVZWlrYX3gcAAAAQHxRjAICMt3LlSmVlZamyslLhcFgVFRVas2aN2bEAAAAAmIxiDACQcV5++eWYxw6HQw0NDWpoaDAnEAAAAICUxMX3AQAAAAAAYEkUYwAAAAAAALAkijEAAAAAAABYEsUYAAAAAAAALIliDAAAAAAAAJZEMQYAAAAAAABLohgDAAAAAACAJVGMAQAAAAAAwJIoxgAAAAAAAGBJFGMAAAAAAACwJIoxAAAAAAAAWBLFGAAAAAAAACypj9kBMolhGAqFQmbHQIr64O8Gvyf4KA6HQzabzewYAAAAAJDRKMbiKBQKadasWWbHQBq48cYbzY6AFNfY2Kjc3FyzYwAAAABARuNUSgAAAAAAAFgSR4wlyMkJt8rI4uXFBxiGFHn3va+z+kicJocPsUXe1YA9vzI7BgAAAABYBs1NghhZfaTsvmbHQMrJMTsAUphhdgAAAAAAsBhOpQQAAAAAAIAlUYwBAAAAAADAkijGAAAAAAAAYEkUYwAAAAAAALAkijEAAAAAAABYEsUYAAAAAAAALClhxVhDQ4NGjhwph8Oh0tJSvfbaa71uu2HDBtlstpjF4XAkKhoAAAAAAACQmGJs8+bNqqmp0YoVK7R7926NHz9eFRUVOnLkSK/Pyc/P1+HDh6PLwYMHExENAAAAAAAAkJSgYqy+vl533HGHFi5cqLFjx2rdunXq16+fHn300V6fY7PZ5Ha7o4vL5UpENAAAAAAAAEBSAoqxrq4utbW1qby8/P1vkpWl8vJytbS09Pq8kydPasSIESosLNQNN9ygP//5z71uGw6HFQwGYxYAAAAAAADgfMS9GDt69Ki6u7vPOOLL5XLJ5/P1+JzLL79cjz76qJ5++mk98cQTikQimjp1qjo6Onrcvq6uTk6nM7oUFhbG+8cAAAAAAABAhkuJu1KWlZVp/vz5mjBhgj796U/rqaee0iWXXKKf//znPW5fW1urQCAQXdrb25OcGAAAAAAAAOmuT7x3OGTIEGVnZ8vv98eM+/1+ud3uc9pH3759NXHiRL311ls9rrfb7bLb7RedFQAAAAAAANYV9yPGcnJyVFxcrKampuhYJBJRU1OTysrKzmkf3d3d2rt3r4YNGxbveAAAAAAAAICkBJ1KWVNTo1/84hd67LHH9Je//EV33nmnOjs7tXDhQknS/PnzVVtbG93+nnvu0e9+9zv9/e9/1+7du3Xbbbfp4MGD+spXvpKIeACADLN27VpdddVVys/PV35+vsrKytTY2BhdHwqFVFVVpcGDB2vAgAGqrKw848hmAAAAANYT91MpJWnOnDl6++23tXz5cvl8Pk2YMEHbt2+PXpDf6/UqK+v9Tu5f//qX7rjjDvl8Pn3sYx9TcXGxmpubNXbs2ETEAwBkmIKCAv3kJz/RZZddJsMw9Nhjj+mGG27QH//4R11xxRVatmyZnn32WT355JNyOp2qrq7WTTfdpFdffdXs6AAAAABMZDMMwzA7xMUKBoNyOp0KBALKz883Lcc777yjWbNmSZJOTPqSlN3XtCwA0lD3KeXt/v8kSY2NjcrNzTUtSqq8r16MQYMG6ac//aluvvlmXXLJJfJ4PLr55pslSW+++abGjBmjlpYWTZky5Zz2lwqvCfMMgIuSQvOMlBrvqwAApMRdKQEAiJfu7m5t2rRJnZ2dKisrU1tbm06dOqXy8vLoNqNHj1ZRUZFaWlp63U84HFYwGIxZAAAAAGQWijEAQEbYu3evBgwYILvdrq9//evasmWLxo4dK5/Pp5ycHA0cODBme5fLJZ/P1+v+6urq5HQ6o0thYWGCfwIAAAAAyUYxBgDICJdffrn27NmjXbt26c4779SCBQv0xhtvXPD+amtrFQgEokt7e3sc0wIAAABIBQm5+D4AAMmWk5OjT3ziE5Kk4uJitba2avXq1ZozZ466urp0/PjxmKPG/H6/3G53r/uz2+2y2+2Jjn1eYi4L2n3KvCAA0tMH3jcy4DLDAADEBcUYACAjRSIRhcNhFRcXq2/fvmpqalJlZaUkaf/+/fJ6vSorKzM55fkJh8PRr/P+tMnEJADSXTgcVr9+/cyOAQCA6SjG4ohP8gFcFD7Jv2C1tbWaNWuWioqKdOLECXk8Hr388st6/vnn5XQ6tWjRItXU1GjQoEHKz8/X4sWLVVZWds53pAQAAACQmSjG4ohP8gHEC5/kn58jR45o/vz5Onz4sJxOp6666io9//zzuuaaayRJK1euVFZWliorKxUOh1VRUaE1a9aYnPr8ffDUzhPjb5Gy+5qYBkDa6T4V/Tdqqp0qDgCAWSjGAABp75FHHjnreofDoYaGBjU0NCQpUWLYbLb3H2T3pRgDcMFi3k8AALAwirE44pN8ABeFT/IBAAAAIKkoxuKIT/IBxAuf5AMAAABA4mWZHQAAAAAAAAAwA8UYAAAAAAAALIliDAAAAAAAAJZEMQYAAAAAAABLohgDAAAAAACAJVGMAQAAAAAAwJIoxgAAAAAAAGBJFGMAAAAAAACwpD5mB8hUtsi7MswOgdRiGFLk3fe+zuoj2Wzm5kHKsZ3+/QAAAAAAJAXFWIIM2PMrsyMAAAAAAADgLDiVEgAAAAAAAJbEEWNx5HA41NjYaHYMpKhQKKQbb7xRkrRlyxY5HA6TEyGV8fsBAAAAAIlHMRZHNptNubm5ZsdAGnA4HPyuAAAAAABgMk6lBAAAAAAAgCVxxBgAAGmIux+jR9wBGWfB3Y8BADgTxRgAAGmIux8DAAAAF49TKQEAAAAAAGBJHDEGAECa4O7H+CjcARnnit8NAADeQzEGAECa4O7HOB/cARkAAOCjcSolAAAAAAAALIliDAAAAAAAAJZEMQYAAAAAAABLohgDAAAAAACAJVGMAQAAAAAAwJIoxgAAAAAAAGBJFGMAAAAAAACwpD5mB0DmMgxDoVDI7Bgp44OvBa/LmRwOh2w2m9kxAKQR5pkzMdf0jnkGAAD0hGIMCRMKhTRr1iyzY6SkG2+80ewIKaexsVG5ublmxwCQRphnzo65JhbzDAAA6AmnUgIA0l5dXZ1KSkqUl5enoUOHavbs2dq/f3/MNqFQSFVVVRo8eLAGDBigyspK+f1+kxIDAAAASAU2wzAMs0NcrGAwKKfTqUAgoPz8fLPj4P/hFJdYhmEoHA5Lkux2O6dzfAinuKSWdHtf/dznPqdbbrlFJSUlevfdd/Xd735X+/bt0xtvvKH+/ftLku688049++yz2rBhg5xOp6qrq5WVlaVXX331nL5Hur0mVsA8cybmmt4xz6Qe3lcBAKmAYgwAcIZ0f199++23NXToUO3YsUPTp09XIBDQJZdcIo/Ho5tvvlmS9Oabb2rMmDFqaWnRlClTPnKf6f6aAECq4X0VAJAKOJUSAJBxAoGAJGnQoEGSpLa2Np06dUrl5eXRbUaPHq2ioiK1tLT0uI9wOKxgMBizAAAAAMgsCSvGGhoaNHLkSDkcDpWWluq111476/ZPPvmkRo8eLYfDoSuvvFLPPfdcoqIBADJYJBLR0qVLNW3aNI0bN06S5PP5lJOTo4EDB8Zs63K55PP5etxPXV2dnE5ndCksLEx0dAAAAABJlpBibPPmzaqpqdGKFSu0e/dujR8/XhUVFTpy5EiP2zc3N+vWW2/VokWL9Mc//lGzZ8/W7NmztW/fvkTEAwBksKqqKu3bt0+bNm26qP3U1tYqEAhEl/b29jglBAAAAJAqElKM1dfX64477tDChQs1duxYrVu3Tv369dOjjz7a4/arV6/W5z73OX3rW9/SmDFjdO+992rSpEl66KGHEhEPAJChqqurtW3bNv3+979XQUFBdNztdqurq0vHjx+P2d7v98vtdve4L7vdrvz8/JgFAAAAQGaJezHW1dWltra2mOu4ZGVlqby8vNfruLS0tMRsL0kVFRVc9wUAcE4Mw1B1dbW2bNmil156SaNGjYpZX1xcrL59+6qpqSk6tn//fnm9XpWVlSU7LgAAAIAU0SfeOzx69Ki6u7vlcrlixl0ul958880en+Pz+Xrc/mzXffnBD34Qn8AAgLRXVVUlj8ejp59+Wnl5edH5w+l0Kjc3V06nU4sWLVJNTY0GDRqk/Px8LV68WGVlZed0R0oAAAAAmSkt70rJdV8AAB+0du1aBQIBzZgxQ8OGDYsumzdvjm6zcuVKfeELX1BlZaWmT58ut9utp556ysTUAAAAAMwW9yPGhgwZouzsbPn9/pjxs13Hxe12n9f2drtddrs9PoEBAGnPMIyP3MbhcKihoUENDQ1JSAQAAAAgHcS9GMvJyVFxcbGampo0e/ZsSVIkElFTU5Oqq6t7fE5ZWZmampq0dOnS6NgLL7xwztd9Of0HEdcaA4D4OP1+ei6Fk1Uw1wBAfDHXAABSQdyLMUmqqanRggULdPXVV2vy5MlatWqVOjs7tXDhQknS/Pnzdemll6qurk6StGTJEn3605/WAw88oOuuu06bNm3S66+/rocffvicvt+JEyckSYWFhYn4cQDAsk6cOCGn02l2jJTAXAMAicFcAwAwU0KKsTlz5ujtt9/W8uXL5fP5NGHCBG3fvj16gX2v16usrPcvbzZ16lR5PB7dfffd+u53v6vLLrtMW7du1bhx487p+w0fPlzt7e3Ky8uTzWZLxI8ExEUwGFRhYaHa29uVn59vdhygV4Zh6MSJExo+fLjZUVIGcw3SBXMN0gVzDQAgFdgMjl0GkiYYDMrpdCoQCPDHCgAgIZhrAAAAzl1a3pUSAAAAAAAAuFgUYwAAAAAAALAkijEgiex2u1asWCG73W52FABAhmKuAQAAOHdcYwwAAAAAAACWxBFjAAAAAAAAsCSKMQAAAAAAAFgSxRgAAAAAAAAsiWIMAAAAAAAAlkQxBiRRQ0ODRo4cKYfDodLSUr322mtmRwIAZBDmGQAAgPNDMQYkyebNm1VTU6MVK1Zo9+7dGj9+vCoqKnTkyBGzowEAMgDzDAAAwPmzGYZhmB0CsILS0lKVlJTooYcekiRFIhEVFhZq8eLF+s53vmNyOgBAumOeAQAAOH8cMQYkQVdXl9ra2lReXh4dy8rKUnl5uVpaWkxMBgDIBMwzAAAAF4ZiDEiCo0ePqru7Wy6XK2bc5XLJ5/OZlAoAkCmYZwAAAC4MxRgAAAAAAAAsiWIMSIIhQ4YoOztbfr8/Ztzv98vtdpuUCgCQKZhnAAAALgzFGJAEOTk5Ki4uVlNTU3QsEomoqalJZWVlJiYDAGQC5hkAAIAL08fsAIBV1NTUaMGCBbr66qs1efJkrVq1Sp2dnVq4cKHZ0QAAGYB5BgAA4PxRjAFJMmfOHL399ttavny5fD6fJkyYoO3bt59xoWQAAC4E8wwAAMD5sxmGYZgdAgAAAAAAAEg2rjEGAAAAAAAAS6IYAwAAAAAAgCVRjAEAAAAAAMCSKMYAAAAAAABgSRRjAAAAAAAAsCSKMQAAAAAAAFgSxRgAAAAAAAAsiWIMAAAAAAAAlkQxBgAAAAAAAEuiGAMAAAAAAIAlUYwBAAAAAADAkijGAAAAAAAAYEn/P0lW7gANo+JiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize =(15, 12))\n", + "plt.subplot(3,3,1)\n", + "bp=sns.boxplot(data['Pregnancies'])\n", + "plt.subplot(3,3,2)\n", + "bp=sns.boxplot(data['Glucose'])\n", + "plt.subplot(3,3,3)\n", + "bp=sns.boxplot(data['BloodPressure'])\n", + "plt.subplot(3,3,4)\n", + "bp=sns.boxplot(data['SkinThickness'])\n", + "plt.subplot(3,3,5)\n", + "bp=sns.boxplot(data['Insulin'])\n", + "plt.subplot(3,3,6)\n", + "bp=sns.boxplot(data['BMI'])\n", + "plt.subplot(3,3,7)\n", + "bp=sns.boxplot(data['DiabetesPedigreeFunction'])\n", + "plt.subplot(3,3,8)\n", + "bp=sns.boxplot(data['Age'])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "6c544ea7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Percentiles: 25th=0.462, 75th=61.000, IQR=60.538\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
061487235033.60.627501
11856629026.60.351310
318966239428.10.167210
55116740025.60.201300
637850328831.00.248261
..............................
762989620022.50.142330
76421227027036.80.340270
7655121722311226.20.245300
7661126600030.10.349471
7671937031030.40.315230
\n", + "

536 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "0 6 148 72 35 0 33.6 \n", + "1 1 85 66 29 0 26.6 \n", + "3 1 89 66 23 94 28.1 \n", + "5 5 116 74 0 0 25.6 \n", + "6 3 78 50 32 88 31.0 \n", + ".. ... ... ... ... ... ... \n", + "762 9 89 62 0 0 22.5 \n", + "764 2 122 70 27 0 36.8 \n", + "765 5 121 72 23 112 26.2 \n", + "766 1 126 60 0 0 30.1 \n", + "767 1 93 70 31 0 30.4 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome \n", + "0 0.627 50 1 \n", + "1 0.351 31 0 \n", + "3 0.167 21 0 \n", + "5 0.201 30 0 \n", + "6 0.248 26 1 \n", + ".. ... ... ... \n", + "762 0.142 33 0 \n", + "764 0.340 27 0 \n", + "765 0.245 30 0 \n", + "766 0.349 47 1 \n", + "767 0.315 23 0 \n", + "\n", + "[536 rows x 9 columns]" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from numpy import percentile\n", + "# calculate interquartile range\n", + "q25, q75 = percentile(data, 25), percentile(data, 75)\n", + "iqr = q75 - q25\n", + "print('Percentiles: 25th=%.3f, 75th=%.3f, IQR=%.3f' % (q25, q75, iqr))\n", + "# calculate the outlier cutoff\n", + "cut_off = iqr * 1.5\n", + "lower, upper = q25 - cut_off, q75 + cut_off\n", + "# identify outliers\n", + "df = data[~((data < (q25 - 1.5 * iqr)) |(data > (q75 + 1.5 * iqr))).any(axis=1)]\n", + "df\n" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "438e9316", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMYAAAPHCAYAAADD9kXnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC100lEQVR4nOzdf3hU5Z3//9eEhJkIZGKizCSSaLZLDSq/BIwBP14IWWNUyo/4A0krRS5obYJAtlWzl2CJaISPBQQDFD8s4KdEWraFRdzgRYPCVkIMoXS1+kHcUhPEGbZiMoZ2hpCc7x9+mTKShACZOTOZ5+O6znXl3OfM8TXTdG7yPvd9H4thGIYAAAAAAACAKBNjdgAAAAAAAADADBTGAAAAAAAAEJUojAEAAAAAACAqURgDAAAAAABAVKIwBgAAAAAAgKhEYQwAAAAAAABRicIYAAAAAAAAolKs2QG6Q1tbm06cOKF+/frJYrGYHQcAIp5hGPrqq6+UmpqqmBjuoUj0NQDQ3ehrAtHPAED36mo/0yMKYydOnFBaWprZMQCgx2loaNCAAQPMjhEW6GsAIDjoa75GPwMAwXGxfqZHFMb69esn6es3m5CQYHIaAIh8Ho9HaWlp/u9X0NcAQHejrwlEPwMA3aur/UyPKIydG2qckJBAJwIA3YipHH9HXwMAwUFf8zX6GQAIjov1M0zmBwAAAAAAQFSiMAYAAAAAAICoRGEMAAAAAAAAUYnCGAAAAAAAAKIShTEAAAAAAABEJQpjQAjt379fDz/8sPbv3292FAAAAAC4ZPxNg56GwhgQIl6vV8uWLZPb7dayZcvk9XrNjgQAAAAAXcbfNOiJKIwBIbJ582Z98cUXkqQvvvhCFRUVJicCAAAAgK7jbxr0RLFmBwCiwfHjx1VRUSHDMCRJhmGooqJCd999twYMGGByOgCITIZhcKf6GwzDkM/nkyRZrVZZLBaTE4UPm83G5wEAV4C/adBTURgDgswwDL388ssdti9dupR/qAPAZfB6vcrLyzM7BiJEZWWl4uPjzY4BABGJv2nQkzGVEgiy+vp61dbWqrW1NaC9tbVVtbW1qq+vNykZAAAAJGnfvn2aMGGCUlNTZbFYtH37dv+xlpYWPfXUUxo8eLD69Omj1NRUPfroozpx4kTANU6dOqWCggIlJCQoMTFRM2fOVHNzc4jfCRAc/E2DnowRY0CQpaena9SoUTp06FBAR9KrVy+NGDFC6enpJqYDgMhls9lUWVlpdoyw4vV6NXnyZEnStm3bZLPZTE4UPvgs0JnTp09r6NCheuyxxzRlypSAY3/961916NAhLViwQEOHDtWXX36puXPn6jvf+Y4OHjzoP6+goECff/65du/erZaWFs2YMUOzZ89mDSb0CPxNg56MwhgQZBaLRXPnztX06dPbbWfIMQBcHovFwtS4TthsNj4foIvy8vI6nJptt9u1e/fugLZXXnlFt912m+rr65Wenq6PPvpIu3btUm1trUaOHClJWrVqle6991699NJLSk1NDfp7AIKJv2nQkzGVEgiBAQMGaNq0af4Ow2KxaNq0abruuutMTgYAAIBL1dTUJIvFosTERElSdXW1EhMT/UUxScrJyVFMTIxqamravYbP55PH4wnYgHDG3zToqSiMASFSUFCg5ORkSdI111yjadOmmZwIAAAAl8rr9eqpp57SI488ooSEBEmSy+VS//79A86LjY1VUlKSXC5Xu9cpKyuT3W73b2lpaUHPDlwp/qZBT0RhDAgRm82m4uJiORwOzZ8/n7VOAAAAIkxLS4seeughGYahNWvWXNG1SkpK1NTU5N8aGhq6KSUQPPxNg56INcaAEBo9erRGjx5tdgwAAABconNFsU8//VR79uzxjxaTJKfTqZMnTwacf/bsWZ06dUpOp7Pd61mtVlmt1qBmBoKBv2nQ0zBiDAAAAAA6ca4odvToUf32t7/1TyU7Jzs7W42Njaqrq/O37dmzR21tbcrKygp1XADAJWDEGAAAAICo1tzcrE8++cS/f+zYMR0+fFhJSUlKSUnRAw88oEOHDmnnzp1qbW31rxuWlJSk3r17a9CgQbrnnns0a9YsrV27Vi0tLSoqKtLUqVN5IiUAhDkKYwAAAACi2sGDB3XXXXf594uLiyVJ06dP109/+lPt2LFDkjRs2LCA17399tsaO3asJGnz5s0qKirS+PHjFRMTo/z8fK1cuTIk+QEAl4/CGAAAAICoNnbsWBmG0eHxzo6dk5SUpIqKiu6MBQAIAdYYAwAAAAAAQFQKSWFs3759mjBhglJTU2WxWLR9+/YOz/3hD38oi8WiFStWhCIaAAAAAAAAolRICmOnT5/W0KFDVV5e3ul527Zt04EDB1igEgAAAAAAAEEXksJYXl6eFi9erMmTJ3d4zmeffaY5c+Zo8+bNiouLC0UsAEAE6I5Rx6dOnVJBQYESEhKUmJiomTNnqrm5ObjBAQAAAIS9sFhjrK2tTd/73vf0k5/8RDfffPNFz/f5fPJ4PAEbAKBn6o5RxwUFBfrjH/+o3bt3a+fOndq3b59mz54drMgAAAAAIkRYPJVyyZIlio2N1RNPPNGl88vKyrRo0aIgpwIAhIO8vDzl5eV1es65UcdvvfWW7rvvvoBjH330kXbt2qXa2lqNHDlSkrRq1Srde++9eumll5i+DwAAAEQx00eM1dXV6eWXX9bGjRtlsVi69JqSkhI1NTX5t4aGhiCnBACEq4uNOq6urlZiYqK/KCZJOTk5iomJUU1NTYfXZXQyAAAA0POZXhj7z//8T508eVLp6emKjY1VbGysPv30U/3zP/+zbrjhhnZfY7ValZCQELABAKLTxUYdu1wu9e/fP6AtNjZWSUlJcrlcHV63rKxMdrvdv6WlpXVrbgAAAADmM70w9r3vfU//9V//pcOHD/u31NRU/eQnP9Fbb71ldjwAQBi7nFHHXcXoZAAAgAvt379fDz/8sPbv3292FKBbhGSNsebmZn3yySf+/WPHjunw4cNKSkpSenq6kpOTA86Pi4uT0+nUjTfeGIp4AIAIdf6o43NaW1v1z//8z1qxYoX+/Oc/y+l06uTJkwGvO3v2rE6dOiWn09nhta1Wq6xWa9CyAwAARBqv16tly5bpL3/5i5YtW6Zbb71VNpvN7FjAFQnJiLGDBw9q+PDhGj58uCSpuLhYw4cP18KFC0PxnwcA9FBdGXWcnZ2txsZG1dXV+V+3Z88etbW1KSsry6zoAAAAEWfz5s364osvJElffPGFKioqTE4EXLmQjBgbO3asDMPo8vl//vOfgxcGABBRrnTU8aBBg3TPPfdo1qxZWrt2rVpaWlRUVKSpU6fyREoAAIAuOn78uCoqKvx/2xuGoYqKCt19990aMGCAyemAy2f6GmMAAHSmO0Ydb968WZmZmRo/frzuvfde3XHHHVq3bl2wIgMAAPQohmHo5Zdf7rD9UgbCAOEmJCPGAAC4XN0x6jgpKYmh/gAAAJepvr5etbW1F7S3traqtrZW9fX1uv76601IBlw5RowBAAAAAIAOpaena9SoUe0eu+222wIehAREGgpjAAAAAACgQxaLRePHj2/32Pjx42WxWEKcCOg+FMYAAAAAAECH2tratHr16naPlZeXq62tLcSJgO5DYQwAAAAAAHSopqZGHo+n3WMej0c1NTUhTgR0HwpjAAAAAACgQ1lZWUpISGj3mN1uV1ZWVogTAd2HwhgAAAAAAOhQTEyMHnnkkXaPTZ06VTExlBYQuWLNDoCeyzAMeb1es2OEDcMw5PP5JElWq5UFKr/BZrPxmQAAAABhqK2tTa+//nq7x15//XU9/PDDFMcQsSiMIWi8Xq/y8vLMjoEIUVlZqfj4eLNjAAAAAPiGrqwxlp2dHeJUQPegpAsAAAAAADrEGmPoyRgxhqCx2WyqrKw0O0bY8Hq9mjx5siRp27ZtstlsJicKL3weAAAAQHiKiYnRwoUL9eMf//iCY88++yzTKBHRKIwhaCwWC1PjOmCz2fhsAAAAAESMkSNHavDgwXr//ff9bUOGDNGtt95qYirgylHWBQAAAAAAF/Xcc8/5R4fFxMSotLTU5ETAlaMwBgAAAAAALioxMVEFBQWKiYlRQUGBEhMTzY4EXDGmUgIAAAAA0A7DMOT1es2OETYMw9CUKVM0ZcoUWa1W/e1vfzM7Utiw2WyyWCxmx8BloDAGAAAAAEA7vF6v8vLyzI6BCFBZWck60hGKqZQAAAAAotq+ffs0YcIEpaamymKxaPv27QHHDcPQwoULlZKSovj4eOXk5Ojo0aMB55w6dUoFBQVKSEhQYmKiZs6cqebm5hC+CwDA5WDEGAAAAICodvr0aQ0dOlSPPfaYpkyZcsHxpUuXauXKldq0aZMyMjK0YMEC5ebm6sMPP5TNZpMkFRQU6PPPP9fu3bvV0tKiGTNmaPbs2aqoqAj120E3stlsqqysNDtG2PB6vZo8ebIkadu2bf7ff4jPIoJRGAMAIEKwzgku5vzfD35X0BnWwgmUl5fX4XQ5wzC0YsUKPfPMM5o4caIk6bXXXpPD4dD27ds1depUffTRR9q1a5dqa2s1cuRISdKqVat077336qWXXlJqamrI3gu6l8ViYXpcB2w2G58NegQKYwAARAjWOcGlOHdHH2gPa+F03bFjx+RyuZSTk+Nvs9vtysrKUnV1taZOnarq6molJib6i2KSlJOTo5iYGNXU1LT7/0efzyefz+ff93g8wX0jAIB2scYYAAAAAHTA5XJJkhwOR0C7w+HwH3O5XOrfv3/A8djYWCUlJfnP+aaysjLZ7Xb/lpaWFoT0AICLCcmIsX379ul//+//rbq6On3++efatm2bJk2aJElqaWnRM888o//4j//Qn/70J9ntduXk5OjFF19kyDEAAB1oHvaIjBgGfuMbDENqO/v1zzGxElPlcB5L21n1Pfy62THw/yspKVFxcbF/3+PxUBwDABOE5F/UnS1m+de//lWHDh3SggULNHToUH355ZeaO3euvvOd7+jgwYOhiAcAQMQxYmKlXnFmx0BY6m12AIQpw+wAEcrpdEqS3G63UlJS/O1ut1vDhg3zn3Py5MmA1509e1anTp3yv/6brFarrFZrcEIDALosJFMp8/LytHjx4nbn1tvtdu3evVsPPfSQbrzxRt1+++165ZVXVFdXp/r6+lDEAwCEsX379mnChAlKTU2VxWLR9u3b/cdaWlr01FNPafDgwerTp49SU1P16KOP6sSJEwHXOHXqlAoKCpSQkKDExETNnDlTzc3NIX4nAIBIlJGRIafTqaqqKn+bx+NRTU2NsrOzJUnZ2dlqbGxUXV2d/5w9e/aora1NWVlZIc8MAOi6sFxjrKmpSRaLRYmJie0e9/l88ng8ARsAoGc6N+q4vLz8gmPnjzo+dOiQfvOb3+jIkSP6zne+E3BeQUGB/vjHP2r37t3auXOn9u3bp9mzZ4fqLQAAwlxzc7MOHz6sw4cPS/p6wf3Dhw+rvr5eFotF8+bN0+LFi7Vjxw69//77evTRR5WamupfHmbQoEG65557NGvWLL333nt69913VVRUpKlTp7I8DACEubBbnMTr9eqpp57SI488ooSEhHbPKSsr06JFi0KcDABghry8vA6fxHhu1PH5XnnlFd12222qr69Xenq6PvroI+3atUu1tbX+p4WtWrVK9957r1566aUO/2DhaWEAED0OHjyou+66y79/bu2v6dOna+PGjXryySd1+vRpzZ49W42Njbrjjju0a9cu2Ww2/2s2b96soqIijR8/XjExMcrPz9fKlStD/l4AAJcmrApjLS0teuihh2QYhtasWdPheSxUCQDoyDdHHVdXVysxMdFfFJOknJwcxcTEqKampt1p/hI3YQAgmowdO1aG0fEqbBaLRaWlpSotLe3wnKSkJFVUVAQjHgAgiMJmKuW5otinn36q3bt3dzhaTPp6ocqEhISADQCA9kYdu1wu9e/fP+C82NhYJSUlyeVydXitkpISNTU1+beGhoagZgcAAAAQemExYuxcUezo0aN6++23lZycbHYkAECE6eqo467iaWEAAABAzxeSwlhzc7M++eQT//65xSyTkpKUkpKiBx54QIcOHdLOnTvV2trqv4OflJSk3r155DgAoHPnjzres2dPwEhip9OpkydPBpx/9uxZnTp1Sk6nM9RRAQAAAISRkEylPHjwoIYPH67hw4dL+noxy+HDh2vhwoX67LPPtGPHDh0/flzDhg1TSkqKf9u/f38o4gEAItj5o45/+9vfXjDqODs7W42Njaqrq/O37dmzR21tbcrKygp1XAAAAABhJCQjxi62mGVnxwAA0e1KRx0PGjRI99xzj2bNmqW1a9eqpaVFRUVFmjp1aodPpAQAAAAQHcJijTEAADpy8OBB3XXXXf79c08lnj59un76059qx44dkqRhw4YFvO7tt9/W2LFjJUmbN29WUVGRxo8fr5iYGOXn52vlypUhyQ8AAAAgfFEYAwCEte4YdZyUlKSKiorujAUAAACgBwjJGmMAAAAAAABAuKEwBgAAAAAAgKhEYQwAAAAAAABRicIYAAAAAAAAohKFMQAAAAAAAEQlCmMAAAAAAACIShTGAAAAAAAAEJUojAEAAAAAACAqURgDAAAAAABAVKIwBgAAAAAAgKhEYQwAAAAAAABRicIYAAAAAAAAolKs2QEAAEDXGIbx953WFvOCAIhM531vBHyfAAAQxSiMAQAQIXw+n//nfn/YYmISAJHO5/PpqquuMjsGAACmYyolAAAAAAAAohIjxgAAiBBWq9X/81dDp0q94kxMAyDitLb4R5ue/30CAEA0ozAGAECEsFgsf9/pFUdhDMBlC/g+AQAgijGVEgAAAAAAAFGJwhgAAAAAAACiEoUxAAAAAAAARKWQFMb27dunCRMmKDU1VRaLRdu3bw84bhiGFi5cqJSUFMXHxysnJ0dHjx4NRTQAAAAAAABEqZAUxk6fPq2hQ4eqvLy83eNLly7VypUrtXbtWtXU1KhPnz7Kzc2V1+sNRTwAQBjrjpsrp06dUkFBgRISEpSYmKiZM2equbk5hO8CAAAAQDgKSWEsLy9Pixcv1uTJky84ZhiGVqxYoWeeeUYTJ07UkCFD9Nprr+nEiRMX/PEDAIg+3XFzpaCgQH/84x+1e/du7dy5U/v27dPs2bND9RYAAAAAhCnT1xg7duyYXC6XcnJy/G12u11ZWVmqrq5u9zU+n08ejydgAwD0TFd6c+Wjjz7Srl279H/+z/9RVlaW7rjjDq1atUpbtmzRiRMnQvxuAACRqLW1VQsWLFBGRobi4+P1rW99S88995wMw/Cfw/IwABCZTC+MuVwuSZLD4Qhodzgc/mPfVFZWJrvd7t/S0tKCnhMAEH66cnOlurpaiYmJGjlypP+cnJwcxcTEqKampsNrcxMGAHDOkiVLtGbNGr3yyiv66KOPtGTJEi1dulSrVq3yn8PyMAAQmUwvjF2OkpISNTU1+beGhgazIwEATNCVmysul0v9+/cPOB4bG6ukpKQOb8BI3IQBAPzd/v37NXHiRN1333264YYb9MADD+juu+/We++9J4nlYQAgkpleGHM6nZIkt9sd0O52u/3HvslqtSohISFgAwCgO3ETBgBwzujRo1VVVaWPP/5YkvSHP/xBv/vd75SXlyeJ5WEAIJKZXhjLyMiQ0+lUVVWVv83j8aimpkbZ2dkmJgMAhLuu3FxxOp06efJkwPGzZ8/q1KlTHd6AkbgJAwD4u6efflpTp05VZmam4uLiNHz4cM2bN08FBQWSWB4GACJZSApjzc3NOnz4sA4fPizp6zsqhw8fVn19vSwWi+bNm6fFixdrx44dev/99/Xoo48qNTVVkyZNCkU8AECE6srNlezsbDU2Nqqurs5/zp49e9TW1qasrKyQZwYARJ5f/epX2rx5syoqKnTo0CFt2rRJL730kjZt2nTZ12RkMgCEh9hQ/EcOHjyou+66y79fXFwsSZo+fbo2btyoJ598UqdPn9bs2bPV2NioO+64Q7t27ZLNZgtFPABAGGtubtYnn3zi3z93cyUpKUnp6en+mysDBw5URkaGFixYEHBzZdCgQbrnnns0a9YsrV27Vi0tLSoqKtLUqVOVmppq0rsCAESSn/zkJ/5RY5I0ePBgffrppyorK9P06dMDRjCnpKT4X+d2uzVs2LB2r2m1WmW1WoOe/VIYhsHDAtCp838/+F3BxdhsNlksFrNjXFRICmNjx44NeJTxN1ksFpWWlqq0tDQUcQAAEaQ7bq5s3rxZRUVFGj9+vGJiYpSfn6+VK1eG/L0AACLTX//6V8XEBE626dWrl9ra2iQFjmA+Vwg7N4L58ccfD3Xcy+b1ev3rpgEXM3nyZLMjIMxVVlYqPj7e7BgXFZLCGAAAl6s7bq4kJSWpoqIiGPEAAFFgwoQJev7555Wenq6bb75Zv//977Vs2TI99thjkhSwPExHI5gBAOGJwhgAAAAAdGLVqlVasGCBfvSjH+nkyZNKTU3VD37wAy1cuNB/Tk9bHqZ52CMyYvhzEd9gGFLb2a9/jomVImCaHELL0nZWfQ+/bnaMS8I3HQAAAAB0ol+/flqxYoVWrFjR4Tk9bXkYIyZW6hVndgyEpd5mB0AY63ieR/gKyVMpAQAAAAAAgHDDiDEAACKQpe1sRN6RQ5AxxQWdsJz73QAAAH4UxgAAiECRtnYDAAAAEI6YSgkAAAAAAICoxIgxAAAihM1mU2VlpdkxEMa8Xq8mT54sSdq2bVvEPg0PwcfvBgAAX6MwBgBAhLBYLIqPjzc7BiKEzWbj9wUAAOAimEoJAAAAAACAqERhDAAAAAAAAFGJwhgAAAAAAACiEoUxAAAAAAAARCUKYwAAAAAAAIhKPJUSAAAAACDDMP6+09piXhAAkeu8746A75QwRmEMAAAAACCfz+f/ud8ftpiYBEBP4PP5dNVVV5kd46KYSgkAAAAAAICoxIgxAAAAAICsVqv/56+GTpV6xZmYBkBEam3xjzg9/zslnFEYAwAAAADIYrH8fadXHIUxAFck4DsljDGVEgAAAAAAAFGJwhgAAAAAAACiEoUxAAAAAAAARKWwKIy1trZqwYIFysjIUHx8vL71rW/pueeek2EYZkcDAAAAAABADxUWhbElS5ZozZo1euWVV/TRRx9pyZIlWrp0qVatWmV2NABAmOvKzRXDMLRw4UKlpKQoPj5eOTk5Onr0qImpAQAAAISDsHgq5f79+zVx4kTdd999kqQbbrhBr7/+ut577z2TkwEAwt25myubNm3SzTffrIMHD2rGjBmy2+164oknJElLly7VypUrtWnTJmVkZGjBggXKzc3Vhx9+KJvNZvI7AAAAAGCWsBgxNnr0aFVVVenjjz+WJP3hD3/Q7373O+Xl5bV7vs/nk8fjCdgAANHp/JsrN9xwgx544AHdfffd/psrhmFoxYoVeuaZZzRx4kQNGTJEr732mk6cOKHt27ebGx4AAACAqcKiMPb0009r6tSpyszMVFxcnIYPH6558+apoKCg3fPLyspkt9v9W1paWogTAwDCxcVurhw7dkwul0s5OTn+19jtdmVlZam6urrD63ITBgAAAOj5wmIq5a9+9Stt3rxZFRUVuvnmm3X48GHNmzdPqampmj59+gXnl5SUqLi42L/v8XgojgFAlHr66afl8XiUmZmpXr16qbW1Vc8//7z/5orL5ZIkORyOgNc5HA7/sfaUlZVp0aJFwQsOAAAAwHRhURj7yU9+4h81JkmDBw/Wp59+qrKysnYLY1arVVarNdQxAQBh6FJvrnQVN2EAAACAni8sCmN//etfFRMTOKuzV69eamtrMykRACBSXOzmitPplCS53W6lpKT4X+d2uzVs2LAOr8tNGAAAAKDnC4vC2IQJE/T8888rPT1dN998s37/+99r2bJleuyxx8yOBgAIcxe7uZKRkSGn06mqqip/Iczj8aimpkaPP/54qOMCABARLG1nZZgdAuHHMKS2s1//HBMrWSzm5kHYsZz7/YggYVEYW7VqlRYsWKAf/ehHOnnypFJTU/WDH/xACxcuNDsaACDMXezmisVi0bx587R48WINHDhQGRkZWrBggVJTUzVp0iRzwwMAEKb6Hn7d7AgAEBJh8VTKfv36acWKFfr000/1t7/9Tf/93/+txYsXq3fv3mZHAwCEuVWrVumBBx7Qj370Iw0aNEg//vGP9YMf/EDPPfec/5wnn3xSc+bM0ezZszVq1Cg1Nzdr165dstlsJiYHAESSzz77TN/97neVnJys+Ph4DR48WAcPHvQfNwxDCxcuVEpKiuLj45WTk6OjR4+amBgA0BVhMWIMAIDLde7myooVKzo8x2KxqLS0VKWlpaELBgDoMb788kuNGTNGd911lyorK3Xttdfq6NGjuvrqq/3nLF26VCtXrtSmTZv8o5Nzc3P14YcfRsyNGJvNpsrKSrNjIIx5vV5NnjxZkrRt27aI+d2GOSLl94PCGAAAAAB0YsmSJUpLS9OGDRv8bRkZGf6fDcPQihUr9Mwzz2jixImSpNdee00Oh0Pbt2/3PyAm3FksFsXHx5sdAxHCZrPx+4IeISymUgIAAABAuNqxY4dGjhypBx98UP3799fw4cP16quv+o8fO3ZMLpdLOTk5/ja73a6srCxVV1e3e02fzyePxxOwAQBCj8IYAAAAAHTiT3/6k9asWaOBAwfqrbfe0uOPP64nnnhCmzZtkiS5XC5JksPhCHidw+HwH/umsrIy2e12/5aWlhbcNwEAaBeFMQAAAADoRFtbm2699Va98MILGj58uGbPnq1Zs2Zp7dq1l33NkpISNTU1+beGhoZuTAwA6CoKYwAAAADQiZSUFN10000BbYMGDVJ9fb0kyel0SpLcbnfAOW6323/sm6xWqxISEgI2AEDoURgDAAAAgE6MGTNGR44cCWj7+OOPdf3110v6eiF+p9Opqqoq/3GPx6OamhplZ2eHNCsA4NLwVEoAAAAA6MT8+fM1evRovfDCC3rooYf03nvvad26dVq3bp2kr5/mOG/ePC1evFgDBw5URkaGFixYoNTUVE2aNMnc8ACATlEYAwAAAIBOjBo1Stu2bVNJSYlKS0uVkZGhFStWqKCgwH/Ok08+qdOnT2v27NlqbGzUHXfcoV27dslms5mYHABwMRTGAAAAAOAi7r//ft1///0dHrdYLCotLVVpaWkIUwEArhRrjAEAAAAAACAqURgDAAAAAABAVKIwBgAAAAAAgKhEYQwAAAAAAABRicIYAAAAAAAAohKFMQAAAAAAAEQlCmMAAAAAAACIShTGAAAAAAAAEJUojAEAAAAAACAqURgDAAAAAABAVKIwBgAAAAAAgKhEYQwAAAAAAABRKWwKY5999pm++93vKjk5WfHx8Ro8eLAOHjxodiwAAAAAAAD0UGFRGPvyyy81ZswYxcXFqbKyUh9++KF+9rOf6eqrrzY7GgAgAlzs5ophGFq4cKFSUlIUHx+vnJwcHT161MTEAAAAAMJBrNkBJGnJkiVKS0vThg0b/G0ZGRkmJro8hmHI6/WaHQNh6vzfDX5PcDE2m00Wi8XsGBHh3M2Vu+66S5WVlbr22mt19OjRgJsrS5cu1cqVK7Vp0yZlZGRowYIFys3N1YcffiibzWZiegAAAABmCovC2I4dO5Sbm6sHH3xQe/fu1XXXXacf/ehHmjVrVrvn+3w++Xw+/77H4wlV1E55vV7l5eWZHQMRYPLkyWZHQJirrKxUfHy82TEiwsVurhiGoRUrVuiZZ57RxIkTJUmvvfaaHA6Htm/frqlTp4Y8MwAAAIDwEBZTKf/0pz9pzZo1GjhwoN566y09/vjjeuKJJ7Rp06Z2zy8rK5PdbvdvaWlpIU4MAAgXO3bs0MiRI/Xggw+qf//+Gj58uF599VX/8WPHjsnlciknJ8ffZrfblZWVperq6g6v6/P55PF4AjYAAAAAPUtYjBhra2vTyJEj9cILL0iShg8frg8++EBr167V9OnTLzi/pKRExcXF/n2PxxN2xbHmYY/IiAmLjxfhwjCktrNf/xwTKzFNDt9gaTurvodfNztGxDl3c6W4uFj/8i//otraWj3xxBPq3bu3pk+fLpfLJUlyOBwBr3M4HP5j7SkrK9OiRYuCmh0AAACAucKicpOSkqKbbropoG3QoEH69a9/3e75VqtVVqs1FNEumxETK/WKMzsGwk5vswMgjBlmB4hQl3pzpasi4SYMAAAAgCsTFlMpx4wZoyNHjgS0ffzxx7r++utNSgQAiBQd3Vypr6+XJDmdTkmS2+0OOMftdvuPtcdqtSohISFgAwAAANCzhEVhbP78+Tpw4IBeeOEFffLJJ6qoqNC6detUWFhodjQAQJi72M2VjIwMOZ1OVVVV+Y97PB7V1NQoOzs7pFkBAAAAhJewmEo5atQobdu2TSUlJSotLVVGRoZWrFihgoICs6MBAMLc/PnzNXr0aL3wwgt66KGH9N5772ndunVat26dJMlisWjevHlavHixBg4cqIyMDC1YsECpqamaNGmSueFxRQzDkNfrNTtGWDn/8+CzCWSz2WRhfU8AAPANYVEYk6T7779f999/v9kxAAARpis3V5588kmdPn1as2fPVmNjo+644w7t2rVLNpvNxOS4Ul6vV3l5eWbHCFuTJ082O0JYqaysVHx8vNkxAABAmAmbwhgAAJfrYjdXLBaLSktLVVpaGsJUAAAAAMIdhTEAABCRbDabKisrzY4RVgzDkM/nk/T1AySYOvh3jBAFAADtoTAGAAAiksViYWpcO6666iqzIwAAAESMsHgqJQAAAAAAABBqFMYAAAAAAAAQlSiMAQAAAAAAICpRGAMAAAAAAEBUojAGAAAAAJfgxRdflMVi0bx58/xtXq9XhYWFSk5OVt++fZWfny+3221eSABAl1AYAwAAAIAuqq2t1c9//nMNGTIkoH3+/Pl64403tHXrVu3du1cnTpzQlClTTEoJAOgqCmMAAAAA0AXNzc0qKCjQq6++qquvvtrf3tTUpPXr12vZsmUaN26cRowYoQ0bNmj//v06cOCAiYkBABdDYQwAAAAAuqCwsFD33XefcnJyAtrr6urU0tIS0J6Zman09HRVV1e3ey2fzyePxxOwAQBCL9bsAAAAAAAQ7rZs2aJDhw6ptrb2gmMul0u9e/dWYmJiQLvD4ZDL5Wr3emVlZVq0aFEwogIALgEjxgAAAACgEw0NDZo7d642b94sm83WLdcsKSlRU1OTf2toaOiW6wIALg0jxgAAAACgE3V1dTp58qRuvfVWf1tra6v27dunV155RW+99ZbOnDmjxsbGgFFjbrdbTqez3WtarVZZrdZgR8cVMgxDXq/X7Bhh4/zPgs8lkM1mk8ViMTsGLgOFMQAAAADoxPjx4/X+++8HtM2YMUOZmZl66qmnlJaWpri4OFVVVSk/P1+SdOTIEdXX1ys7O9uMyOgmXq9XeXl5ZscIS5MnTzY7QliprKxUfHy82TFwGSiMAQAA9CD79+/Xyy+/rLlz52r06NFmxwF6hH79+umWW24JaOvTp4+Sk5P97TNnzlRxcbGSkpKUkJCgOXPmKDs7W7fffrsZkQEAXURhDAAAoIfwer1atmyZ/vKXv2jZsmW69dZbu209JACdW758uWJiYpSfny+fz6fc3FytXr3a7Fi4QjabTZWVlWbHCBuGYcjn80n6ejowUwf/jv42clEYAwAA6CE2b96sL774QpL0xRdfqKKiQo899pjJqYCe6Z133gnYt9lsKi8vV3l5uTmBEBQWi4Xpcd9w1VVXmR0B6FY8lRIAAKAHOH78uCoqKmQYhqSv7+pXVFTo+PHjJicDAAAIXxTGAAAAIpxhGHr55Zc7bD9XLAMAAEAgCmMAAAARrr6+XrW1tWptbQ1ob21tVW1trerr601KBgAAEN4ojAEAAES49PR0jRo1Sr169Qpo79Wrl2677Talp6eblAwAACC8hWVh7MUXX5TFYtG8efPMjgIAiDDt9SFer1eFhYVKTk5W3759lZ+fL7fbbV5IoJtZLBbNnTu3w3aeGgYAANC+sCuM1dbW6uc//7mGDBlidhQAQITpqA+ZP3++3njjDW3dulV79+7ViRMnNGXKFJNSAsExYMAATZs2zV8Es1gsmjZtmq677jqTkwEAAISvsCqMNTc3q6CgQK+++qquvvpqs+MAACJIR31IU1OT1q9fr2XLlmncuHEaMWKENmzYoP379+vAgQMmJga6X0FBgZKTkyVJ11xzjaZNm2ZyIgAAgPAWVoWxwsJC3XfffcrJyen0PJ/PJ4/HE7ABAKJbR31IXV2dWlpaAtozMzOVnp6u6urqDq9HX4NIZLPZVFxcLIfDofnz58tms5kdCQAAIKzFmh3gnC1btujQoUOqra296LllZWVatGhRCFIBACJBZ32Iy+VS7969lZiYGNDucDjkcrk6vCZ9DSLV6NGjNXr0aLNjAAB6qPXr12vz5s0qKCjQzJkzzY4DXLGwGDHW0NCguXPnavPmzV26s1lSUqKmpib/1tDQEIKUAIBwdKl9SFfR1wAAAARqbGzU5s2b1dbWps2bN6uxsdHsSMAVC4vCWF1dnU6ePKlbb71VsbGxio2N1d69e7Vy5UrFxsaqtbU14Hyr1aqEhISADQAQnS7WhzgcDp05c+aCf7i53W45nc4Or0tfAwAAEGjBggVqa2uTJLW1tWnhwoUmJwKuXFhMpRw/frzef//9gLYZM2YoMzNTTz31lHr16mVSMgBAuLtYH5KWlqa4uDhVVVUpPz9fknTkyBHV19crOzvbjMgAAAAR5+DBgxf8m+u//uu/dPDgQY0cOdKkVMCVC4vCWL9+/XTLLbcEtPXp00fJyckXtAMAcL6u9CEzZ85UcXGxkpKSlJCQoDlz5ig7O1u33367GZEBAAAiSltbm0pLS9s9Vlpaqu3btysmJiwmpAGXLCwKYwAABNPy5csVExOj/Px8+Xw+5ebmavXq1WbHAgAAiAg1NTUdPqHb4/GopqaGkfiIWGFbGHvnnXfMjgAAiFDf7ENsNpvKy8tVXl5uTiAAAIAIlpWVpYSEhHaLY3a7XVlZWSakAroHYx0BAAAAAECHYmJiOlxo/9lnn2UaJSIav70AAAAAAKBTI0eO1ODBgwPahgwZoltvvdWkRED3oDAGAAAAAAAu6rnnnvOPDouJielwQX4gklAYAwAAAAAAF5WYmKiCggLFxMSooKBAiYmJZkcCrljYLr4PAAAAAADCy8yZMzVz5kyzYwDdhhFjAAAAAACgS/bv36+HH35Y+/fvNzsK0C0ojAEAAAAAgIvyer1atmyZ3G63li1bJq/Xa3Yk4IoxlbIbGYbx953WFvOCAIhM531vBHyfAAAAAGFg8+bN+uKLLyRJX3zxhSoqKvTYY4+ZnAq4MhTGupHP5/P/3O8PW0xMAiDS+Xw+XXXVVWbHAAAAACRJx48fV0VFhf8GrmEYqqio0N13360BAwaYnA64fEylBAAAAAAAHTIMQy+//HKH7cx2QCRjxFg3slqt/p+/GjpV6hVnYhoAEae1xT/a9PzvEwAAAMBM9fX1qq2tvaC9tbVVtbW1qq+v1/XXX29CMuDKURjrRhaL5e87veIojAG4bAHfJwAAAICJ0tPTNWrUKB06dEitra3+9l69emnEiBFKT083MR1wZZhKCQAAAAAAOmSxWDR37twO27mpi0hGYQwAAAAAAHRqwIABmjZtmr8IZrFYNG3aNF133XUmJwOuDIUxAAAAAOhEWVmZRo0apX79+ql///6aNGmSjhw5EnCO1+tVYWGhkpOT1bdvX+Xn58vtdpuUGAiOgoICJScnS5KuueYaTZs2zeREwJWjMAYAAAAAndi7d68KCwt14MAB7d69Wy0tLbr77rt1+vRp/znz58/XG2+8oa1bt2rv3r06ceKEpkyZYmJqoPvZbDYVFxfL4XBo/vz5stlsZkcCrhiL7wMAAABAJ3bt2hWwv3HjRvXv3191dXW688471dTUpPXr16uiokLjxo2TJG3YsEGDBg3SgQMHdPvtt5sRGwiK0aNHa/To0WbHALoNI8YAAAAA4BI0NTVJkpKSkiRJdXV1amlpUU5Ojv+czMxMpaenq7q6ut1r+Hw+eTyegA0AEHoUxgAAAACgi9ra2jRv3jyNGTNGt9xyiyTJ5XKpd+/eSkxMDDjX4XDI5XK1e52ysjLZ7Xb/lpaWFuzoAIB2UBgDAAAAgC4qLCzUBx98oC1btlzRdUpKStTU1OTfGhoauikhAOBSsMYYAAAAAHRBUVGRdu7cqX379mnAgAH+dqfTqTNnzqixsTFg1Jjb7ZbT6Wz3WlarVVarNdiRAQAXwYgxAAAAAOiEYRgqKirStm3btGfPHmVkZAQcHzFihOLi4lRVVeVvO3LkiOrr65WdnR3quACASxAWhbGysjKNGjVK/fr1U//+/TVp0iQdOXLE7FgAgAjRlX7E6/WqsLBQycnJ6tu3r/Lz8+V2u01KDACIJIWFhfrFL36hiooK9evXTy6XSy6XS3/7298kSXa7XTNnzlRxcbHefvtt1dXVacaMGcrOzuaJlAAQ5sKiMLZ3714VFhbqwIED2r17t1paWnT33Xfr9OnTZkcDAESArvQj8+fP1xtvvKGtW7dq7969OnHihKZMmWJiagBApFizZo2ampo0duxYpaSk+Ldf/vKX/nOWL1+u+++/X/n5+brzzjvldDr1m9/8xsTUAICuCIs1xnbt2hWwv3HjRvXv3191dXW68847TUoFAIgUF+tHmpqatH79elVUVGjcuHGSpA0bNmjQoEE6cOAAd/MBAJ0yDOOi59hsNpWXl6u8vDwEiQAA3SUsCmPf1NTUJElKSkpq97jP55PP5/PvezyekOQCAESGb/YjdXV1amlpUU5Ojv+czMxMpaenq7q6ut3CGH0NAAAA0POFxVTK87W1tWnevHkaM2aMbrnllnbPKSsrk91u929paWkhTgkACFft9SMul0u9e/cOeFKYJDkcDrlcrnavQ18DAAAA9HxhVxgrLCzUBx98oC1btnR4TklJiZqamvxbQ0NDCBMCAMJZV/qRrqCvAQAAAHq+sJpKWVRUpJ07d2rfvn0aMGBAh+dZrVZZrdYQJgMARIKO+hGn06kzZ86osbExYNSY2+2W0+ls91r0NQAAAEDPFxYjxgzDUFFRkbZt26Y9e/YoIyPD7EgAgAhysX5kxIgRiouLU1VVlb/tyJEjqq+vV3Z2dqjjAgAAAAgTYTFirLCwUBUVFfr3f/939evXz7/ei91uV3x8vMnpAADh7mL9iN1u18yZM1VcXKykpCQlJCRozpw5ys7O5omUAAAAQBQLi8LYmjVrJEljx44NaN+wYYO+//3vhz4QACCidKUfWb58uWJiYpSfny+fz6fc3FytXr06xEkBAAAAhJOwKIwZhmF2BABABOtKP2Kz2VReXq7y8vIQJAIAAAAQCcJijTEAAAAAAAAg1CiMAQAAAAAAICpRGAMAAAAAAEBUojAGAAAAAACAqERhDAAAAAAAAFGJwhgAAAAAAACiEoUxAAAAAAAARKVYswP0VJa2szLMDoHwYhhS29mvf46JlSwWc/Mg7FjO/X4AAAAAAEKCwliQ9D38utkRAAAAAAAA0AmmUgIAAAAAACAqMWKsG9lsNlVWVpodA2HK6/Vq8uTJkqRt27bJZrOZnAjhjN8PAAAAAAg+CmPdyGKxKD4+3uwYiAA2m43fFQAAAAAATMZUSgAAAAAAAEQlCmMAAAAAAACIShTGAAAAAAAAEJUojAEAAAAAACAqURgDAAAAAABAVKIwBgAAAAAAgKhEYQwAAAAAAABRicIYAAAAAAAAohKFMQAAAAAAAESlWLMDAAAAoPs8+uijqq+vV3p6ul577TWz4wAAepixY8f6f37nnXdMywF0l7AaMVZeXq4bbrhBNptNWVlZeu+998yOBADoQehn0NMdPXpU9fX1kqT6+nodPXrU5ERAdKGfQU83Z86cTveBSBQ2hbFf/vKXKi4u1rPPPqtDhw5p6NChys3N1cmTJ82OBgDoAehnEA0ef/zxTvcBBA/9DKLB+++/3+k+EIkshmEYZoeQpKysLI0aNUqvvPKKJKmtrU1paWmaM2eOnn766U5f6/F4ZLfb1dTUpISEhFDERRcYhiGv12t2jLDh9Xo1efJkSdK2bdtks9lMThRebDabLBaL2THw/+uJ36tX0s9IPfMzQc+ydu1abdmy5YL2qVOn6oc//KEJiYDO9bTvVfoZ9HTnT6H8JqZUIhx19Xs1LNYYO3PmjOrq6lRSUuJvi4mJUU5Ojqqrqy843+fzyefz+fc9Hk9IcuLSeL1e5eXlmR0jLJ0rkOHvKisrFR8fb3YM9FCX2s9I9DWILC0tLe0WxSRpy5YtmjlzpuLi4kKcCoge9DPo6f785z9f9PgNN9wQkixAdwuLqZR/+ctf1NraKofDEdDucDjkcrkuOL+srEx2u92/paWlhSoqACACXWo/I9HXILKsWrXqio4DuDL0M+jpvv/971/RcSCchcWIsUtVUlKi4uJi/77H46EjCUM2m02VlZVmxwgbhmH47wparVamDX4DU0sRbuhrEEnmzJmjHTt2dHocQHihn0Ek2bhxY6fFr40bN4YsC9DdwqIwds0116hXr15yu90B7W63W06n84LzrVarrFZrqOLhMlksFqbGfcNVV11ldgQgKl1qPyPR1yCyxMXFaerUqe1Op5w2bRrTKIEgo59BT3exaZJMo0QkC4uplL1799aIESNUVVXlb2tra1NVVZWys7NNTAYA6AnoZxANfvjDHyo2NvCeZ2xsrGbPnm1SIiB60M8gGnS0wD4L7yPShUVhTJKKi4v16quvatOmTfroo4/0+OOP6/Tp05oxY4bZ0QAAPQD9DKLBmjVrOt0HEDz0M4gGgwcP7nQfiERhMZVSkh5++GH9z//8jxYuXCiXy6Vhw4Zp165dFyxgCQDA5aCfQTQYOHCg0tPTVV9fr/T0dA0cONDsSEDUoJ9BNFi1apXGjh0bsA9EOothGIbZIa6Ux+OR3W5XU1OTEhISzI4DABGP79UL8ZkAQPfiezUQnwcAdK+ufq+GzVRKAAAAAAAAIJQojAEAAAAAACAqURgDAAAAAABAVKIwBgAAAAAAgKgUNk+lvBLnnh/g8XhMTgIAPcO579Me8HyWbkNfAwDdi74mEP0MAHSvrvYzPaIw9tVXX0mS0tLSTE4CAD3LV199JbvdbnaMsEBfAwDBQV/zNfoZAAiOi/UzFqMH3KJpa2vTiRMn1K9fP1ksFrPjAB3yeDxKS0tTQ0MDj+FGWDMMQ1999ZVSU1MVE8Ose4m+BpGDvgaRgr4mEP0MIgX9DCJFV/uZHlEYAyKFx+OR3W5XU1MTnQgAICjoawAAwUQ/g56GWzMAAAAAAACIShTGAAAAAAAAEJUojAEhZLVa9eyzz8pqtZodBQDQQ9HXAACCiX4GPQ1rjAEAAAAAACAqMWIMAAAAAAAAUYnCGAAAAAAAAKIShTEAAAAAAABEJQpjAAAAAAAAiEoUxoAQKi8v1w033CCbzaasrCy99957ZkcCAPQg9DMAgGCjr0FPQ2EMCJFf/vKXKi4u1rPPPqtDhw5p6NChys3N1cmTJ82OBgDoAehnAADBRl+DnshiGIZhdgggGmRlZWnUqFF65ZVXJEltbW1KS0vTnDlz9PTTT5ucDgAQ6ehnAADBRl+DnogRY0AInDlzRnV1dcrJyfG3xcTEKCcnR9XV1SYmAwD0BPQzAIBgo69BT0VhDAiBv/zlL2ptbZXD4QhodzgccrlcJqUCAPQU9DMAgGCjr0FPRWEMAAAAAAAAUYnCGBAC11xzjXr16iW32x3Q7na75XQ6TUoFAOgp6GcAAMFGX4OeisIYEAK9e/fWiBEjVFVV5W9ra2tTVVWVsrOzTUwGAOgJ6GcAAMFGX4OeKtbsAEC0KC4u1vTp0zVy5EjddtttWrFihU6fPq0ZM2aYHQ0A0APQzwAAgo2+Bj0RhTEgRB5++GH9z//8jxYuXCiXy6Vhw4Zp165dFyxeCQDA5aCfAQAEG30NeiKLYRiG2SEAAAAAAACAUGONMQAAAAAAAEQlCmMAAAAAAACIShTGAAAAAAAAEJUojAEAAAAAACAqURgDAAAAAABAVKIwBgAAAAAAgKhEYQwAAAAAAABRicIYAAAAAAAAohKFMQAAAAAAAEQlCmMAAAAAAACIShTGAAAAAAAAEJUojAEAAAAAACAqURgDAAAAAABAVKIwBgAAAAAAgKhEYQwAAAAAAABRicIYAAAAAAAAohKFMQAAAAAAAEQlCmMAAAAAAACIShTGAAAAAAAAEJUojAEAAAAAACAqURgDAAAAAABAVKIwBgAAAAAAgKhEYQwAAAAAAABRicIYAAAAAAAAohKFMQAAAAAAAEQlCmMAAAAAAACIShTGAAAAAAAAEJUojAEAAAAAACAqURgDAAAAAABAVKIwBgAAAAAAgKhEYQwAAAAAOnHDDTfIYrFcsBUWFkqSvF6vCgsLlZycrL59+yo/P19ut9vk1ACArrAYhmGYHeJKtbW16cSJE+rXr58sFovZcQAg4hmGoa+++kqpqamKieEeikRfAwDdLZL6mv/5n/9Ra2urf/+DDz7QP/3TP+ntt9/W2LFj9fjjj+vNN9/Uxo0bZbfbVVRUpJiYGL377rtd/m/QzwBA9+pqP9MjCmPHjx9XWlqa2TEAoMdpaGjQgAEDzI4RFuhrACA4IrGvmTdvnnbu3KmjR4/K4/Ho2muvVUVFhR544AFJ0v/7f/9PgwYNUnV1tW6//fYuXZN+BgCC42L9TGwIswRNv379JH39ZhMSEkxOAwCRz+PxKC0tzf/9CvoaAOhukdrXnDlzRr/4xS9UXFwsi8Wiuro6tbS0KCcnx39OZmam0tPTOy2M+Xw++Xw+//658Qr0MwDQPbraz/SIwti5ocYJCQl0IgDQjZjK8Xf0NQAQHJHW12zfvl2NjY36/ve/L0lyuVzq3bu3EhMTA85zOBxyuVwdXqesrEyLFi26oJ1+BgC618X6mfCezA8AAAAAYWT9+vXKy8tTamrqFV2npKRETU1N/q2hoaGbEgIALkWPGDEGAAAAAMH26aef6re//a1+85vf+NucTqfOnDmjxsbGgFFjbrdbTqezw2tZrVZZrdZgxgUAdAEjxgAAAACgCzZs2KD+/fvrvvvu87eNGDFCcXFxqqqq8rcdOXJE9fX1ys7ONiMmAOASMGIMAAAAAC6ira1NGzZs0PTp0xUb+/c/o+x2u2bOnKni4mIlJSUpISFBc+bMUXZ2dpefSAkAMA+FMQAAAAC4iN/+9reqr6/XY489dsGx5cuXKyYmRvn5+fL5fMrNzdXq1atNSAkAuFRMpQQAAACAi7j77rtlGIa+/e1vX3DMZrOpvLxcp06d0unTp/Wb3/ym0/XFgEi2f/9+Pfzww9q/f7/ZUYBuEZLC2Geffabvfve7Sk5OVnx8vAYPHqyDBw/6jxuGoYULFyolJUXx8fHKycnR0aNHQxENAAAAAAB0gdfr1bJly+R2u7Vs2TJ5vV6zIwFXLOiFsS+//FJjxoxRXFycKisr9eGHH+pnP/uZrr76av85S5cu1cqVK7V27VrV1NSoT58+ys3N5f9kAAAAAACEic2bN+uLL76QJH3xxReqqKgwORFw5YK+xtiSJUuUlpamDRs2+NsyMjL8PxuGoRUrVuiZZ57RxIkTJUmvvfaaHA6Htm/frqlTpwY7IoLEMAyKm+cxDEM+n0/S14/ntlgsJicKLzabjc8EwCWhn7kQfU3H6GcA4MocP35cFRUVMgxD0td9TkVFhe6++24NGDDA5HTA5Qt6YWzHjh3Kzc3Vgw8+qL179+q6667Tj370I82aNUuSdOzYMblcLuXk5PhfY7fblZWVperq6nYLYz6fz/+PPknyeDzBfhu4DF6vV3l5eWbHQISorKxUfHy82TEARBD6GVwK+hkAuHyGYejll1/usH3p0qXcfEDECvpUyj/96U9as2aNBg4cqLfeekuPP/64nnjiCW3atEmS5HK5JEkOhyPgdQ6Hw3/sm8rKymS32/1bWlpacN8EAAAAAABRqr6+XrW1tWptbQ1ob21tVW1trerr601KBly5oI8Ya2tr08iRI/XCCy9IkoYPH64PPvhAa9eu1fTp0y/rmiUlJSouLvbvezweimNhyGazqbKy0uwYYcPr9Wry5MmSpG3btslms5mcKLzweQC4VPQzF6Kv6RifBQBcvvT0dI0aNUqHDh0KKI716tVLI0aMUHp6uonpgCsT9MJYSkqKbrrppoC2QYMG6de//rUk+R9j7Ha7lZKS4j/H7XZr2LBh7V7TarXKarUGJzC6jcViYcpCB2w2G58NAFwh+pnO0dcAALqLxWLR3LlzLxjccq6daZSIZEGfSjlmzBgdOXIkoO3jjz/W9ddfL+nrhfidTqeqqqr8xz0ej2pqapSdnR3seAAAAAAA4CIGDBigadOm+YtgFotF06ZN03XXXWdyMuDKBL0wNn/+fB04cEAvvPCCPvnkE1VUVGjdunUqLCyU9PX/mebNm6fFixdrx44dev/99/Xoo48qNTVVkyZNCnY8AAAAAADQBQUFBUpOTpYkXXPNNZo2bZrJiYArF/TC2KhRo7Rt2za9/vrruuWWW/Tcc89pxYoVKigo8J/z5JNPas6cOZo9e7ZGjRql5uZm7dq1i7UgAAAAAAAIEzabTcXFxXI4HJo/fz5/s6NHCPoaY5J0//336/777+/wuMViUWlpqUpLS0MRBwAAAAAAXIbRo0dr9OjRZscAuk3QR4wBAAAAAAAA4YjCGAAAAAAAAKIShTEAAAAAAABEJQpjAAAAAAAAiEoUxgAAAAAAABCVKIwBAMLavn37NGHCBKWmpspisWj79u0dnvvDH/5QFotFK1asCGg/deqUCgoKlJCQoMTERM2cOVPNzc3BDQ4AAAAg7FEYAwCEtdOnT2vo0KEqLy/v9Lxt27bpwIEDSk1NveBYQUGB/vjHP2r37t3auXOn9u3bp9mzZwcrMgAAAIAIEWt2AAAAOpOXl6e8vLxOz/nss880Z84cvfXWW7rvvvsCjn300UfatWuXamtrNXLkSEnSqlWrdO+99+qll15qt5AGAAAAIDowYgwAENHa2tr0ve99Tz/5yU908803X3C8urpaiYmJ/qKYJOXk5CgmJkY1NTUdXtfn88nj8QRsAAAAAHoWCmMAgIi2ZMkSxcbG6oknnmj3uMvlUv/+/QPaYmNjlZSUJJfL1eF1y8rKZLfb/VtaWlq35gYAAABgPgpjAICIVVdXp5dfflkbN26UxWLp1muXlJSoqanJvzU0NHTr9QEAAACYj8IYACBi/ed//qdOnjyp9PR0xcbGKjY2Vp9++qn++Z//WTfccIMkyel06uTJkwGvO3v2rE6dOiWn09nhta1WqxISEgI2AAAAAD0Li+8DACLW9773PeXk5AS05ebm6nvf+55mzJghScrOzlZjY6Pq6uo0YsQISdKePXvU1tamrKyskGcGAAAAED4ojAEAwlpzc7M++eQT//6xY8d0+PBhJSUlKT09XcnJyQHnx8XFyel06sYbb5QkDRo0SPfcc49mzZqltWvXqqWlRUVFRZo6dSpPpAQAAACiHFMpAQBh7eDBgxo+fLiGDx8uSSouLtbw4cO1cOHCLl9j8+bNyszM1Pjx43Xvvffqjjvu0Lp164IVGQAAAECEoDAGAAhrY8eOlWEYF2wbN25s9/w///nPmjdvXkBbUlKSKioq9NVXX6mpqUn/+q//qr59+wY/PACgx/jss8/03e9+V8nJyYqPj9fgwYN18OBB/3HDMLRw4UKlpKQoPj5eOTk5Onr0qImJAQBdQWEMAAAAADrx5ZdfasyYMYqLi1NlZaU+/PBD/exnP9PVV1/tP2fp0qVauXKl1q5dq5qaGvXp00e5ubnyer0mJgcAXAxrjAEAAABAJ5YsWaK0tDRt2LDB35aRkeH/2TAMrVixQs8884wmTpwoSXrttdfkcDi0fft2TZ06NeSZAQBdw4gxAAAAAOjEjh07NHLkSD344IPq37+/hg8frldffdV//NixY3K5XAFPSrbb7crKylJ1dXW71/T5fPJ4PAEbACD0KIwBAAAAQCf+9Kc/ac2aNRo4cKDeeustPf7443riiSe0adMmSZLL5ZIkORyOgNc5HA7/sW8qKyuT3W73b2lpacF9EwCAdlEYAwAAAIBOtLW16dZbb9ULL7yg4cOHa/bs2Zo1a5bWrl172dcsKSlRU1OTf2toaOjGxACArqIwBgAAAACdSElJ0U033RTQNmjQINXX10uSnE6nJMntdgec43a7/ce+yWq1KiEhIWADAIQehTEAAAAA6MSYMWN05MiRgLaPP/5Y119/vaSvF+J3Op2qqqryH/d4PKqpqVF2dnZIswIALg1PpQQAAACATsyfP1+jR4/WCy+8oIceekjvvfee1q1bp3Xr1kmSLBaL5s2bp8WLF2vgwIHKyMjQggULlJqaqkmTJpkbHgDQKQpjAAAAANCJUaNGadu2bSopKVFpaakyMjK0YsUKFRQU+M958skndfr0ac2ePVuNjY264447tGvXLtlsNhOTAwAuhsIYAAAAAFzE/fffr/vvv7/D4xaLRaWlpSotLQ1hKgDAlWKNMQAAAAAAAEQlCmMAAAAAAACIShTGAAAAAAAAEJUojAEAAAAAACAqBb0w9tOf/lQWiyVgy8zM9B/3er0qLCxUcnKy+vbtq/z8fLnd7mDHAgAAAAAAQJQLyYixm2++WZ9//rl/+93vfuc/Nn/+fL3xxhvaunWr9u7dqxMnTmjKlCmhiAUAAAAAAIAoFpLCWGxsrJxOp3+75pprJElNTU1av369li1bpnHjxmnEiBHasGGD9u/frwMHDoQiGgAAAAAA6KL9+/fr4Ycf1v79+82OAnSLkBTGjh49qtTUVP3DP/yDCgoKVF9fL0mqq6tTS0uLcnJy/OdmZmYqPT1d1dXVHV7P5/PJ4/EEbAAAAAAAIHi8Xq+WLVsmt9utZcuWyev1mh0JuGJBL4xlZWVp48aN2rVrl9asWaNjx47pf/2v/6WvvvpKLpdLvXv3VmJiYsBrHA6HXC5Xh9csKyuT3W73b2lpaUF+FwAAAAAARLfNmzfriy++kCR98cUXqqioMDkRcOWCXhjLy8vTgw8+qCFDhig3N1f/8R//ocbGRv3qV7+67GuWlJSoqanJvzU0NHRjYgAAAAAAcL7jx4+roqJChmFIkgzDUEVFhY4fP25yMuDKhGQq5fkSExP17W9/W5988omcTqfOnDmjxsbGgHPcbrecTmeH17BarUpISAjYAAAAAABA9zMMQy+//HKH7eeKZUAkCnlhrLm5Wf/93/+tlJQUjRgxQnFxcaqqqvIfP3LkiOrr65WdnR3qaAAAAAAA4Bvq6+tVW1ur1tbWgPbW1lbV1tb61xEHIlHQC2M//vGPtXfvXv35z3/W/v37NXnyZPXq1UuPPPKI7Ha7Zs6cqeLiYr399tuqq6vTjBkzlJ2drdtvvz3Y0QAAEWDfvn2aMGGCUlNTZbFYtH37dv+xlpYWPfXUUxo8eLD69Omj1NRUPfroozpx4kTANU6dOqWCggIlJCQoMTFRM2fOVHNzc4jfCQAAQGRKT0/XqFGj1KtXr4D2Xr166bbbblN6erpJyYArF/TC2PHjx/XII4/oxhtv1EMPPaTk5GQdOHBA1157rSRp+fLluv/++5Wfn68777xTTqdTv/nNb4IdCwAQIU6fPq2hQ4eqvLz8gmN//etfdejQIS1YsECHDh3Sb37zGx05ckTf+c53As4rKCjQH//4R+3evVs7d+7Uvn37NHv27FC9BQAAgIhmsVg0d+7cDtstFosJqYDuERvs/8CWLVs6PW6z2VReXt7uHzwAAOTl5SkvL6/dY3a7Xbt37w5oe+WVV3Tbbbepvr5e6enp+uijj7Rr1y7V1tZq5MiRkqRVq1bp3nvv1UsvvaTU1NSgvwcAAIBIN2DAAE2bNk3/9//+X3/btGnTdN1115mYCrhyIV9jDACAYGpqapLFYlFiYqIkqbq6WomJif6imCTl5OQoJiZGNTU1HV7H5/PJ4/EEbAAAANEsPz9fMTFflxFiYmI0ZcoUkxMBV47CGACgx/B6vXrqqaf0yCOP+J9Y7HK51L9//4DzYmNjlZSUJJfL1eG1ysrKZLfb/VtaWlpQswMAAIS7X//612pra5MktbW1sQwSegQKYwCAHqGlpUUPPfSQDMPQmjVrrvh6JSUlampq8m8NDQ3dkBIAACAyHT9+XBUVFQFtFRUVOn78uEmJgO5BYQwAEPHOFcU+/fRT7d692z9aTJKcTqdOnjwZcP7Zs2d16tQpOZ3ODq9ptVqVkJAQsAEAAEQjwzD08ssv+0eLndPa2qqXX35ZhmGYlAy4chTGAAAR7VxR7OjRo/rtb3+r5OTkgOPZ2dlqbGxUXV2dv23Pnj1qa2tTVlZWqOMCAABEnPr6etXW1l5QADMMQ7W1taqvrzcpGXDlgv5USgAArkRzc7M++eQT//6xY8d0+PBhJSUlKSUlRQ888IAOHTqknTt3qrW11b9uWFJSknr37q1Bgwbpnnvu0axZs7R27Vq1tLSoqKhIU6dO5YmUAAAAXZCWlqaEhIR2H0aUkJDAWqyIaIwYAwCEtYMHD2r48OEaPny4JKm4uFjDhw/XwoUL9dlnn2nHjh06fvy4hg0bppSUFP+2f/9+/zU2b96szMxMjR8/Xvfee6/uuOMOrVu3zqy3BAAAEFEaGho6fEK3x+NhLVZENEaMAQDC2tixYztdt6Ira1okJSVdsFgsAAAAuiY9PV2jRo3SwYMHA/7tZbFYNGrUKKWnp5uYDrgyjBgDAAAAAAAdslgsmjt3riwWS0B7TExMu+1AJKEwBgAAAAAAOjVgwAAVFBQEtBUUFOi6664zKRHQPSiMAQAAAACAiyooKNA111wjSbr22ms1bdo0kxMBV47CGAAAAAB04qc//aksFkvAlpmZ6T/u9XpVWFio5ORk9e3bV/n5+XK73SYmBoLDZrOpuLhYDodD8+fPl81mMzsScMVYfB8AAAAALuLmm2/Wb3/7W/9+bOzf/5SaP3++3nzzTW3dulV2u11FRUWaMmWK3n33XTOiAkE1evRojR492uwYQLehMAYAAAAAFxEbGyun03lBe1NTk9avX6+KigqNGzdOkrRhwwYNGjRIBw4c0O233x7qqACAS8BUSgAAAAC4iKNHjyo1NVX/8A//oIKCAtXX10uS6urq1NLSopycHP+5mZmZSk9PV3V1dYfX8/l88ng8ARsAIPQYMQYAAAAAncjKytLGjRt144036vPPP9eiRYv0v/7X/9IHH3wgl8ul3r17KzExMeA1DodDLperw2uWlZVp0aJFQU6OK2UYhrxer9kxwoZhGPL5fJIkq9Uqi8VicqLwYbPZ+DwiFIUxAAAAAOhEXl6e/+chQ4YoKytL119/vX71q18pPj7+sq5ZUlKi4uJi/77H41FaWtoVZ0X38nq9Af/7Ax2prKy87O8DmIuplAAAAABwCRITE/Xtb39bn3zyiZxOp86cOaPGxsaAc9xud7trkp1jtVqVkJAQsAEAQo8RYwAAAABwCZqbm/Xf//3f+t73vqcRI0YoLi5OVVVVys/PlyQdOXJE9fX1ys7ONjkprpTNZlNlZaXZMcKG1+vV5MmTJUnbtm2TzWYzOVH44LOIXBTGAAAAAKATP/7xjzVhwgRdf/31OnHihJ599ln16tVLjzzyiOx2u2bOnKni4mIlJSUpISFBc+bMUXZ2Nk+k7AEsFgvT4zpgs9n4bNAjUBgDAAAAgE4cP35cjzzyiL744gtde+21uuOOO3TgwAFde+21kqTly5crJiZG+fn58vl8ys3N1erVq01ODQDoCgpjAAAAANCJLVu2dHrcZrOpvLxc5eXlIUoEAOguLL4PAAAAAACAqERhDAAAAAAAAFGJwhgAAAAAAACiEoUxAAAAAAAARCUKYwAAAAAAAIhKFMYAAAAAAAAQlSiMAQAAAAAAICpRGAMAAAAAAEBUCnlh7MUXX5TFYtG8efP8bV6vV4WFhUpOTlbfvn2Vn58vt9sd6mgAgDC0b98+TZgwQampqbJYLNq+fXvAccMwtHDhQqWkpCg+Pl45OTk6evRowDmnTp1SQUGBEhISlJiYqJkzZ6q5uTmE7wIAAABAOAppYay2tlY///nPNWTIkID2+fPn64033tDWrVu1d+9enThxQlOmTAllNABAmDp9+rSGDh2q8vLydo8vXbpUK1eu1Nq1a1VTU6M+ffooNzdXXq/Xf05BQYH++Mc/avfu3dq5c6f27dun2bNnh+otAAAAAAhTsaH6DzU3N6ugoECvvvqqFi9e7G9vamrS+vXrVVFRoXHjxkmSNmzYoEGDBunAgQO6/fbbQxURABCG8vLylJeX1+4xwzC0YsUKPfPMM5o4caIk6bXXXpPD4dD27ds1depUffTRR9q1a5dqa2s1cuRISdKqVat077336qWXXlJqamrI3gsAAACA8BKyEWOFhYW67777lJOTE9BeV1enlpaWgPbMzEylp6erurq63Wv5fD55PJ6ADQAQfY4dOyaXyxXQh9jtdmVlZfn7kOrqaiUmJvqLYpKUk5OjmJgY1dTUdHht+hoAAACg5wtJYWzLli06dOiQysrKLjjmcrnUu3dvJSYmBrQ7HA65XK52r1dWVia73e7f0tLSghEbABDmzvUTDocjoP38PsTlcql///4Bx2NjY5WUlNRhPyPR1wAAAADRIOiFsYaGBs2dO1ebN2+WzWbrlmuWlJSoqanJvzU0NHTLdQEAOIe+BgAAAOj5gl4Yq6ur08mTJ3XrrbcqNjZWsbGx2rt3r1auXKnY2Fg5HA6dOXNGjY2NAa9zu91yOp3tXtNqtSohISFgAwBEn3P9xDefZHx+H+J0OnXy5MmA42fPntWpU6c67Gck+hoAAAAgGgS9MDZ+/Hi9//77Onz4sH8bOXKkCgoK/D/HxcWpqqrK/5ojR46ovr5e2dnZwY4HAIhgGRkZcjqdAX2Ix+NRTU2Nvw/Jzs5WY2Oj6urq/Ofs2bNHbW1tysrKCnlmAAAAAOEj6E+l7Nevn2655ZaAtj59+ig5OdnfPnPmTBUXFyspKUkJCQmaM2eOsrOzeSIlAEDNzc365JNP/PvHjh3T4cOHlZSUpPT0dM2bN0+LFy/WwIEDlZGRoQULFig1NVWTJk2SJA0aNEj33HOPZs2apbVr16qlpUVFRUWaOnUqT6QEAAAAolzQC2NdsXz5csXExCg/P18+n0+5ublavXq12bEAAGHg4MGDuuuuu/z7xcXFkqTp06dr48aNevLJJ3X69GnNnj1bjY2NuuOOO7Rr166AdS03b96soqIijR8/3t/frFy5MuTvBQAAAEB4MaUw9s477wTs22w2lZeXq7y83Iw4AIAwNnbsWBmG0eFxi8Wi0tJSlZaWdnhOUlKSKioqghEPAAAAQAQL+hpjAAAAAAAAQDiiMAYAAAAAAICoRGEMAAAAAAAAUYnCGAAAAAAAAKIShTEAAAAAAABEJQpjAAAAAAAAiEoUxgAAAAAAABCVKIwBAAAAwCV48cUXZbFYNG/ePH+b1+tVYWGhkpOT1bdvX+Xn58vtdpsXEgDQJRTGAAAAAKCLamtr9fOf/1xDhgwJaJ8/f77eeOMNbd26VXv37tWJEyc0ZcoUk1ICALqKwhgAAAAAdEFzc7MKCgr06quv6uqrr/a3NzU1af369Vq2bJnGjRunESNGaMOGDdq/f78OHDhgYmIAwMVQGAMAAACALigsLNR9992nnJycgPa6ujq1tLQEtGdmZio9PV3V1dXtXsvn88nj8QRsAIDQizU7AAAAAACEuy1btujQoUOqra294JjL5VLv3r2VmJgY0O5wOORyudq9XllZmRYtWhSMqACAS8CIMQAAAADoRENDg+bOnavNmzfLZrN1yzVLSkrU1NTk3xoaGrrlugCAS0NhDAAAAAA6UVdXp5MnT+rWW29VbGysYmNjtXfvXq1cuVKxsbFyOBw6c+aMGhsbA17ndrvldDrbvabValVCQkLABgAIPaZSAgAAAEAnxo8fr/fffz+gbcaMGcrMzNRTTz2ltLQ0xcXFqaqqSvn5+ZKkI0eOqL6+XtnZ2WZEBgB0EYUxAAAAAOhEv379dMsttwS09enTR8nJyf72mTNnqri4WElJSUpISNCcOXOUnZ2t22+/3YzIAIAuojAGAAAAAFdo+fLliomJUX5+vnw+n3Jzc7V69WqzYwEALoLCGAAAAABconfeeSdg32azqby8XOXl5eYEAgBcFhbfBwAAAAAAQFSiMAYAAAAAAICoRGEMAAAAAAAAUYnCGAAAAAAAAKIShTEAQERrbW3VggULlJGRofj4eH3rW9/Sc889J8Mw/OcYhqGFCxcqJSVF8fHxysnJ0dGjR01MDQAAACAcUBgDAES0JUuWaM2aNXrllVf00UcfacmSJVq6dKlWrVrlP2fp0qVauXKl1q5dq5qaGvXp00e5ubnyer0mJgcAAABgtlizAwAAcCX279+viRMn6r777pMk3XDDDXr99df13nvvSfp6tNiKFSv0zDPPaOLEiZKk1157TQ6HQ9u3b9fUqVNNyw4AAADAXBTGAAARbfTo0Vq3bp0+/vhjffvb39Yf/vAH/e53v9OyZcskSceOHZPL5VJOTo7/NXa7XVlZWaquru6wMObz+eTz+fz7Ho8nuG8EAACTGYbBaGp06vzfD35XcDE2m00Wi8XsGBdFYQwAENGefvppeTweZWZmqlevXmptbdXzzz+vgoICSZLL5ZIkORyOgNc5HA7/sfaUlZVp0aJFwQsOAECY8Xq9ysvLMzsGIsTkyZPNjoAwV1lZqfj4eLNjXBRrjAEAItqvfvUrbd68WRUVFTp06JA2bdqkl156SZs2bbqi65aUlKipqcm/NTQ0dFNiAAAAAOGCEWMAgIj2k5/8RE8//bR/SuTgwYP16aefqqysTNOnT5fT6ZQkud1upaSk+F/ndrs1bNiwDq9rtVpltVqDmh0AgHDVPOwRGTH8uYhvMAyp7ezXP8fEShEwTQ6hZWk7q76HXzc7xiXhmw4AENH++te/KiYmcAB0r1691NbWJknKyMiQ0+lUVVWVvxDm8XhUU1Ojxx9/PNRxAQCICEZMrNQrzuwYCEu9zQ6AMGaYHeAyUBgDAES0CRMm6Pnnn1d6erpuvvlm/f73v9eyZcv02GOPSZIsFovmzZunxYsXa+DAgcrIyNCCBQuUmpqqSZMmmRseAAAAgKmCvsbYmjVrNGTIECUkJCghIUHZ2dmqrKz0H/d6vSosLFRycrL69u2r/Px8ud3uYMcCAPQQq1at0gMPPKAf/ehHGjRokH784x/rBz/4gZ577jn/OU8++aTmzJmj2bNna9SoUWpubtauXbtks9lMTA4AAADAbEEfMTZgwAC9+OKLGjhwoAzD0KZNmzRx4kT9/ve/180336z58+frzTff1NatW2W321VUVKQpU6bo3XffDXa0bsfjjdEZHm2MSxEpjzYOB/369dOKFSu0YsWKDs+xWCwqLS1VaWlp6IIBAAAACHtBL4xNmDAhYP/555/XmjVrdODAAQ0YMEDr169XRUWFxo0bJ0nasGGDBg0apAMHDuj2229v95o+n08+n8+/7/F4gvcGLgGPN0ZX8WhjXEykPNoYAAAAACJZSNcYa21t1datW3X69GllZ2errq5OLS0tysnJ8Z+TmZmp9PR0VVdXd1gYKysr06JFi0IVGwCAsMDIZFwMo5PRVYxMBgDgayEpjL3//vvKzs6W1+tV3759tW3bNt100006fPiwevfurcTExIDzHQ6HXC5Xh9crKSlRcXGxf9/j8SgtLS1Y8S8LjzfGBXi0MS4iEh9tjNBiZDIuBaOT0RlGJgMA8LWQVG5uvPFGHT58WE1NTfq3f/s3TZ8+XXv37r3s61mtVlmt1m5M2P14vDHax6ON0bFIfLQxAAAAAESykBTGevfurX/8x3+UJI0YMUK1tbV6+eWX9fDDD+vMmTNqbGwMGDXmdrvldDpDEQ0AgIjEyGS0i9HJ6AQjkwEAuJAp/6Jua2uTz+fTiBEjFBcXp6qqKuXn50uSjhw5ovr6emVnZ5sRDQCAiMDIZHSM0cloHyOTAQC4UNALYyUlJcrLy1N6erq++uorVVRU6J133tFbb70lu92umTNnqri4WElJSUpISNCcOXOUnZ3d4cL7AAAAAAAAQHcIemHs5MmTevTRR/X555/LbrdryJAheuutt/RP//RPkqTly5crJiZG+fn58vl8ys3N1erVq4MdCwAAAAAAAFEu6IWx9evXd3rcZrOpvLxc5eXlwY4CAAAAAAAA+LFqLwAAAABAhnHeSnStLeYFARC5zvvuCPhOCWMUxgAAAAAA8vl8/p/7/WGLiUkA9AQ+n09XXXWV2TEuKsbsAAAAAAAQztasWaMhQ4YoISFBCQkJys7OVmVlpf+41+tVYWGhkpOT1bdvX+Xn58vtdpuYGADQVYwYAwAAAIBODBgwQC+++KIGDhwowzC0adMmTZw4Ub///e918803a/78+XrzzTe1detW2e12FRUVacqUKXr33XfNjn5JrFar/+evhk6VesWZmAZARGpt8Y84Pf87JZxRGAMAAACATkyYMCFg//nnn9eaNWt04MABDRgwQOvXr1dFRYXGjRsnSdqwYYMGDRqkAwcO6Pbbb2/3mj6fL2DqosfjCd4b6CKLxfL3nV5xFMYAXJGA75QwxlRKAAAAAOii1tZWbdmyRadPn1Z2drbq6urU0tKinJwc/zmZmZlKT09XdXV1h9cpKyuT3W73b2lpaaGIDwD4BgpjAAAAAHAR77//vvr27Sur1aof/vCH2rZtm2666Sa5XC717t1biYmJAec7HA65XK4Or1dSUqKmpib/1tDQEOR3AABoD1MpAQAAAOAibrzxRh0+fFhNTU36t3/7N02fPl179+697OtZrdaIWX8HAHoyCmMAAAAAcBG9e/fWP/7jP0qSRowYodraWr388st6+OGHdebMGTU2NgaMGnO73XI6nSalBQB0FVMpAQAAAOAStbW1yefzacSIEYqLi1NVVZX/2JEjR1RfX6/s7GwTEwIAuoIRYwAAAADQiZKSEuXl5Sk9PV1fffWVKioq9M477+itt96S3W7XzJkzVVxcrKSkJCUkJGjOnDnKzs7u8ImUAIDwQWEMAAAAADpx8uRJPfroo/r8889lt9s1ZMgQvfXWW/qnf/onSdLy5csVExOj/Px8+Xw+5ebmavXq1SanBgB0BYUxAAAAAOjE+vXrOz1us9lUXl6u8vLyECUCAHQX1hgDAES8zz77TN/97neVnJys+Ph4DR48WAcPHvQfNwxDCxcuVEpKiuLj45WTk6OjR4+amBgAAABAOKAwBgCIaF9++aXGjBmjuLg4VVZW6sMPP9TPfvYzXX311f5zli5dqpUrV2rt2rWqqalRnz59lJubK6/Xa2JyAAAAAGZjKiUAIKItWbJEaWlp2rBhg78tIyPD/7NhGFqxYoWeeeYZTZw4UZL02muvyeFwaPv27Zo6dWrIMwMAAAAID4wYAwBEtB07dmjkyJF68MEH1b9/fw0fPlyvvvqq//ixY8fkcrmUk5Pjb7Pb7crKylJ1dXWH1/X5fPJ4PAEbAAAAgJ6FwhgAIKL96U9/0po1azRw4EC99dZbevzxx/XEE09o06ZNkiSXyyVJcjgcAa9zOBz+Y+0pKyuT3W73b2lpacF7EwAAAABMwVRKAEBEa2tr08iRI/XCCy9IkoYPH64PPvhAa9eu1fTp0y/7uiUlJSouLvbvezweimMAgKhhaTsrw+wQCD+GIbWd/frnmFjJYjE3D8KO5dzvRwShMAYAiGgpKSm66aabAtoGDRqkX//615Ikp9MpSXK73UpJSfGf43a7NWzYsA6va7VaZbVauz8wAAARoO/h182OAAAhwVRKAEBEGzNmjI4cORLQ9vHHH+v666+X9PVC/E6nU1VVVf7jHo9HNTU1ys7ODmlWAAAAAOGFEWMAgIg2f/58jR49Wi+88IIeeughvffee1q3bp3WrVsnSbJYLJo3b54WL16sgQMHKiMjQwsWLFBqaqomTZpkbngAAMKIzWZTZWWl2TEQxrxeryZPnixJ2rZtm2w2m8mJEM4i5feDwhgAIKKNGjVK27ZtU0lJiUpLS5WRkaEVK1aooKDAf86TTz6p06dPa/bs2WpsbNQdd9yhXbt2RUxnDQBAKFgsFsXHx5sdAxHCZrPx+4IegcIYACDi3X///br//vs7PG6xWFRaWqrS0tIQpgIAAAAQ7lhjDAAAAAAAAFGJwhgAAAAAAACiEoUxAAAAAAAARCUKYwAAAAAAAIhKFMYAAAAAAAAQlSiMAQAAAAAAICoFvTBWVlamUaNGqV+/furfv78mTZqkI0eOBJzj9XpVWFio5ORk9e3bV/n5+XK73cGOBgAAAAAAgCgW9MLY3r17VVhYqAMHDmj37t1qaWnR3XffrdOnT/vPmT9/vt544w1t3bpVe/fu1YkTJzRlypRgRwMAAAAAAEAUiw32f2DXrl0B+xs3blT//v1VV1enO++8U01NTVq/fr0qKio0btw4SdKGDRs0aNAgHThwQLfffvsF1/T5fPL5fP59j8cT3DcBAAAAAACAHifka4w1NTVJkpKSkiRJdXV1amlpUU5Ojv+czMxMpaenq7q6ut1rlJWVyW63+7e0tLTgBwcAAAAAAECPEtLCWFtbm+bNm6cxY8bolltukSS5XC717t1biYmJAec6HA65XK52r1NSUqKmpib/1tDQEOzoAAAAAAAA6GGCPpXyfIWFhfrggw/0u9/97oquY7VaZbVauykVAAAAAAAAolHICmNFRUXauXOn9u3bpwEDBvjbnU6nzpw5o8bGxoBRY263W06nM1TxuoVhGH/faW0xLwiAyHTe90bA9wkAAAAAICiCXhgzDENz5szRtm3b9M477ygjIyPg+IgRIxQXF6eqqirl5+dLko4cOaL6+nplZ2cHO163Ov+BAP3+sMXEJAAinc/n01VXXWV2DAAAAADo0YK+xlhhYaF+8YtfqKKiQv369ZPL5ZLL5dLf/vY3SZLdbtfMmTNVXFyst99+W3V1dZoxY4ays7PbfSIlAAAAAIRSWVmZRo0apX79+ql///6aNGmSjhw5EnCO1+tVYWGhkpOT1bdvX+Xn58vtdpuUGADQVUEfMbZmzRpJ0tixYwPaN2zYoO9///uSpOXLlysmJkb5+fny+XzKzc3V6tWrgx2t252/7tlXQ6dKveJMTAMg4rS2+Eebso4iAADhY+/evSosLNSoUaN09uxZ/cu//Ivuvvtuffjhh+rTp48kaf78+XrzzTe1detW2e12FRUVacqUKXr33XdNTg8A6ExIplJejM1mU3l5ucrLy4MdJ6gsFsvfd3rFURgDcNkCvk8AAICpdu3aFbC/ceNG9e/fX3V1dbrzzjvV1NSk9evXq6KiQuPGjZP09UCAQYMG6cCBA8yEAYAwFvSplAAAAADQkzQ1NUmSkpKSJEl1dXVqaWlRTk6O/5zMzEylp6erurq63Wv4fD55PJ6ADQAQehTGAAAAAKCL2traNG/ePI0ZM0a33HKLJMnlcql3795KTEwMONfhcMjlcrV7nbKyMtntdv+WlpYW7OgAgHZQGAMAAACALiosLNQHH3ygLVuu7Cn0JSUlampq8m8NDQ3dlBAAcCmCvsYYAAAAAPQERUVF2rlzp/bt26cBAwb4251Op86cOaPGxsaAUWNut1tOp7Pda1mtVh62AwBhgBFjAAAAANAJwzBUVFSkbdu2ac+ePcrIyAg4PmLECMXFxamqqsrfduTIEdXX1ys7OzvUcQEAl4DCGACgR3nxxRdlsVg0b948f5vX61VhYaGSk5PVt29f5efny+12mxcSABBRCgsL9Ytf/EIVFRXq16+fXC6XXC6X/va3v0mS7Ha7Zs6cqeLiYr399tuqq6vTjBkzlJ2dzRMpASDMMZUSANBj1NbW6uc//7mGDBkS0D5//ny9+eab2rp1q+x2u4qKijRlyhS9++67JiUFAESSNWvWSJLGjh0b0L5hwwZ9//vflyQtX75cMTExys/Pl8/nU25urlavXh3ipOhuhmHI6/WaHSNsnP9Z8LkEstlsslgsZsfAZaAwBgDoEZqbm1VQUKBXX31Vixcv9rc3NTVp/fr1qqio0Lhx4yR9/YfMoEGDdODAAe7kAwAuyjCMi55js9lUXl6u8vLyECRCqHi9XuXl5ZkdIyxNnjzZ7AhhpbKyUvHx8WbHwGVgKiUAoEcoLCzUfffdp5ycnID2uro6tbS0BLRnZmYqPT1d1dXVHV7P5/PJ4/EEbAAAAAB6FkaMAQAi3pYtW3To0CHV1tZecMzlcql3794BTwmTJIfDIZfL1eE1y8rKtGjRou6OCgAAIojNZlNlZaXZMcKGYRjy+XySvn6yKlMH/85ms5kdAZeJwhgAIKI1NDRo7ty52r17d7f+g6SkpETFxcX+fY/Ho7S0tG67PgAACH8Wi4Xpcd9w1VVXmR0B6FZMpQQARLS6ujqdPHlSt956q2JjYxUbG6u9e/dq5cqVio2NlcPh0JkzZ9TY2BjwOrfbLafT2eF1rVarEhISAjYAAAAAPQsjxgAAEW38+PF6//33A9pmzJihzMxMPfXUU0pLS1NcXJyqqqqUn58vSTpy5Ijq6+uVnZ1tRmQAAAAAYYLCGAAgovXr10+33HJLQFufPn2UnJzsb585c6aKi4uVlJSkhIQEzZkzR9nZ2TyREgAAAIhyFMYAAD3e8uXLFRMTo/z8fPl8PuXm5mr16tVmxwIAAABgMgpjAIAe55133gnYt9lsKi8vV3l5uTmBAAAAAIQlFt8HAAAAAABAVKIwBgAAAAAAgKhEYQwAAAAAAABRicIYAAAAAAAAohKFMQAAAAAAAEQlCmMAAAAAAACIShTGAAAAAAAAEJUojAEAAAAAACAqURgDAAAAAABAVKIwBgAAAAAAgKhEYQwAAAAAAABRicIYAAAAAAAAohKFMQAAAAAAAEQlCmMAAAAAAACISiEpjO3bt08TJkxQamqqLBaLtm/fHnDcMAwtXLhQKSkpio+PV05Ojo4ePRqKaAAAAAAAAIhSISmMnT59WkOHDlV5eXm7x5cuXaqVK1dq7dq1qqmpUZ8+fZSbmyuv1xuKeAAAAAAAAIhCsaH4j+Tl5SkvL6/dY4ZhaMWKFXrmmWc0ceJESdJrr70mh8Oh7du3a+rUqaGICAAAAAAAgChj+hpjx44dk8vlUk5Ojr/NbrcrKytL1dXV7b7G5/PJ4/EEbAAAAAAAAMClML0w5nK5JEkOhyOg3eFw+I99U1lZmex2u39LS0sLek4AAAAA0Yk1kwGg5zK9MHY5SkpK1NTU5N8aGhrMjgQAAACgh2LNZADouUKyxlhnnE6nJMntdislJcXf7na7NWzYsHZfY7VaZbVaQxEPAAAAQJRjzWQA6LlMHzGWkZEhp9Opqqoqf5vH41FNTY2ys7NNTAYAAAAAnbucNZMl1k0GgHARksJYc3OzDh8+rMOHD0v6uvM4fPiw6uvrZbFYNG/ePC1evFg7duzQ+++/r0cffVSpqamaNGlSKOIBACJcWVmZRo0apX79+ql///6aNGmSjhw5EnCO1+tVYWGhkpOT1bdvX+Xn58vtdpuUGADQU1zOmskS6yYDQLgISWHs4MGDGj58uIYPHy5JKi4u1vDhw7Vw4UJJ0pNPPqk5c+Zo9uzZGjVqlJqbm7Vr1y7ZbLZQxAMARLi9e/eqsLBQBw4c0O7du9XS0qK7775bp0+f9p8zf/58vfHGG9q6dav27t2rEydOaMqUKSamBgBEM9ZNBoDwEJI1xsaOHSvDMDo8brFYVFpaqtLS0lDEAQD0MLt27QrY37hxo/r376+6ujrdeeedampq0vr161VRUaFx48ZJkjZs2KBBgwbpwIEDuv32282IDQDoAS5nzWSJdZMBIFyYvsYYAADdrampSZKUlJQkSaqrq1NLS0vA+i+ZmZlKT0/vcP0X1n4BAHQFayYDQGQz/amUAAB0p7a2Ns2bN09jxozRLbfcIunr9V969+6txMTEgHM7W/+lrKxMixYtCnZcAEAEaG5u1ieffOLfP7dmclJSktLT0/1rJg8cOFAZGRlasGABayYDQISgMAYA6FEKCwv1wQcf6He/+90VXaekpETFxcX+fY/Hw8LIABClDh48qLvuusu/f65/mD59ujZu3Kgnn3xSp0+f1uzZs9XY2Kg77riDNZMBIEJQGAMA9BhFRUXauXOn9u3bpwEDBvjbnU6nzpw5o8bGxoBRY2632782zDex9gsA4BzWTAaAnos1xgAAEc8wDBUVFWnbtm3as2ePMjIyAo6PGDFCcXFxAeu/HDlyRPX19az/AgAAAEQxRowBACJeYWGhKioq9O///u/q16+ff90wu92u+Ph42e12zZw5U8XFxUpKSlJCQoLmzJmj7OxsnkgJAAAARDEKYwCAiLdmzRpJX091Od+GDRv0/e9/X5K0fPlyxcTEKD8/Xz6fT7m5uVq9enWIkwIAAAAIJxTGAAARr7N1X86x2WwqLy9XeXl5CBIBAAAAiASsMQYAAAAAAICoRGEMAAAAAAAAUYnCGAAAAAAAAKIShTEAAAAAAABEJQpjAAAAAAAAiEoUxgAAAAAAABCVKIwBAAAAAAAgKlEYAwAAAAAAQFSiMAYAAAAAAICoRGEMAAAAAAAAUYnCGAAAAAAAAKIShTEAAAAAAABEJQpjAAAAAAAAiEoUxgAAAAAAABCVKIwBAAAAAAAgKlEYAwAAAAAAQFSiMAYAAAAAAICoRGEMAAAAAAAAUYnCGAAAAAAAAKIShTEAAAAAAABEJQpjAAAAAAAAiEqxZgcAAAAAAACRYdy4cWpra1NMTIz27NljdhzgioXViLHy8nLdcMMNstlsysrK0nvvvWd2JABAD0I/AwAIJvoZ9HSVlZVqa2uTJLW1tamystLkRMCVC5vC2C9/+UsVFxfr2Wef1aFDhzR06FDl5ubq5MmTZkcDAPQA9DMAgGCin0E0WLJkSaf7QCQKm6mUy5Yt06xZszRjxgxJ0tq1a/Xmm2/qX//1X/X000+bnO7SWdrOyjA7hNkMQ2o7a3YKRIqYWMliMTuFqSz8/yWoekI/Yxh/71ksLV4ZrS0mpgkDhuhn0HUxsVJ0dzOytLX6fz7/+wTdoyf0M0Bnzv1ut9e+YcOGEKcBuk9YFMbOnDmjuro6lZSU+NtiYmKUk5Oj6urqC873+Xzy+Xz+fY/HE5Kcl6Lv4dfNjgAA+P9daj8jhWdfc36evu9vNTEJgEjn8/l01VVXmR2jx+gp/QzQkdOnT+vYsWPtHjt27JhOnz6tPn36hDgV0D3CYirlX/7yF7W2tsrhcAS0OxwOuVyuC84vKyuT3W73b2lpaaGKCgCIQJfaz0j0NQCArqOfQU83a9asKzoOhLOwGDF2qUpKSlRcXOzf93g8YdGR2Gw2Fh88j2EYAXfBgM5YrVZZonwq5flsNpvZEaJeOPY1drtd27ZtMzVDOKGfwaWgnwlkt9vNjhD1wrGfATry6quv6r777uv0OBCpwqIwds0116hXr15yu90B7W63W06n84LzrVarrFZrqOJ1mcViUXx8vNkxwgpD9AGEg0vtZ6Tw7GtiYmJ09dVXmx0DAPANPaWfATrSp08fZWRktDud8lvf+hbTKBHRwmIqZe/evTVixAhVVVX529ra/r/27j666fr+//8jCdCg0CBXLYUW8AoUuVqhsagfrzpLj3oEmZaLfUCGuiH4BTKH1qNF0K1eDYuzwOYQ8MwK+FHcHKNsdgOPo0AtsulUFIe2FRIutjbQ2dQl798f/IjGtkBKk3ea3G/nvI/N6/XKi2d6al7tI+/36x1QeXm5srOzTawMABAPWGcAAJHEOoNE0NoG+6tWrYpyJUD7iolgTJJcLpeef/55rV27Vh9++KFmz56thoaGVu98AQBAOFhnAACRxDqDRHD//fef8jHQEcXEpZSSlJ+fr8OHD6uwsFBut1ujRo1SWVlZsw0sAQBoC9YZAEAksc4gEeTl5empp55SIBCQ1WpVXl6e2SUBZ81iGIZhdhFny+v1yuFwqL6+XsnJyWaXAwAdHu+rzfE9AYD2xftqKL4fANC+zvR9NWYupQQAAAAAAACiiWAMAAAAAAAACYlgDAAAAAAAAAmJYAwAAAAAAAAJKWbuSnk2Tt4/wOv1mlwJAMSHk++ncXB/lnbDWgMA7Yu1JhTrDAC0rzNdZ+IiGDt27JgkKT093eRKACC+HDt2TA6Hw+wyYgJrDQBEBmvNCawzABAZp1tnLEYcfEQTCAR04MABde/eXRaLxexygFZ5vV6lp6erpqaG23AjphmGoWPHjiktLU1WK1fdS6w16DhYa9BRsNaEYp1BR8E6g47iTNeZuAjGgI7C6/XK4XCovr6eRQQAEBGsNQCASGKdQbzhoxkAAAAAAAAkJIIxAAAAAAAAJCSCMSCKkpKStGjRIiUlJZldCgAgTrHWAAAiiXUG8YY9xgAAAAAAAJCQOGMMAAAAAAAACYlgDAAAAAAAAAmJYAwAAAAAAAAJiWAMAAAAAAAACYlgDAAAAAAAAAmJYAyIopKSEg0aNEh2u11Op1O7du0yuyQAQBxhnQEARBprDeINwRgQJevXr5fL5dKiRYu0e/dujRw5Urm5uTp06JDZpQEA4gDrDAAg0lhrEI8shmEYZhcBJAKn06mxY8fqueeekyQFAgGlp6fr3nvv1QMPPGBydQCAjo51BgAQaaw1iEecMQZEQVNTk6qqqpSTkxNss1qtysnJUUVFhYmVAQDiAesMACDSWGsQrwjGgCg4cuSI/H6/UlJSQtpTUlLkdrtNqgoAEC9YZwAAkcZag3hFMAYAAAAAAICERDAGREHv3r1ls9nk8XhC2j0ej1JTU02qCgAQL1hnAACRxlqDeEUwBkRBly5dlJmZqfLy8mBbIBBQeXm5srOzTawMABAPWGcAAJHGWoN41cnsAoBE4XK5NGPGDI0ZM0ZZWVkqLi5WQ0ODZs6caXZpAIA4wDoDAIg01hrEI4IxIEry8/N1+PBhFRYWyu12a9SoUSorK2u2eSUAAG3BOgMAiDTWGsQji2EYhtlFAAAAAAAAANHGHmMAAAAAAABISARjAAAAAAAASEgEYwAAAAAAAEhIBGMAAAAAAABISARjAAAAAAAASEgEYwAAAAAAAEhIBGMAAAAAAABISARjAAAAAAAASEgEYwAAAAAAAEhIBGMAAAAAAABISARjAAAAAAAASEgEYwAAAAAAAEhIBGMAAAAAAABISARjAAAAAAAASEgEYwAAAAAAAEhIBGMAAAAAAABISARjAAAAAAAASEgEYwAAAAAAAEhIBGMAAAAAAABISARjAAAAAAAASEgEYwAAAAAAAEhIBGMAAAAAAABISARjAAAAAAAASEgEYwAAAAAAAEhIBGMAAAAAAABISARjAAAAAAAASEgEYwAAAAAAAEhIBGMAAAAAAABISARjAAAAAAAASEgEYwAAAAAAAEhIBGMAAAAAAABISJ3MLqA9BAIBHThwQN27d5fFYjG7HADo8AzD0LFjx5SWliarlc9QJNYaAGhvrDUAgFgQF8HYgQMHlJ6ebnYZABB3ampqNGDAALPLiAmsNQAQGaw1AAAzxUUw1r17d0knFtXk5GSTqwGAjs/r9So9PT34/grWGgBob6w1AIBYEBfB2MlLWpKTk/ljBQDaEZcMfo21BgAig7UGAGAmLuYHAAAAAABAQiIYAwAAAAAAQEIiGAMAAAAAAEBCIhgDAAAAAABAQiIYA6Jo+/btys/P1/bt280uBQAQp1hrAAAAzhzBGBAljY2NWrp0qTwej5YuXarGxkazSwIAxBnWGgAAgPAQjAFR8tJLL+no0aOSpKNHj6q0tNTkigAA8Ya1BgAAIDwEY0AU1NbWqrS0VIZhSJIMw1Bpaalqa2tNrgwAEC9YawAAAMJHMAZEmGEYWrZsWavtJ/+AAQCgrVhrAAAA2oZgDIiw6upqVVZWyu/3h7T7/X5VVlaqurrapMqA+OD3+/Xwww9r8ODB6tq1qy644AI9+uijIUGAYRgqLCxUv3791LVrV+Xk5OiTTz4xsWqgfbHWAAAAtE3Ywdhbb72lm2++WWlpabJYLHr99ddPOf6OO+6QxWJpdgwbNiw45pFHHmnWP3To0LBfDBCLMjIyNHbsWNlstpB2m82mrKwsZWRkmFQZEB+eeOIJrVixQs8995w+/PBDPfHEE3ryySf1i1/8IjjmySef1LPPPquVK1dq586dOvfcc5Wbm8vG5IgbrDUAAABtE3Yw1tDQoJEjR6qkpOSMxi9btkwHDx4MHjU1NerZs6duu+22kHHDhg0LGff222+HWxoQkywWi+bNm9dqu8ViMaEqIH5s375dt9xyi2688UYNGjRI3/ve93TDDTdo165dkk6cLVZcXKyHHnpIt9xyi0aMGKEXX3xRBw4cOO2HO0BHwVoDAADQNmEHY3l5eXrsscc0ceLEMxrvcDiUmpoaPN555x39+9//1syZM0PGderUKWRc7969W53T5/PJ6/WGHEAsGzBggG6//faQtttvv139+/c3qSIgfowbN07l5eX6+OOPJUl/+9vf9PbbbysvL0+StH//frndbuXk5ASf43A45HQ6VVFR0eq8rDXoaAYMGKCpU6cGQzCLxaKpU6ey1gAAAJxC1PcYW7VqlXJycjRw4MCQ9k8++URpaWk6//zzNW3atFPuhVFUVCSHwxE80tPTI102ACBGPfDAA5o8ebKGDh2qzp07a/To0Zo/f76mTZsmSXK73ZKklJSUkOelpKQE+1rCWoOOaNq0aerVq5ckqXfv3po6darJFQEAAMS2qAZjBw4c0ObNm3XnnXeGtDudTq1Zs0ZlZWVasWKF9u/fr6uuukrHjh1rcZ6CggLV19cHj5qammiUD7RZbW2tNmzYENK2YcMG1dbWmlQRED82bNigl156SaWlpdq9e7fWrl2rp59+WmvXrj2reVlr0BHZ7Xa5XC6lpKRowYIFstvtZpcEAAAQ0zpF8x9bu3atevTooQkTJoS0n7zcRZJGjBghp9OpgQMHasOGDZo1a1azeZKSkpSUlBTpcoF2YRiGli1b1mr7k08+yd4vwFn4yU9+EjxrTJKGDx+uzz//XEVFRZoxY4ZSU1MlSR6PR/369Qs+z+PxaNSoUa3Oy1qDjmrcuHEaN26c2WUAAAB0CFE7Y8wwDL3wwgv63//9X3Xp0uWUY3v06KGLL75Y+/bti1J1QORUV1ersrJSfr8/pN3v96uysvKUlw0DOL3//Oc/slpDlzObzaZAICBJGjx4sFJTU1VeXh7s93q92rlzp7Kzs6NaKwAAAIDYErVgbNu2bdq3b1+LZ4B92/Hjx/Xpp5+GfLIPdFQZGRkaO3Zss7PCLBaLsrKylJGRYVJlQHy4+eab9dOf/lSbNm3SZ599po0bN2rp0qXBm8RYLBbNnz9fjz32mH73u9/pvffe0/Tp05WWltbsDGYAAAAAiSXsSymPHz8ecibX/v37tWfPHvXs2VMZGRkqKCjQF198oRdffDHkeatWrZLT6dRll13WbM777rtPN998swYOHKgDBw5o0aJFstlsmjJlShteEhBbLBaL5s2bp+9///sh7YZhaN68eVxGCZylX/ziF3r44Yd1zz336NChQ0pLS9MPf/hDFRYWBscsXLhQDQ0Nuvvuu1VXV6crr7xSZWVl7L8EAAAAJLiwg7F33nlH1157bfCxy+WSJM2YMUNr1qzRwYMHm10aVl9fr1dffbXFfZakExuTT5kyRUePHlWfPn105ZVXaseOHerTp0+45QExqbU73x08eFD9+/ePcjVAfOnevbuKi4tVXFzc6hiLxaIlS5ZoyZIl0SsMAAAAQMyzGIZhmF3E2fJ6vXI4HKqvr1dycrLZ5QAhAoGAJkyYIK/X26wvOTlZr7/+erP9kQCz8b7aHN8TAGhfvK8CAGIBf40DEbZz584WQzHp6w3AAQAAAABA9BGMARHmdDpb/RTU4XDI6XRGuSIAAAAAACARjAERZ7VaQzYB/6ZFixZxGSUAAAAAACbhL3IgCsaMGaPhw4eHtI0YMULf+c53TKoIAAAAAAAQjAFR8uijjwbPDrNardwdDwAAAAAAkxGMAVHSo0cPTZs2TVarVdOmTVOPHj3MLgkAAAAAgITWyewCgEQya9YszZo1y+wyAAAAAACAOGMMAAAAAAAACYpgDAAAAAAAAAmJYAwAAAAAAAAJiWAMAAAAAAAACYlgDAAAAAAAAAmJYAwAAAAAAAAJiWAMAAAAAAAACYlgDAAAAAAAAAmJYAwAAAAAAAAJiWAMAAAAAAAACYlgDAAAAAAAAAmJYAwAAAAAAAAJiWAMAAAAAAAACYlgDAAAII5s375d+fn52r59u9mlAAAAxDyCMQAAgDjR2NiopUuXyuPxaOnSpWpsbDS7JAAAgJhGMAYAABAnXnrpJR09elSSdPToUZWWlppcEQAAQGwjGAMAAIgDtbW1Ki0tlWEYkiTDMFRaWqra2lqTKwMAAIhdBGMAAAAdnGEYWrZsWavtJ8MyAAAAhAo7GHvrrbd08803Ky0tTRaLRa+//vopx2/dulUWi6XZ4Xa7Q8aVlJRo0KBBstvtcjqd2rVrV7ilAQAAJKTq6mpVVlbK7/eHtPv9flVWVqq6utqkygAAAGJb2MFYQ0ODRo4cqZKSkrCet3fvXh08eDB49O3bN9i3fv16uVwuLVq0SLt379bIkSOVm5urQ4cOhVseAABAwsnIyNDYsWNls9lC2m02m7KyspSRkWFSZQAAALEt7GAsLy9Pjz32mCZOnBjW8/r27avU1NTgYbV+/U8vXbpUd911l2bOnKlLL71UK1eu1DnnnKMXXngh3PKAmLZ9+3bl5+dr+/btZpcCAIgjFotF8+bNa7XdYrGYUBUAAEDsi9oeY6NGjVK/fv303e9+V3/961+D7U1NTaqqqlJOTs7XRVmtysnJUUVFRYtz+Xw+eb3ekAOIdY2NjVq6dKk8Ho+WLl2qxsZGs0sCAMSRAQMGaOrUqSFtU6dOVf/+/U2qCAAAIPZFPBjr16+fVq5cqVdffVWvvvqq0tPTdc0112j37t2SpCNHjsjv9yslJSXkeSkpKc32ITupqKhIDocjeKSnp0f6ZQBn7aWXXtLRo0clSUePHlVpaanJFQHxY9CgQS3uZzlnzhxJJ4LpOXPmqFevXurWrZsmTZokj8djctVA+5s0aVLwrHyr1apbb73V5IoAAABiW8SDsSFDhuiHP/yhMjMzNW7cOL3wwgsaN26cnnnmmTbPWVBQoPr6+uBRU1PTjhUD7a+2tlalpaXBu4IZhqHS0lLV1taaXBkQHyorK0P2sfzTn/4kSbrtttskSQsWLNAbb7yhV155Rdu2bdOBAwcIDBCXXn311ZC15rXXXjO5IgAAgNgWtUspvykrK0v79u2TJPXu3Vs2m63ZJ/cej0epqaktPj8pKUnJyckhBxCrDMPQsmXLWm0/+QcMgLbr06dPyD6Wv//973XBBRfo6quvVn19vVatWqWlS5fquuuuU2ZmplavXq3t27drx44dZpcOtBs+hAEAAAifKcHYnj171K9fP0lSly5dlJmZqfLy8mB/IBBQeXm5srOzzSgPaFfV1dWqrKyU3+8Paff7/aqsrFR1dbVJlQHxqampSb/5zW/0gx/8QBaLRVVVVfrqq69C9rIcOnSoMjIyWt3LUmI/S3QsfAgDAADQNp3CfcLx48eDZ3tJ0v79+7Vnzx717NlTGRkZKigo0BdffKEXX3xRklRcXKzBgwdr2LBhamxs1K9//Wv9+c9/1h//+MfgHC6XSzNmzNCYMWOUlZWl4uJiNTQ0aObMme3wEgFzZWRkaOzYsaqqqlIgEAi222w2ZWZmKiMjw8TqgPjz+uuvq66uTnfccYckye12q0uXLurRo0fIuFPtZSmd2M9y8eLFEawUaD8nP4T5tm9+CDNw4EATKgMAAIhtYZ8x9s4772j06NEaPXq0pBOh1ujRo1VYWChJOnjwYMgZME1NTfrxj3+s4cOH6+qrr9bf/vY3vfnmm7r++uuDY/Lz8/X000+rsLBQo0aN0p49e1RWVtZsQ36gI7JYLJo3b16zT+sNw9C8efNksVhMqgyIT6tWrVJeXp7S0tLOah72s0RHcvJDmJZkZWXxIQwAAEArwj5j7Jprrjnl6fhr1qwJebxw4UItXLjwtPPOnTtXc+fODbccoMMyDINLW4B29vnnn+vNN98M2XA8NTVVTU1NqqurCzlr7FR7WUon9rNMSkqKZLlAu7FYLLr++utbPGvs+uuv50MYAACAVpiyxxiQSE7u7/LtP0osFgv7vgDtbPXq1erbt69uvPHGYFtmZqY6d+4cspfl3r17VV1dzV6WiBuBQEDLly9vsa+kpCTkUn4AAAB8jWAMiLCT+758+4+SQCDA5vtAOwoEAlq9erVmzJihTp2+PiHa4XBo1qxZcrlc+stf/qKqqirNnDlT2dnZuvzyy02sGGg/O3fubPUGEV6vVzt37oxyRQAAAB0DwRgQYSf3fbHZbCHtNpuNfV+AdvTmm2+qurpaP/jBD5r1PfPMM7rppps0adIk/c///I9SU1NDLrcEOjqn06nk5OQW+xwOh5xOZ5QrAgAA6BgIxoAIa23zfUlsvg+0oxtuuEGGYejiiy9u1me321VSUqJ//etfamho0GuvvXbK/cWAjsZqteqee+5pse+ee+6R1cqvfAAAAC3htyQgCgYMGKBhw4aFtA0bNkz9+/c3qSIAQDwxDCNkH71vevPNN9nPEgAAoBUEY0AU1NbW6oMPPghp++CDD1RbW2tSRQCAeHJyP8uWsJ8lAABA6wjGgAg7eVfK1tr5FB8AcLZO7mf57UsmrVYr+1kCAACcAsEYEGEnP8X3+/0h7X6/n0/xAQDt4uR+li3dAZn9LAEAAFpHMAZEGHelBABEg9vtbrH94MGDUa4EAACg4yAYAyLs5Kf4rbXzKT4A4GwFAgEtWbKkxb4lS5Y0O5MMAAAAJxCMAVEwYMAATZ06NRiCWSwWTZ06lbtSAgDaxc6dO+X1elvs83q92rlzZ5QrAgAA6BgIxoAomTZtmnr16iVJ6t27t6ZOnWpyRQCAeOF0OpWcnNxin8PhkNPpjHJFAAAAHQPBGBAldrtdLpdLKSkpWrBggex2u9klAQDihNVq1T333NNi3z333NPsbpUAAAA4oZPZBQCJZNy4cRo3bpzZZQAA4oxhGCovL2+x780339QNN9zAnpYAAAAt4ONDIIq2b9+u/Px8bd++3exSAABxpLq6WpWVlS32VVZWqrq6OsoVAQAAdAwEY0CUNDY2aunSpfJ4PFq6dKkaGxvNLgkAECcyMjI0duzYFvuysrKUkZER5YoAAAA6BoIxIEpeeuklHT16VJJ09OhRlZaWmlwRACBeWCwWXX/99S32XXfddVxGCQAA0AqCMSAKamtrVVpaKsMwJJ3YC6a0tFS1tbUmVwYAiAeBQEDLly9vsW/58uUKBAJRrggAAKBjIBgDIswwDC1btqzV9pNhGQAAbbVz5055vd4W+7xer3bu3BnligAAADoGgjEgwk5uiOz3+0Pa/X4/GyIDANqF0+lUcnJyi30Oh0NOpzPKFQEAAHQMBGNAhLEhMgAg0qxWq+65554W++655x5ZrfzKBwAA0BJ+SwIizGKxKD8/v8W+/Px8NkQGAJw1wzBUXl7eYt+bb77JZfsAAACtIBgDIswwDK1du7bFvjVr1vDHCgDgrJ28bL8lXLYPAADQOoIxIMI+//xzvffeey32vffee/r888+jXBEAIN6cvGzfZrOFtNtsNi7bBwAAOIVOZhcAAADQFoZhqLGx0ewyYsaPfvQj3X333c3af/jDH/J9kmS329m+AAAANBN2MPbWW2/pqaeeUlVVlQ4ePKiNGzdqwoQJrY5/7bXXtGLFCu3Zs0c+n0/Dhg3TI488otzc3OCYRx55RIsXLw553pAhQ/TRRx+FWx4QczIyMtStWzcdP368WV+3bt34FB8A2qixsVF5eXlmlxHT/H6/Zs2aZXYZMWHz5s3q2rWr2WUAAIAYE/allA0NDRo5cqRKSkrOaPxbb72l7373u/rDH/6gqqoqXXvttbr55pv17rvvhowbNmyYDh48GDzefvvtcEsDYlJNTU2LoZgkHT9+XDU1NVGuCAAAAAAASG04YywvLy+sT2eLi4tDHv/sZz/Tb3/7W73xxhsaPXr014V06qTU1NRwywFiXkZGhoYPH97iPmMjRozgjDEAaCO73a7NmzebXUZMaWxs1MSJEyVJDz74oK666iqTK4oddrvd7BIAAEAMivoeY4FAQMeOHVPPnj1D2j/55BOlpaXJbrcrOztbRUVFrQYGPp9PPp8v+Njr9Ua0ZiBSuCMlALSdxWLh0rhTuOqqq/j+AAAAnEbU70r59NNP6/jx47r99tuDbU6nU2vWrFFZWZlWrFih/fv366qrrtKxY8danKOoqEgOhyN4pKenR6t8IGzV1dWnvCtldXV1lCsCAAAAAABSlIOx0tJSLV68WBs2bFDfvn2D7Xl5ebrttts0YsQI5ebm6g9/+IPq6uq0YcOGFucpKChQfX198GCPJsSyjIwMjR07ttmdsCwWi7KysriUEgAAAAAAk0QtGFu3bp3uvPNObdiwQTk5Oacc26NHD1188cXat29fi/1JSUlKTk4OOYBYZbFYlJ+f3+yyScMwlJ+fz63jAQAAAAAwSVSCsZdfflkzZ87Uyy+/rBtvvPG0448fP65PP/1U/fr1i0J1QGQZhqH169e3eMbYunXr2GcMAAAAAACThB2MHT9+XHv27NGePXskSfv379eePXuC+yQVFBRo+vTpwfGlpaWaPn26fv7zn8vpdMrtdsvtdqu+vj445r777tO2bdv02Wefafv27Zo4caJsNpumTJlyli8PMF91dbUqKytbPGOssrKSPcYAAAAAADBJ2MHYO++8o9GjR2v06NGSJJfLpdGjR6uwsFCSdPDgwZA/9H/1q1/pv//9r+bMmaN+/foFj3nz5gXH1NbWasqUKRoyZIhuv/129erVSzt27FCfPn3O9vUBpju5x5jNZgtpt9ls7DEGAAAAAICJOoX7hGuuueaUl36tWbMm5PHWrVtPO+e6devCLQPoMCwWi+bNmxdyJuVJ8+bNY48xoB188cUXuv/++7V582b95z//0YUXXqjVq1drzJgxkk6coblo0SI9//zzqqur0xVXXKEVK1booosuMrlyAAAAAGaK6l0pgUQ1YMAADRs2LKRt2LBh6t+/v0kVAfHj3//+t6644gp17txZmzdv1gcffKCf//znOu+884JjnnzyST377LNauXKldu7cqXPPPVe5ublqbGw0sXIAAAAAZgv7jDEA4autrdUHH3wQ0vbBBx+otrZWAwYMMKkqID488cQTSk9P1+rVq4NtgwcPDn5tGIaKi4v10EMP6ZZbbpEkvfjii0pJSdHrr7+uyZMntzivz+eTz+cLPvZ6vRF6BQAAAADMwhljQIQZhqFly5a12s5dKYGz87vf/U5jxozRbbfdpr59+2r06NF6/vnng/379++X2+1WTk5OsM3hcMjpdKqioqLVeYuKiuRwOIJHenp6RF8HAAAAgOgjGAMi7ORdKf1+f0i73+/nrpRAO/jnP/8Z3C9sy5Ytmj17tv7f//t/Wrt2rSTJ7XZLklJSUkKel5KSEuxrSUFBgerr64NHTU1N5F4EAAAAAFNwKSUQYSfvSllVVaVAIBBst9lsyszM5K6UwFkKBAIaM2aMfvazn0mSRo8erffff18rV67UjBkz2jxvUlKSkpKS2qtMAAAAADGIM8aACDt5V8pvXzIZCAS4KyXQDvr166dLL700pO2SSy4Jno2ZmpoqSfJ4PCFjPB5PsA8AAABAYiIYA6Lk28GYYRjsLwa0gyuuuEJ79+4Nafv44481cOBASSc24k9NTVV5eXmw3+v1aufOncrOzo5qrQAAAABiC8EYEGGGYWjJkiUt9i1ZsoRwDDhLCxYs0I4dO/Szn/1M+/btU2lpqX71q19pzpw5kk6ctTl//nw99thj+t3vfqf33ntP06dPV1pamiZMmGBu8QAAAABMxR5jQIR99tln+vjjj1vs+/jjj/XZZ59p8ODBUa4KiB9jx47Vxo0bVVBQoCVLlmjw4MEqLi7WtGnTgmMWLlyohoYG3X333aqrq9OVV16psrIy2e12EysHAAAAYDaCMSDCDh48eNp+gjHg7Nx000266aabWu23WCxasmRJq2dvAgAAAEhMXEoJRJjT6ZTV2vL/alarVU6nM8oVAQAAAAAAiWAMiLja2loFAoEW+wKBgGpra6NcEQAAAAAAkAjGgIhLT09XcnJyi33JyclKT0+PckUAAAAAAEAiGAMirqamRl6vt8U+r9ermpqaKFcEAAAAAAAkgjEg4vr3739W/QAAAAAAIDIIxoAI27Rp01n1AwAAAACAyCAYAyLspptuks1ma7GvU6dOuummm6JcEQAAAAAAkAjGgIiz2Wz6yU9+0mLfwoULWw3NAAAAAABAZBGMAVEwfvx4nXPOOSFt55xzjm644QaTKgIAAAAAAARjQBTU1tbK5/OFtPl8PtXW1ppUEQAAAAAAIBgDIswwDC1btqzFvmXLlskwjChXBAAAAAAAJIIxIOKqq6tVWVkpv98f0u73+1VZWanq6mqTKgMAAAAAILERjAERlpGRobFjxzbbZN9msykrK0sZGRkmVQYAAAAAQGIjGAMizGKxaN68ea22WywWE6oCAAAAAACdzC4A8cswDDU2NppdRkzo1auXbrvtNq1fv16GYchisei2225Tz5499eWXX5pdXkyw2+2EhAAAAACAqAo7GHvrrbf01FNPqaqqSgcPHtTGjRs1YcKEUz5n69atcrlc+sc//qH09HQ99NBDuuOOO0LGlJSU6KmnnpLb7dbIkSP1i1/8QllZWeGWhxjS2NiovLw8s8uISYZh6OWXX9bLL79sdikxY/PmzeratavZZQAAAAAAEkjYl1I2NDRo5MiRKikpOaPx+/fv14033qhrr71We/bs0fz583XnnXdqy5YtwTHr16+Xy+XSokWLtHv3bo0cOVK5ubk6dOhQuOUBAAAAAAAAZ8RiGIbR5idbLKc9Y+z+++/Xpk2b9P777wfbJk+erLq6OpWVlUmSnE6nxo4dq+eee06SFAgElJ6ernvvvVcPPPDAaevwer1yOByqr69XcnJyW18O2hmXUoZqbGzUxIkTJUkbN26U3W43uaLYwqWUsYX31eb4nqAj+PLLL4Nna3MmLmId76sAgFgQ8T3GKioqlJOTE9KWm5ur+fPnS5KamppUVVWlgoKCYL/ValVOTo4qKipanNPn88nn8wUfe73e9i8cZ81isfALeSvsdjvfGwAAAAAATBbxu1K63W6lpKSEtKWkpMjr9erLL7/UkSNH5Pf7WxzjdrtbnLOoqEgOhyN4pKenR6x+AAAAAAAAxKeIB2ORUFBQoPr6+uBRU1NjdkkAAAAAAADoYCJ+KWVqaqo8Hk9Im8fjUXJysrp27SqbzSabzdbimNTU1BbnTEpKUlJSUsRqBgAAAAAAQPyL+Blj2dnZKi8vD2n705/+pOzsbElSly5dlJmZGTImEAiovLw8OAYAAAAAAABob2EHY8ePH9eePXu0Z88eSdL+/fu1Z88eVVdXSzpxmeP06dOD43/0ox/pn//8pxYuXKiPPvpIy5cv14YNG7RgwYLgGJfLpeeff15r167Vhx9+qNmzZ6uhoUEzZ848y5cHAAAAAAAAtCzsSynfeecdXXvttcHHLpdLkjRjxgytWbNGBw8eDIZkkjR48GBt2rRJCxYs0LJlyzRgwAD9+te/Vm5ubnBMfn6+Dh8+rMLCQrndbo0aNUplZWXNNuQHAAAAAAAA2kvYwdg111wjwzBa7V+zZk2Lz3n33XdPOe/cuXM1d+7ccMsBAAAAAAAA2qRD3pUSAAAAAAAAOFsEYwAAAAAAAEhIBGMAAAAAAABISARjAAAAAAAASEgEYwCADu+RRx6RxWIJOYYOHRrsb2xs1Jw5c9SrVy9169ZNkyZNksfjMbFiAAAAALGAYAwAEBeGDRumgwcPBo+333472LdgwQK98cYbeuWVV7Rt2zYdOHBAt956q4nVAgAAAIgFncwuAACA9tCpUyelpqY2a6+vr9eqVatUWlqq6667TpK0evVqXXLJJdqxY4cuv/zyaJcKAAAAIEZwxhgAIC588sknSktL0/nnn69p06apurpaklRVVaWvvvpKOTk5wbFDhw5VRkaGKioqWp3P5/PJ6/WGHAAAAADiC8EYAKDDczqdWrNmjcrKyrRixQrt379fV111lY4dOya3260uXbqoR48eIc9JSUmR2+1udc6ioiI5HI7gkZ6eHuFXAQAAACDauJQSANDh5eXlBb8eMWKEnE6nBg4cqA0bNqhr165tmrOgoEAulyv42Ov1Eo4BAAAAcYYzxgAAcadHjx66+OKLtW/fPqWmpqqpqUl1dXUhYzweT4t7kp2UlJSk5OTkkAMAAABAfCEYAwDEnePHj+vTTz9Vv379lJmZqc6dO6u8vDzYv3fvXlVXVys7O9vEKgEAAACYjUspAQAd3n333aebb75ZAwcO1IEDB7Ro0SLZbDZNmTJFDodDs2bNksvlUs+ePZWcnKx7771X2dnZ3JESAAAASHAEYwCADq+2tlZTpkzR0aNH1adPH1155ZXasWOH+vTpI0l65plnZLVaNWnSJPl8PuXm5mr58uUmVw0AAADAbARjAIAOb926dafst9vtKikpUUlJSZQqAgAAANARsMcYAAAAAAAAEhLBGAAAAAAAABISwRgAAAAAAAASEsEYAAAAAAAAEhLBGAAAAAAAABISwRgAAAAAAAASEsEYAAAAAAAAEhLBGAAAAAAAABISwRgAAAAAAAASEsEYAAAAAAAAEhLBGAAAAAAAABJSm4KxkpISDRo0SHa7XU6nU7t27Wp17DXXXCOLxdLsuPHGG4Nj7rjjjmb948ePb0tpAAAAAAAAwBnpFO4T1q9fL5fLpZUrV8rpdKq4uFi5ubnau3ev+vbt22z8a6+9pqampuDjo0ePauTIkbrttttCxo0fP16rV68OPk5KSgq3NAAAAAAAAOCMhR2MLV26VHfddZdmzpwpSVq5cqU2bdqkF154QQ888ECz8T179gx5vG7dOp1zzjnNgrGkpCSlpqaeUQ0+n08+ny/42Ov1hvsyAAAAAAAAkODCupSyqalJVVVVysnJ+XoCq1U5OTmqqKg4ozlWrVqlyZMn69xzzw1p37p1q/r27ashQ4Zo9uzZOnr0aKtzFBUVyeFwBI/09PRwXgYAAAAAAAAQXjB25MgR+f1+paSkhLSnpKTI7Xaf9vm7du3S+++/rzvvvDOkffz48XrxxRdVXl6uJ554Qtu2bVNeXp78fn+L8xQUFKi+vj541NTUhPMyAAAAAAAAgPAvpTwbq1at0vDhw5WVlRXSPnny5ODXw4cP14gRI3TBBRdo69atuv7665vNk5SUxB5kAAAAAAAAOCthnTHWu3dv2Ww2eTyekHaPx3Pa/cEaGhq0bt06zZo167T/zvnnn6/evXtr37594ZQHAAAAAAAAnLGwgrEuXbooMzNT5eXlwbZAIKDy8nJlZ2ef8rmvvPKKfD6fvv/975/236mtrdXRo0fVr1+/cMoDAAAAAAAAzlhYwZgkuVwuPf/881q7dq0+/PBDzZ49Ww0NDcG7VE6fPl0FBQXNnrdq1SpNmDBBvXr1Cmk/fvy4fvKTn2jHjh367LPPVF5erltuuUUXXnihcnNz2/iyAAAAAAAAgFMLe4+x/Px8HT58WIWFhXK73Ro1apTKysqCG/JXV1fLag3N2/bu3au3335bf/zjH5vNZ7PZ9Pe//11r165VXV2d0tLSdMMNN+jRRx9lHzEAAAAAAABETJs23587d67mzp3bYt/WrVubtQ0ZMkSGYbQ4vmvXrtqyZUtbygAAAAAAAADaLOxLKQEAAAAAAIB4QDAGAAAAAACAhEQwBgAAAAAAgIREMAYAAAAAAICERDAGAAAAAACAhEQwBgAAAAAAgIREMAYAAAAAAICERDAGAAAAAACAhEQwBgCIK48//rgsFovmz58fbGtsbNScOXPUq1cvdevWTZMmTZLH4zGvSAAAAAAxgWAMABA3Kisr9ctf/lIjRowIaV+wYIHeeOMNvfLKK9q2bZsOHDigW2+91aQqAQAAAMQKgjEAQFw4fvy4pk2bpueff17nnXdesL2+vl6rVq3S0qVLdd111ykzM1OrV6/W9u3btWPHDhMrBgAAAGA2gjEAQFyYM2eObrzxRuXk5IS0V1VV6auvvgppHzp0qDIyMlRRUdHqfD6fT16vN+QAAAAAEF86mV0AAABna926ddq9e7cqKyub9bndbnXp0kU9evQIaU9JSZHb7W51zqKiIi1evLi9SwUAAAAQQzhjDADQodXU1GjevHl66aWXZLfb223egoIC1dfXB4+ampp2mxsAAABAbOCMMQBAh1ZVVaVDhw7pO9/5TrDN7/frrbfe0nPPPactW7aoqalJdXV1IWeNeTwepaamtjpvUlKSkpKSIll62AzDUGNjo9llIIZ98+eDnxWcit1ul8ViMbsMAABMRzAGAOjQrr/+er333nshbTNnztTQoUN1//33Kz09XZ07d1Z5ebkmTZokSdq7d6+qq6uVnZ1tRslt1tjYqLy8PLPLQAcxceJEs0tADNu8ebO6du1qdhkAAJiOYAwA0KF1795dl112WUjbueeeq169egXbZ82aJZfLpZ49eyo5OVn33nuvsrOzdfnll5tRMgAAAIAYQTAGAIh7zzzzjKxWqyZNmiSfz6fc3FwtX77c7LLOyvFRU2RYWcbxLYYhBf574mtrJ4lL5fANlsB/1W3Py2aXAQBATOE36nbE3i84FfZ9QTjY++XsbN26NeSx3W5XSUmJSkpKzCkoAgxrJ8nW2ewyEJO6mF0AYpRhdgEAAMQggrF2xN4vOFPs+4LTYe8XAAAAAIg8q9kFAAAAAAAAAGbgjLEIYe8XNMO+LzgN9n4BAAAAgOgiuYkQ9n5By9j3Ba1j7xcAAAAAiC4upQQAAAAAAEBCIhgDAAAAAABAQmpTMFZSUqJBgwbJbrfL6XRq165drY5ds2aNLBZLyGG320PGGIahwsJC9evXT127dlVOTo4++eSTtpQGAAAAAAAAnJGwg7H169fL5XJp0aJF2r17t0aOHKnc3FwdOnSo1eckJyfr4MGDwePzzz8P6X/yySf17LPPauXKldq5c6fOPfdc5ebmqrGxMfxXBAAAAAAAAJyBsIOxpUuX6q677tLMmTN16aWXauXKlTrnnHP0wgsvtPoci8Wi1NTU4JGSkhLsMwxDxcXFeuihh3TLLbdoxIgRevHFF3XgwAG9/vrrbXpRAAAAAAAAwOmEFYw1NTWpqqpKOTk5X09gtSonJ0cVFRWtPu/48eMaOHCg0tPTdcstt+gf//hHsG///v1yu90hczocDjmdzlbn9Pl88nq9IQcAAAAAAAAQjrCCsSNHjsjv94ec8SVJKSkpcrvdLT5nyJAheuGFF/Tb3/5Wv/nNbxQIBDRu3DjV1tZKUvB54cxZVFQkh8MRPNLT08N5GQAAAAAAAEDk70qZnZ2t6dOna9SoUbr66qv12muvqU+fPvrlL3/Z5jkLCgpUX18fPGpqatqxYgAAAAAAACSCsIKx3r17y2azyePxhLR7PB6lpqae0RydO3fW6NGjtW/fPkkKPi+cOZOSkpScnBxyAAAAAAAAAOEIKxjr0qWLMjMzVV5eHmwLBAIqLy9Xdnb2Gc3h9/v13nvvqV+/fpKkwYMHKzU1NWROr9ernTt3nvGcAAAAAAAAQLg6hfsEl8ulGTNmaMyYMcrKylJxcbEaGho0c+ZMSdL06dPVv39/FRUVSZKWLFmiyy+/XBdeeKHq6ur01FNP6fPPP9edd94p6cQdK+fPn6/HHntMF110kQYPHqyHH35YaWlpmjBhQvu9UgAAAAAAAOAbwg7G8vPzdfjwYRUWFsrtdmvUqFEqKysLbp5fXV0tq/XrE9H+/e9/66677pLb7dZ5552nzMxMbd++XZdeemlwzMKFC9XQ0KC7775bdXV1uvLKK1VWVia73d4OLxEAAAAAAABoLuxgTJLmzp2ruXPntti3devWkMfPPPOMnnnmmVPOZ7FYtGTJEi1ZsqQt5QAAAAAAAABhi/hdKQEAAAAAAIBYRDAGAAAAAACAhEQwBgAAAAAAgIREMAYAAAAAAICERDAGAAAAAACAhEQwBgAAAAAAgIREMAYAAAAAAICERDAGAAAAAACAhEQwBgAAAAAAgIREMAYAAAAAAICERDAGAAAAAACAhEQwBgAAAAAAgIREMAYAAAAAAICERDAGAOjwVqxYoREjRig5OVnJycnKzs7W5s2bg/2NjY2aM2eOevXqpW7dumnSpEnyeDwmVgwAAAAgFnQyu4B4YhjG1w/8X5lXCICO6RvvGyHvJzitAQMG6PHHH9dFF10kwzC0du1a3XLLLXr33Xc1bNgwLViwQJs2bdIrr7wih8OhuXPn6tZbb9Vf//pXs0sHAAAAYCKCsXbk8/mCX3f/2zoTKwHQ0fl8Pp1zzjlml9Fh3HzzzSGPf/rTn2rFihXasWOHBgwYoFWrVqm0tFTXXXedJGn16tW65JJLtGPHDl1++eVmlAwAAAAgBnApJQAgrvj9fq1bt04NDQ3Kzs5WVVWVvvrqK+Xk5ATHDB06VBkZGaqoqGh1Hp/PJ6/XG3IAAAAAiC+cMdaOkpKSgl8fGzlZsnU2sRoAHY7/q+DZpt98P8GZee+995Sdna3GxkZ169ZNGzdu1KWXXqo9e/aoS5cu6tGjR8j4lJQUud3uVucrKirS4sWLI1w1AAAAADMRjLUji8Xy9QNbZ4IxAG0W8n6CMzJkyBDt2bNH9fX1+r//+z/NmDFD27Zta/N8BQUFcrlcwcder1fp6entUSoAAACAGEEwBgCIC126dNGFF14oScrMzFRlZaWWLVum/Px8NTU1qa6uLuSsMY/Ho9TU1FbnS0pK4sw9AAAAIM6xxxgAIC4FAgH5fD5lZmaqc+fOKi8vD/bt3btX1dXVys7ONrFCAAAAAGbjjDEAQIdXUFCgvLw8ZWRk6NixYyotLdXWrVu1ZcsWORwOzZo1Sy6XSz179lRycrLuvfdeZWdnc0dKAAAAIMERjAEAOrxDhw5p+vTpOnjwoBwOh0aMGKEtW7bou9/9riTpmWeekdVq1aRJk+Tz+ZSbm6vly5ebXDUAAAAAsxGMAQA6vFWrVp2y3263q6SkRCUlJVGqKDIMw/j6gf8r8woB0DF9430j5P0EAIAERjAGAEAH4fP5gl93/9s6EysB0NH5fD6dc845ZpcBAIDp2rT5fklJiQYNGiS73S6n06ldu3a1Ovb555/XVVddpfPOO0/nnXeecnJymo2/4447ZLFYQo7x48e3pTQAAAAAAADgjIR9xtj69evlcrm0cuVKOZ1OFRcXKzc3V3v37lXfvn2bjd+6daumTJmicePGyW6364knntANN9ygf/zjH+rfv39w3Pjx47V69erg46SkpDa+JAAA4tM318ZjIydLts4mVgOgw/F/FTzblN+1AQA4IexgbOnSpbrrrrs0c+ZMSdLKlSu1adMmvfDCC3rggQeajX/ppZdCHv/617/Wq6++qvLyck2fPj3YnpSUpNTU1HDLAQAgYVgslq8f2DoTjAFos5D3EwAAElhYl1I2NTWpqqpKOTk5X09gtSonJ0cVFRVnNMd//vMfffXVV+rZs2dI+9atW9W3b18NGTJEs2fP1tGjR1udw+fzyev1hhwAAAAAAABAOMI6Y+zIkSPy+/1KSUkJaU9JSdFHH310RnPcf//9SktLCwnXxo8fr1tvvVWDBw/Wp59+qgcffFB5eXmqqKiQzWZrNkdRUZEWL14cTulRZwn8V9zrByEMQwr898TX1k4Sn9TiWywnfz4AAAAAAFER1btSPv7441q3bp22bt0qu90ebJ88eXLw6+HDh2vEiBG64IILtHXrVl1//fXN5ikoKJDL5Qo+9nq9Sk9Pj2zxYeq252WzSwAAAAAAAMAphHUpZe/evWWz2eTxeELaPR7PafcHe/rpp/X444/rj3/8o0aMGHHKseeff7569+6tffv2tdiflJSk5OTkkAMAAAAAAAAIR1hnjHXp0kWZmZkqLy/XhAkTJEmBQEDl5eWaO3duq8978skn9dOf/lRbtmzRmDFjTvvv1NbW6ujRo+rXr1845ZnObrdr8+bNZpeBGNXY2KiJEydKkjZu3Bhy1iTwbfx8AAAAAEDkhX0ppcvl0owZMzRmzBhlZWWpuLhYDQ0NwbtUTp8+Xf3791dRUZEk6YknnlBhYaFKS0s1aNAgud1uSVK3bt3UrVs3HT9+XIsXL9akSZOUmpqqTz/9VAsXLtSFF16o3NzcdnypkWexWNS1a1ezy0AHYLfb+VkBAAAAAMBkYQdj+fn5Onz4sAoLC+V2uzVq1CiVlZUFN+Svrq6W1fr1FZorVqxQU1OTvve974XMs2jRIj3yyCOy2Wz6+9//rrVr16qurk5paWm64YYb9OijjyopKeksXx4AAAAAAADQsjZtvj937txWL53cunVryOPPPvvslHN17dpVW7ZsaUsZAAAAAAAAQJuFtfk+AAAAAAAAEC8IxgAAAAAAAJCQCMYAAAAAAACQkAjGAAAAAAAAkJAIxgAAAAAAAJCQCMYAAAAAAACQkAjGAAAAAAAAkJAIxgAAAAAAAJCQOpldAAAACJ8l8F8ZZheB2GMYUuC/J762dpIsFnPrQUyxnPzZAAAAQQRjAAB0QN32vGx2CQAAAECHx6WUAAAAAAAASEicMQYAQAdht9u1efNms8tADGtsbNTEiRMlSRs3bpTdbje5IsQqfjYAADiBYAwAgA7CYrGoa9euZpeBDsJut/PzAgAAcBpcSgkAAAAAAICERDAGAAAAAACAhEQwBgAAAAAAgITEHmOIGMMw1NjYaHYZMeOb3wu+L83Z7XZZLBazywDQgbDONMda0zrWGQAA0BKCMURMY2Oj8vLyzC4jJp28Yxi+tnnzZjaJBhAW1plTY60JxToDAABawqWUAIAOr6ioSGPHjlX37t3Vt29fTZgwQXv37g0Z09jYqDlz5qhXr17q1q2bJk2aJI/HY1LFAAAAAGKBxTAMw+wizpbX65XD4VB9fb2Sk5PNLgf/Py5xCWUYhnw+nyQpKSmJyzm+hUtcYktHe18dP368Jk+erLFjx+q///2vHnzwQb3//vv64IMPdO6550qSZs+erU2bNmnNmjVyOByaO3eurFar/vrXv57Rv9HRvieJgHWmOdaa1rHOxB7eVwEAsYBgDADQTEd/Xz18+LD69u2rbdu26X/+539UX1+vPn36qLS0VN/73vckSR999JEuueQSVVRU6PLLLz/tnB39ewIAsYb3VQBALOBSSgBA3Kmvr5ck9ezZU5JUVVWlr776Sjk5OcExQ4cOVUZGhioqKlqcw+fzyev1hhwAAAAA4gvBGAAgrgQCAc2fP19XXHGFLrvsMkmS2+1Wly5d1KNHj5CxKSkpcrvdLc5TVFQkh8MRPNLT0yNdOgAAAIAoIxgDAMSVOXPm6P3339e6devOap6CggLV19cHj5qamnaqEAAAAECs6GR2AQAAtJe5c+fq97//vd566y0NGDAg2J6amqqmpibV1dWFnDXm8XiUmpra4lxJSUlKSkqKdMkAAAAATNSmM8ZKSko0aNAg2e12OZ1O7dq165TjX3nlFQ0dOlR2u13Dhw/XH/7wh5B+wzBUWFiofv36qWvXrsrJydEnn3zSltIAAAnIMAzNnTtXGzdu1J///GcNHjw4pD8zM1OdO3dWeXl5sG3v3r2qrq5WdnZ2tMsFAAAAECPCDsbWr18vl8ulRYsWaffu3Ro5cqRyc3N16NChFsdv375dU6ZM0axZs/Tuu+9qwoQJmjBhgt5///3gmCeffFLPPvusVq5cqZ07d+rcc89Vbm4ut2AHAJyROXPm6De/+Y1KS0vVvXt3ud1uud1uffnll5Ikh8OhWbNmyeVy6S9/+Yuqqqo0c+ZMZWdnn9EdKQEAAADEJ4thGEY4T3A6nRo7dqyee+45SSc2OU5PT9e9996rBx54oNn4/Px8NTQ06Pe//32w7fLLL9eoUaO0cuVKGYahtLQ0/fjHP9Z9990n6cTdxFJSUrRmzRpNnjz5tDVxq2cAaF8d7X3VYrG02L569WrdcccdkqTGxkb9+Mc/1ssvvyyfz6fc3FwtX7681Uspv62jfU8AINbxvgoAiAVhnTHW1NSkqqqqkNvdW61W5eTktHq7+4qKipDxkpSbmxscv3//frnd7pAxDodDTqez1Tl9Pp+8Xm/IAQBIXIZhtHicDMUkyW63q6SkRP/617/U0NCg11577YxDMQAAAADxKazN948cOSK/36+UlJSQ9pSUFH300UctPsftdrc43u12B/tPtrU25tuKioq0ePHiZu0EZADQPk6+n4Z5UnFcO/m9YK0BgPbBWgMAiAUd8q6UBQUFcrlcwcdffPGFLr30UqWnp5tYFQDEn2PHjsnhcJhdRkw4duyYJLHWAEA7Y60BAJgprGCsd+/estls8ng8Ie2nut19amrqKcef/K/H41G/fv1CxowaNarFOZOSkpSUlBR83K1bN9XU1Kh79+6t7jMDxAKv16v09HTV1NSwlwZimmEYOnbsmNLS0swuJWakpaWx1qBDYK1BR8FaAwCIBWEFY126dFFmZqbKy8s1YcIESSc23y8vL9fcuXNbfE52drbKy8s1f/78YNuf/vQnZWdnS5IGDx6s1NRUlZeXB4Mwr9ernTt3avbs2WdUl9Vq1YABA8J5KYCpkpOT+WMFMY9P70Ox1qCjYa1BR8BaAwAwW9iXUrpcLs2YMUNjxoxRVlaWiouL1dDQoJkzZ0qSpk+frv79+6uoqEiSNG/ePF199dX6+c9/rhtvvFHr1q3TO++8o1/96leSTtxJbP78+Xrsscd00UUXafDgwXr44YeVlpYWDN8AAAAAAACA9hZ2MJafn6/Dhw+rsLBQbrdbo0aNUllZWXDz/OrqalmtX9/scty4cSotLdVDDz2kBx98UBdddJFef/11XXbZZcExCxcuVENDg+6++27V1dXpyiuvVFlZmex2ezu8RAAAAAAAAKA5i8FtYICo8fl8KioqUkFBQcg+eQAAtBfWGgAAgDNHMAYAAAAAAICEZD39EAAAAAAAACD+EIwBAAAAAAAgIRGMAQAAAAAAICERjAEAAAAAACAhEYwBAAAAAAAgIRGMAVFUUlKiQYMGyW63y+l0ateuXWaXBACII6wzAAAA4SEYA6Jk/fr1crlcWrRokXbv3q2RI0cqNzdXhw4dMrs0AEAcYJ0BAAAIn8UwDMPsIoBE4HQ6NXbsWD333HOSpEAgoPT0dN1777164IEHTK4OANDRsc4AAACEjzPGgChoampSVVWVcnJygm1Wq1U5OTmqqKgwsTIAQDxgnQEAAGgbgjEgCo4cOSK/36+UlJSQ9pSUFLndbpOqAgDEC9YZAACAtiEYAwAAAAAAQEIiGAOioHfv3rLZbPJ4PCHtHo9HqampJlUFAIgXrDMAAABtQzAGREGXLl2UmZmp8vLyYFsgEFB5ebmys7NNrAwAEA9YZwAAANqmk9kFAInC5XJpxowZGjNmjLKyslRcXKyGhgbNnDnT7NIAAHGAdQYAACB8BGNAlOTn5+vw4cMqLCyU2+3WqFGjVFZW1myjZAAA2oJ1BgAAIHwWwzAMs4sAAAAAAAAAoo09xgAAAAAAAJCQCMYAAAAAAACQkAjGAAAAAAAAkJAIxgAAAAAAAJCQCMYAAAAAAACQkAjGAAAAAAAAkJAIxgAAAAAAAJCQCMYAAAAAAACQkAjGAAAAAAAAkJAIxgAAAAAAAJCQCMYAAAAAAACQkP4/gV8KA2CPTaQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize =(15, 12))\n", + "plt.subplot(3,3,1)\n", + "bp=sns.boxplot(df['Pregnancies'])\n", + "plt.subplot(3,3,2)\n", + "bp=sns.boxplot(df['Glucose'])\n", + "plt.subplot(3,3,3)\n", + "bp=sns.boxplot(df['BloodPressure'])\n", + "plt.subplot(3,3,4)\n", + "bp=sns.boxplot(df['SkinThickness'])\n", + "plt.subplot(3,3,5)\n", + "bp=sns.boxplot(df['Insulin'])\n", + "plt.subplot(3,3,6)\n", + "bp=sns.boxplot(df['BMI'])\n", + "plt.subplot(3,3,7)\n", + "bp=sns.boxplot(df['DiabetesPedigreeFunction'])\n", + "plt.subplot(3,3,8)\n", + "bp=sns.boxplot(df['Age'])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "64489a26", + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.metrics import classification_report\n", + "from sklearn.metrics import accuracy_score\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import mean_squared_error,mean_absolute_error, r2_score" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "0de949d6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAge
061487235033.60.62750
11856629026.60.35131
28183640023.30.67232
318966239428.10.16721
40137403516843.12.28833
...........................
76310101764818032.90.17163
76421227027036.80.34027
7655121722311226.20.24530
7661126600030.10.34947
7671937031030.40.31523
\n", + "

768 rows × 8 columns

\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "0 6 148 72 35 0 33.6 \n", + "1 1 85 66 29 0 26.6 \n", + "2 8 183 64 0 0 23.3 \n", + "3 1 89 66 23 94 28.1 \n", + "4 0 137 40 35 168 43.1 \n", + ".. ... ... ... ... ... ... \n", + "763 10 101 76 48 180 32.9 \n", + "764 2 122 70 27 0 36.8 \n", + "765 5 121 72 23 112 26.2 \n", + "766 1 126 60 0 0 30.1 \n", + "767 1 93 70 31 0 30.4 \n", + "\n", + " DiabetesPedigreeFunction Age \n", + "0 0.627 50 \n", + "1 0.351 31 \n", + "2 0.672 32 \n", + "3 0.167 21 \n", + "4 2.288 33 \n", + ".. ... ... \n", + "763 0.171 63 \n", + "764 0.340 27 \n", + "765 0.245 30 \n", + "766 0.349 47 \n", + "767 0.315 23 \n", + "\n", + "[768 rows x 8 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "0 1\n", + "1 0\n", + "2 1\n", + "3 0\n", + "4 1\n", + " ..\n", + "763 0\n", + "764 0\n", + "765 0\n", + "766 1\n", + "767 0\n", + "Name: Outcome, Length: 768, dtype: int64" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "# X = feature values, all the columns except the species column\n", + "X = data.iloc[:, :-1]\n", + "display(X)\n", + "\n", + "# y = target values, only the species column\n", + "y = data.iloc[:, -1]\n", + "display(y)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "af7c8ec6", + "metadata": {}, + "outputs": [], + "source": [ + "x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "b6ac071c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 9 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 4.25592D+02 |proj g|= 7.37050D+03\n", + "\n", + "At iterate 50 f= 3.73430D+02 |proj g|= 1.32122D+02\n", + "\n", + "At iterate 100 f= 2.90810D+02 |proj g|= 4.94892D+02\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 9 100 112 1 0 0 4.949D+02 2.908D+02\n", + " F = 290.80979408501042 \n", + "\n", + "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n", + " This problem is unconstrained.\n", + "[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s finished\n" + ] + }, + { + "data": { + "text/html": [ + "
LogisticRegression(verbose=1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "LogisticRegression(verbose=1)" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "#Train the model\n", + "model = LogisticRegression(verbose=1)\n", + "model.fit(x_train, y_train) #Training the model" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "33192d04", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0\n", + " 0 1 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0\n", + " 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 1 0 1 0 0\n", + " 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1\n", + " 0 0 1 0 0 0]\n", + "\n", + " precision recall f1-score support\n", + "\n", + " 0 0.78 0.84 0.81 96\n", + " 1 0.70 0.60 0.65 58\n", + "\n", + " accuracy 0.75 154\n", + " macro avg 0.74 0.72 0.73 154\n", + "weighted avg 0.75 0.75 0.75 154\n", + "\n" + ] + } + ], + "source": [ + "#Test the model\n", + "predictions = model.predict(x_test)\n", + "print(predictions)# printing predictions\n", + "\n", + "print()# Printing new line\n", + "\n", + "#Check precision, recall, f1-score\n", + "print( classification_report(y_test, predictions) )" + ] + }, + { + "cell_type": "markdown", + "id": "042386d4", + "metadata": {}, + "source": [ + "# Using KNN method " + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "ef326578", + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.cluster import KMeans\n", + "from scipy.spatial.distance import cdist\n", + "distortions = []\n", + "inertias = []\n", + "mapping1 = {}\n", + "mapping2 = {}\n", + "K = range(1, 10)\n", + " \n", + "for k in K:\n", + " # Building and fitting the model\n", + " kmeanModel = KMeans(n_clusters=k).fit(X)\n", + " kmeanModel.fit(X)\n", + " \n", + " distortions.append(sum(np.min(cdist(X, kmeanModel.cluster_centers_,\n", + " 'euclidean'), axis=1)) / X.shape[0])\n", + " inertias.append(kmeanModel.inertia_)\n", + " \n", + " mapping1[k] = sum(np.min(cdist(X, kmeanModel.cluster_centers_,\n", + " 'euclidean'), axis=1)) / X.shape[0]\n", + " mapping2[k] = kmeanModel.inertia_" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "1ba940b2", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcXElEQVR4nO3deVxU9f7H8dcAggiC4gLivqOmqWiGZqZSZq65L+V6s8V96aaVS2FZ3Rbz12J1S809K83MJXdN0dTULM1wNxNskUVNVDi/P85ldAQVcOAMw/v5eJwHM+ecOfMZRHn7/X7P92szDMNARERExE15WF2AiIiISE5S2BERERG3prAjIiIibk1hR0RERNyawo6IiIi4NYUdERERcWsKOyIiIuLWFHZERETErSnsiIiIiFtT2BG3smHDBmw2G59//rnVpdjdd9993Hffffbnrlijq+jXrx/+/v658l42m41JkyblynulqVChAv369cvV98yuY8eOYbPZmDlzptWlZMr1f89ErqWwIy7PZrNlatuwYUOu1ZT2i+BG2yuvvJJrtThbv379sNlsBAQE8M8//6Q7HhMTY/+cr7/+epavf+HCBSZNmpSrf17i+PfIy8uLoKAgwsPDGT58OPv373fa+7z33ns5FpD279/PpEmTOHbsWI5cX9yXl9UFiNzK7NmzHZ5/+umnrF69Ot3+GjVqcODAgdwsjZ49e/LQQw+l21+vXr1crcPZvLy8uHDhAl9//TXdunVzODZ37lwKFizIxYsXs3XtCxcu8MILLwDku/+JHzx4EA8P6/6Pef/999OnTx8MwyAhIYG9e/cya9Ys3nvvPV599VVGjRplP7d8+fL8888/FChQIEvv8d5771G8ePEcacHav38/L7zwAvfddx8VKlRwOPbtt986/f3EfSjsiMt75JFHHJ5v27aN1atXp9sP5HrYqV+/foZ15HU+Pj40adKE+fPnpws78+bNo02bNnzxxRcWVZd3+fj4WPr+1apVS/fz+sorr9CuXTtGjx5NWFiYPbzbbDYKFixoRZnpXLx4EW9v75uec6vjkr+pG0vcUmpqKi+99BJlypShYMGCtGzZkkOHDqU7b/v27Tz44IMEBgZSqFAhmjVrxpYtW3KlxpSUFJ599llCQkLw8/Ojffv2nDx5Mt15ixYtIjw8HF9fX4oXL84jjzzCqVOn7MeXLl2KzWbjxx9/tO/74osvsNlsdOrUyeFaNWrUoHv37pmqr1evXqxYsYL4+Hj7vh07dhATE0OvXr0yfE18fDwjRoygbNmy+Pj4UKVKFV599VVSU1MBs/uvRIkSALzwwgv2bpXrx86cOnWKjh074u/vT4kSJRgzZgwpKSkO55w/f57Ro0fb36t69eq8/vrrGIbhcF5ycjIjR46kRIkSFC5cmPbt2/Pbb79l6nswc+ZMbDZbum6TtHFX13bFxcTE0LlzZ0JCQihYsCBlypShR48eJCQk2M+5fsxO2vW3bNnCqFGjKFGiBH5+fjz88MP88ccfDu+ZmprKpEmTCA0NpVChQjRv3pz9+/ff9jigYsWKsWDBAry8vHjppZfs+zMasxMbG0v//v0pU6YMPj4+lCpVig4dOti/PxUqVODnn39m48aN9j/ba1vvjhw5QteuXQkKCqJQoULcfffdfPPNNxl+bxcsWMDzzz9P6dKlKVSoENOmTaNr164ANG/ePF33dUZjds6cOcPAgQMJDg6mYMGC3HnnncyaNcvhnLTP+frrr/Phhx9SuXJlfHx8aNiwITt27Mj291Vci1p2xC298soreHh4MGbMGBISEnjttdfo3bs327dvt5+zbt06WrduTXh4OBMnTsTDw4MZM2bQokULNm/ezF133XXL97lw4QJ//vlnuv1FihTBy+vmf71eeuklbDYbzzzzDGfOnGHq1KlERkayZ88efH19AfOXYf/+/WnYsCFTpkwhLi6Ot99+my1btrB7926KFCnCPffcg81mY9OmTdSpUweAzZs34+HhwXfffWd/vz/++INffvmFIUOGZOp72KlTJ5544gm+/PJLBgwYAJitOmFhYdSvXz/D70WzZs04deoUjz/+OOXKlWPr1q2MGzeO06dPM3XqVEqUKMH777/Pk08+ycMPP2wPY2l1gxkCW7VqRaNGjXj99ddZs2YNb7zxBpUrV+bJJ58EwDAM2rdvz/r16xk4cCB169Zl1apVPP3005w6dYq33nrLfr1//etfzJkzh169etG4cWPWrVtHmzZtMvU9yKxLly7RqlUrkpOTGTp0KCEhIZw6dYply5YRHx9PYGDgTV8/dOhQihYtysSJEzl27BhTp05lyJAhLFy40H7OuHHjeO2112jXrh2tWrVi7969tGrVKtvdidcqV64czZo1Y/369SQmJhIQEJDheZ07d+bnn39m6NChVKhQgTNnzrB69WpOnDhBhQoVmDp1KkOHDsXf35/nnnsOgODgYADi4uJo3LgxFy5cYNiwYRQrVoxZs2bRvn17Pv/8cx5++GGH94qKisLb25sxY8aQnJzMAw88wLBhw5g2bRrPPvssNWrUALB/vd4///zDfffdx6FDhxgyZAgVK1Zk0aJF9OvXj/j4eIYPH+5w/rx580hKSuLxxx/HZrPx2muv0alTJ44cOZLlrjxxQYZIHjN48GDjRj+669evNwCjRo0aRnJysn3/22+/bQDGvn37DMMwjNTUVKNq1apGq1atjNTUVPt5Fy5cMCpWrGjcf//9N63h6NGjBnDDLTo62n5us2bNjGbNmqWrsXTp0kZiYqJ9/2effWYAxttvv20YhmFcunTJKFmypHHHHXcY//zzj/28ZcuWGYAxYcIE+75atWoZ3bp1sz+vX7++0bVrVwMwDhw4YBiGYXz55ZcGYOzdu/emn61v376Gn5+fYRiG0aVLF6Nly5aGYRhGSkqKERISYrzwwgv2z/+f//zH/rqoqCjDz8/P+PXXXx2uN3bsWMPT09M4ceKEYRiG8ccffxiAMXHixAzfGzBefPFFh/316tUzwsPD7c+XLFliAMbkyZMdzuvSpYths9mMQ4cOGYZhGHv27DEA46mnnnI4r1evXjes4VozZswwAOPo0aMO+9P+DNevX28YhmHs3r3bAIxFixbd9Hrly5c3+vbtm+76kZGRDj+HI0eONDw9PY34+HjDMAwjNjbW8PLyMjp27OhwvUmTJhmAwzVvBDAGDx58w+PDhw93+PlI+zOeMWOGYRiGcfbs2XR/5hmpVauWw897mhEjRhiAsXnzZvu+pKQko2LFikaFChWMlJQUwzCufm8rVapkXLhwweEaixYtcvi+X+v6v2dTp041AGPOnDn2fZcuXTIiIiIMf39/+9+9tM9ZrFgx4++//7af+9VXXxmA8fXXX9/080reoG4scUv9+/d36MNv2rQpYDajA+zZs8feHfPXX3/x559/8ueff3L+/HlatmzJpk2b7F0vNzNo0CBWr16dbqtZs+YtX9unTx8KFy5sf96lSxdKlSrF8uXLAdi5cydnzpzhqaeechg70aZNG8LCwhya/5s2bcrmzZsBSEpKYu/evQwaNIjixYvb92/evJkiRYpwxx133LK2NL169WLDhg3Exsaybt06YmNjb9iFtWjRIpo2bUrRokXt388///yTyMhIUlJS2LRpU6bf94knnnB43rRpU/ufHcDy5cvx9PRk2LBhDueNHj0awzBYsWKF/Twg3XkjRozIdC2ZkdZys2rVKi5cuJDl1w8aNAibzWZ/3rRpU1JSUjh+/DgAa9eu5cqVKzz11FMOrxs6dOhtVO0o7Zb/pKSkDI/7+vri7e3Nhg0bOHv2bJavv3z5cu666y7uueceh/ccNGgQx44dS3dHWN++fe0tnNmxfPlyQkJC6Nmzp31fgQIFGDZsGOfOnWPjxo0O53fv3p2iRYvan1//b4bkberGErdUrlw5h+dp/4il/SMdExMDmP+g3khCQoLDP34ZqVq1KpGRkdmqsWrVqg7PbTYbVapUsY9/SPtFV7169XSvDQsLc+iiatq0KdOnT+fQoUMcPnwYm81GRESEPQQ99thjbN68mSZNmmTpbqCHHnqIwoULs3DhQvbs2UPDhg0darxWTEwMP/74o31MzvXOnDmTqfcsWLBgumsULVrU4Rfs8ePHCQ0NdQiLcLVLI+17d/z4cTw8PKhcubLDeRl9T29HxYoVGTVqFG+++SZz586ladOmtG/fnkceeeSWXVhw65/XtM9TpUoVh/OCgoJu+TOaWefOnQNI9z1N4+Pjw6uvvsro0aMJDg7m7rvvpm3btvTp04eQkJBbXv/48eM0atQo3f5r/8yuDeIVK1bMzsdweL+qVaum+3m//mckza3+DCRvU9gRt+Tp6ZnhfuN/g1fTWm3+85//ULdu3QzPza3J7Zwh7X/LmzZt4siRI9SvXx8/Pz+aNm3KtGnTOHfuHLt373YYgJoZPj4+dOrUiVmzZnHkyJGbTsKXmprK/fffz7///e8Mj1erVi1T73mjPzsrXNvacq3rB0sDvPHGG/Tr14+vvvqKb7/9lmHDhjFlyhS2bdtGmTJlbvo+t/p5zQ0//fQTnp6eNw0ZI0aMoF27dixZsoRVq1Yxfvx4pkyZwrp165w+3cLttOpkhyv8GUjOUdiRfCntf/oBAQHZbpm5XWmtS2kMw+DQoUP2wbrly5cHzLlZWrRo4XDuwYMH7cfB/F9puXLl2Lx5M0eOHLE3wd97772MGjWKRYsWkZKSwr333pvlOnv16sUnn3yCh4cHPXr0uOF5lStX5ty5c7f8ft4oQGRF+fLlWbNmDUlJSQ4tEb/88ov9eNrX1NRUDh8+7NCac/DgwUy9T9r/7q+9Iw3StwqkqV27NrVr1+b5559n69atNGnShOnTpzN58uRMf7aMpH2eQ4cOOYSRv/76yyktDydOnGDjxo1ERETcsGUnTeXKlRk9ejSjR48mJiaGunXr8sYbbzBnzhzgxn++5cuXz/D7fv2f2c1k5WenfPny/Pjjj6Smpjq07mTl/cR9aMyO5Evh4eFUrlyZ119/3d58f63rb/vNCZ9++qnD+IjPP/+c06dP07p1awAaNGhAyZIlmT59OsnJyfbzVqxYwYEDB9LdUdS0aVPWrVvH999/bw87devWpXDhwrzyyiv4+voSHh6e5TqbN29OVFQU77zzzk27K7p160Z0dDSrVq1Kdyw+Pp4rV64AUKhQIfu+7HrooYdISUnhnXfecdj/1ltvYbPZ7N/DtK/Tpk1zOG/q1KmZep+0UHzteKOUlBQ+/PBDh/MSExPtny9N7dq18fDwcPizy66WLVvi5eXF+++/77D/+s+fHX///Tc9e/YkJSXFfgdVRi5cuJDuzq/KlStTuHBhh8/o5+eX4Z/tQw89xPfff090dLR93/nz5/nwww+pUKFCpsa5+fn5AZn72XnooYeIjY11uKPtypUr/N///R/+/v40a9bsltcQ96GWHcmXPDw8+O9//0vr1q2pVasW/fv3p3Tp0pw6dYr169cTEBDA119/fcvr/PDDD/b/0V6rcuXKRERE3PS1QUFB3HPPPfTv35+4uDimTp1KlSpVeOyxxwBzMOWrr75K//79adasGT179rTfel6hQgVGjhzpcL2mTZsyd+5cbDabvVvL09OTxo0bs2rVKu67775sTbzm4eHB888/f8vznn76aZYuXUrbtm3p168f4eHhnD9/nn379vH5559z7Ngxihcvjq+vLzVr1mThwoVUq1aNoKAg7rjjjiwNnG7Xrh3Nmzfnueee49ixY9x55518++23fPXVV4wYMcIeUurWrUvPnj157733SEhIoHHjxqxduzbDOZcyUqtWLe6++27GjRvH33//TVBQEAsWLEgXbNatW8eQIUPo2rUr1apV48qVK8yePRtPT086d+6c6c91I8HBwQwfPpw33niD9u3b8+CDD7J3715WrFhB8eLFM93i8euvvzJnzhwMwyAxMZG9e/eyaNEizp07x5tvvsmDDz5409e2bNmSbt26UbNmTby8vFi8eDFxcXEOLX7h4eG8//77TJ48mSpVqlCyZElatGjB2LFjmT9/Pq1bt2bYsGEEBQUxa9Ysjh49yhdffJGpsWR169bF09OTV199lYSEBHx8fGjRogUlS5ZMd+6gQYP44IMP6NevH7t27aJChQp8/vnnbNmyhalTp96yBUvcjJW3golkR2ZuPb/+FuDrb6NNs3v3bqNTp05GsWLFDB8fH6N8+fJGt27djLVr1960hlvden7trcA3uvV8/vz5xrhx44ySJUsavr6+Rps2bYzjx4+ne6+FCxca9erVM3x8fIygoCCjd+/exm+//ZbuvJ9//tl+2/21Jk+ebADG+PHjb/qZ0lx76/mtPv/1tyEnJSUZ48aNM6pUqWJ4e3sbxYsXNxo3bmy8/vrrxqVLl+znbd261QgPDze8vb0dbgG/0XtPnDgx3Z95UlKSMXLkSCM0NNQoUKCAUbVqVeM///mPwy3chmEY//zzjzFs2DCjWLFihp+fn9GuXTvj5MmTmbr13DAM4/Dhw0ZkZKTh4+NjBAcHG88++6yxevVqh1ugjxw5YgwYMMCoXLmyUbBgQSMoKMho3ry5sWbNGodr3ejW8x07djicd/2t7YZhGFeuXDHGjx9vhISEGL6+vkaLFi2MAwcOGMWKFTOeeOKJW36Oa38+PTw8jCJFihj16tUzhg8fbvz888/pzr/+78yff/5pDB482AgLCzP8/PyMwMBAo1GjRsZnn33m8LrY2FijTZs2RuHChQ3A4Wf/8OHDRpcuXYwiRYoYBQsWNO666y5j2bJlGX72G93G/9FHHxmVKlUyPD09Hb5H1/89MwzDiIuLM/r3728UL17c8Pb2NmrXrp3u34Ab/Synfc8y8zMirs9mGBp9JSKSF8XHx1O0aFEmT5580y4okfxOY3ZERPKAjFagTxt7lN8WVBXJKo3ZERHJAxYuXMjMmTN56KGH8Pf357vvvmP+/Pk88MADNGnSxOryRFyawo6ISB5Qp04dvLy8eO2110hMTLQPWr7d29pF8gON2RERERG3pjE7IiIi4tYsDTubNm2iXbt2hIaGYrPZWLJkicNxwzCYMGECpUqVwtfXl8jIyHSzzv7999/07t2bgIAAihQpwsCBAzOcJE5ERETyJ0vH7Jw/f54777yTAQMG0KlTp3THX3vtNaZNm8asWbOoWLEi48ePp1WrVuzfv9++CnTv3r05ffo0q1ev5vLly/Tv359BgwYxb968TNeRmprK77//TuHChZ0ylb2IiIjkPMMwSEpKIjQ09OYTU1o5yc+1AGPx4sX256mpqUZISIjDRE/x8fGGj4+PMX/+fMMwDGP//v3pJuRasWKFYbPZjFOnTmX6vdMmGNOmTZs2bdq05b3t5MmTN/0977J3Yx09epTY2FiHRQUDAwNp1KgR0dHR9OjRg+joaIoUKUKDBg3s50RGRuLh4cH27dt5+OGHM7x2cnKyw1ouxv/GaJ88eZKAgIAc+kQiIiLiTImJiZQtW/aWy3+4bNiJjY0FzDVhrhUcHGw/Fhsbm25NFC8vL4KCguznZGTKlCm88MIL6fYHBAQo7IiIiOQxtxqCki/vxho3bhwJCQn27eTJk1aXJCIiIjnEZcNOSEgIAHFxcQ774+Li7MdCQkI4c+aMw/ErV67w999/28/JiI+Pj70VR605IiIi7s1lw07FihUJCQlh7dq19n2JiYls376diIgIACIiIoiPj2fXrl32c9atW0dqaiqNGjXK9ZpFRETE9Vg6ZufcuXMcOnTI/vzo0aPs2bOHoKAgypUrx4gRI5g8eTJVq1a133oeGhpKx44dAahRowYPPvggjz32GNOnT+fy5csMGTKEHj16EBoaatGnEhEREVdiadjZuXMnzZs3tz8fNWoUAH379mXmzJn8+9//5vz58wwaNIj4+HjuueceVq5caZ9jB2Du3LkMGTKEli1b4uHhQefOnZk2bVqufxYRERFxTVobC7N7LDAwkISEBI3fERERySMy+/vbZcfsiIiIiDiDwo6IiIi4NYUdERERcWsKOyIiIuLWFHacbNIkiIrK+FhUlHlcREREco/CjpN5esKECekDT1SUud/T05q6RERE8iuXXQg0rxo/3vw6YQKkpMB998HmzebzF1+8elxERERyh8JODhg/Hq5cgRdeMDdQ0BEREbGKJhUk5yYV9PSE1FTz65UrTrusiIiIoEkFLRcVZQYdMLuzXnzR2npERETyK4WdHJA2GHnCBAgMNPdNnHjju7REREQk5yjsOFla0HnxRXO8Trdu5v569TK+S0tERERylsKOk6V1WaUNRu7Tx/waE2PuS0mxrjYREZH8SHdjOdn1kwY2aQIVK8LRoxAWBr16WVKWiIhIvqWWnRxms11t3fn0U2trERERyY8UdnLBo4+aX1evht9/t7YWERGR/EZhJxdUrmx2Z6Wmwrx5VlcjIiKSvyjs5BJ1ZYmIiFhDYSeXdO0KPj6wbx/s3Wt1NSIiIvmHwk4uKVoU2rc3H6t1R0REJPco7OSitK6suXO1VpaIiEhuUdjJRa1aQYkSEBdn3pklIiIiOU9hJxcVKAA9e5qP1ZUlIiKSOxR2cllaV9aSJZCQYGkpIiIi+YLCTi6rXx9q1oSLF+Hzz62uRkRExP0p7OQyLR8hIiKSuxR2LNC7txl6Nm0yFwgVERGRnKOwY4EyZaBlS/PxnDnW1iIiIuLuFHYscm1XlmFYW4uIiIg7U9ixyMMPg58fHDoE27dbXY2IiIj7UtixiL8/dO5sPtZAZRERkZyjsGOhRx81vy5YAMnJ1tYiIiLirhR2LNS8OZQuDWfPwjffWF2NiIiIe1LYsZCnJzzyiPlYXVkiIiI5Q2HHYmldWd98A3/+aW0tIiIi7khhx2K1akF4OFy5Yo7dEREREedS2HEBWj5CREQk5yjsuIAePcDLC3bsgAMHrK5GRETEvSjsuICSJaF1a/Px7NnW1iIiIuJuFHZcRFpX1pw5kJpqbS0iIiLuRGHHRbRtC0WKwMmTsHGj1dWIiIi4D5cPO0lJSYwYMYLy5cvj6+tL48aN2bFjh/24YRhMmDCBUqVK4evrS2RkJDExMRZWnD0FC0K3buZjDVQWERFxHpcPO//6179YvXo1s2fPZt++fTzwwANERkZy6tQpAF577TWmTZvG9OnT2b59O35+frRq1YqLFy9aXHnWpXVlff45nD9vbS0iIiLuwmYYhmF1ETfyzz//ULhwYb766ivatGlj3x8eHk7r1q2JiooiNDSU0aNHM2bMGAASEhIIDg5m5syZ9OjRI1Pvk5iYSGBgIAkJCQQEBOTIZ8kMw4AqVeDIEXPsTu/elpUiIiLi8jL7+9ulW3auXLlCSkoKBQsWdNjv6+vLd999x9GjR4mNjSUyMtJ+LDAwkEaNGhEdHX3D6yYnJ5OYmOiwuQKbTXPuiIiIOJtLh53ChQsTERFBVFQUv//+OykpKcyZM4fo6GhOnz5NbGwsAMHBwQ6vCw4Oth/LyJQpUwgMDLRvZcuWzdHPkRVpy0esWQP/66kTERGR2+DSYQdg9uzZGIZB6dKl8fHxYdq0afTs2RMPj+yXPm7cOBISEuzbyZMnnVjx7alUCe65x7z9fN48q6sRERHJ+1w+7FSuXJmNGzdy7tw5Tp48yffff8/ly5epVKkSISEhAMTFxTm8Ji4uzn4sIz4+PgQEBDhsriStK2vWLHMcj4iIiGSfy4edNH5+fpQqVYqzZ8+yatUqOnToQMWKFQkJCWHt2rX28xITE9m+fTsREREWVnt7unYFHx/4+WfYs8fqakRERPI2lw87q1atYuXKlRw9epTVq1fTvHlzwsLC6N+/PzabjREjRjB58mSWLl3Kvn376NOnD6GhoXTs2NHq0rOtSBHo0MF8rIHKIiIit8flw05CQgKDBw8mLCyMPn36cM8997Bq1SoKFCgAwL///W+GDh3KoEGDaNiwIefOnWPlypXp7uDKa9K6subNg8uXra1FREQkL3PpeXZyi6vMs3Oty5ehdGn44w9YtgyumWZIREREcJN5dvKzAgWgVy/zsVZCFxERyT6FHReW1pW1ZAnEx1tZiYiISN6lsOPC6tWDWrUgOdlcL0tERESyTmHHhWn5CBERkdunsOPievc2Q8/mzeYCoSIiIpI1CjsurnRpSFvndM4ca2sRERHJixR28oBru7I0UYCIiEjWKOzkAQ8/DH5+cPgwREdbXY2IiEjeorCTB/j5QZcu5mMNVBYREckahZ08Iq0ra+FCuHjR2lpERETyEoWdPOK++6BMGXNywWXLrK5GREQk71DYySM8POCRR8zHWj5CREQk8xR28pBHHzW/Ll9uLhAqIiIit6awk4fUrAkNGsCVK7BggdXViIiI5A0KO3mMlo8QERHJGoWdPKZHD/Dygp07Yf9+q6sRERFxfQo7eUyJEvDQQ+ZjDVQWERG5NYWdPCitK2vOHEhJsbYWERERV6ewkwe1bQtFisBvv8GGDVZXIyIi4toUdvIgHx9z7A5ooLKIiMitKOzkUWlz7nzxBZw7Z20tIiIirkxhJ4+KiIDKleH8eVi82OpqREREXJfCTh5ls2nOHRERkcxQ2MnD0tbKWrsWTp2ythYRERFXpbCTh1WqBE2bgmHA3LlWVyMiIuKaFHbyuLSurFmzzNAjIiIijhR28riuXc1b0ffvh927ra5GRETE9Sjs5HGBgdCxo/lYA5VFRETSU9hxA2ldWfPmweXL1tYiIiLiahR23MADD0DJkvDHH7BqldXViIiIuBaFHTfg5QW9epmP1ZUlIiLiSGHHTaR1ZS1dCmfPWluLiIiIK1HYcRN168Idd0ByMixaZHU1IiIirkNhx01o+QgREZGMKey4kd69wcMDtmyBw4etrkZERMQ1KOy4kdBQiIw0H8+ZY20tIiIirkJhx81c25Wl5SNEREQUdtxOx47g7w9HjsDWrVZXIyIiYj2FHTfj5wddupiPNVBZREREYcctpXVlLVwIFy9aW4uIiIjVFHbcULNmULYsJCTA119bXY2IiIi1XDrspKSkMH78eCpWrIivry+VK1cmKioK45qRt4ZhMGHCBEqVKoWvry+RkZHExMRYWLX1PDzgkUfMx+rKEhGR/M6lw86rr77K+++/zzvvvMOBAwd49dVXee211/i///s/+zmvvfYa06ZNY/r06Wzfvh0/Pz9atWrFxXzef/Poo+bXFSvgzBlraxEREbGSS4edrVu30qFDB9q0aUOFChXo0qULDzzwAN9//z1gtupMnTqV559/ng4dOlCnTh0+/fRTfv/9d5YsWWJt8RarUQMaNoSUFJg/3+pqRERErOPSYadx48asXbuWX3/9FYC9e/fy3Xff0bp1awCOHj1KbGwskWkz6QGBgYE0atSI6OhoS2p2JVo+QkREBLysLuBmxo4dS2JiImFhYXh6epKSksJLL71E7969AYiNjQUgODjY4XXBwcH2YxlJTk4mOTnZ/jwxMTEHqrdejx4wciT88AP8/DPUqmV1RSIiIrnPpVt2PvvsM+bOncu8efP44YcfmDVrFq+//jqzZs26retOmTKFwMBA+1a2bFknVexaiheHNm3Mx7NnW1uLiIiIVVw67Dz99NOMHTuWHj16ULt2bR599FFGjhzJlClTAAgJCQEgLi7O4XVxcXH2YxkZN24cCQkJ9u3kyZM59yEsltaVNWeOOX5HREQkv3HpsHPhwgU8PBxL9PT0JDU1FYCKFSsSEhLC2rVr7ccTExPZvn07ERERN7yuj48PAQEBDpu7atMGihaFU6dg/XqrqxEREcl9Lh122rVrx0svvcQ333zDsWPHWLx4MW+++SYPP/wwADabjREjRjB58mSWLl3Kvn376NOnD6GhoXTs2NHa4l2Ej485dgc0UFlERPInm2G47trYSUlJjB8/nsWLF3PmzBlCQ0Pp2bMnEyZMwNvbGzBvP584cSIffvgh8fHx3HPPPbz33ntUq1Yt0++TmJhIYGAgCQkJbtnKs20bRERAoUIQF2cuFCoiIpLXZfb3t0uHndzi7mHHMKB6dYiJgVmzro7jERERycsy+/vbpbuxxDlstqszKqsrS0RE8huFnXwiba2sdevAjW8+ExERSUdhJ5+oWBHuvdfs0po71+pqREREco/CTj5y7fIRGqklIiL5hcJOPtKlCxQsCAcOwK5dVlcjIiKSOxR28pHAQEibfkjLR4iISH6hsJPPpHVlzZsHly9bW4uIiEhuUNjJZ+6/H4KD4c8/YeVKq6sRERHJeQo7+YyXF/TubT7WnDsiIpIfKOzkQ2kTDC5dCmfPWluLiIhITlPYyYfuvBNq14ZLl+Czz6yuRkREJGcp7ORDNpvjnDsiIiLuTGEnn+rVCzw8YOtWOHTI6mpERERyjsJOPhUaat6ZBZpzR0RE3JvCTj52bVdWaqq1tYiIiOQUhZ18rGNH8PeHY8dgyxarqxEREckZCjv5WKFC0LWr+VhdWSIi4q4UdvK5tK6szz6Df/6xthYREZGcoLCTz917L5QrBwkJ8PXXVlcjIiLifAo7+ZyHBzzyiPlYc+6IiIg7UtgR+/IRK1dCXJy1tYiIiDibwo4QFgZ33QUpKTB/vtXViIiIOJfCjgBaPkJERNyXwo4A0L07FCgAu3fDvn1WVyMiIuI8CjsCQPHi0KaN+Vhz7oiIiDtR2BG7tK6sOXPM8TsiIiLuQGFH7B56CIKC4PRpWLvW6mpEREScQ2FH7Hx8oEcP87EGKouIiLtQ2BEHaV1ZixdDUpK1tYiIiDiDwo44uOsuqFoVLlyAL7+0uhoREZHbp7AjDmw2zbkjIiLuRWFH0klbK2v9ejhxwtpaREREbpfCjqRToQI0awaGAXPnWl2NiIjI7VHYkQxd25VlGNbWIiIicjsUdiRDXbpAwYLwyy+wc6fV1YiIiGSfwo5kKCAAHn7YfKyByiIikpcp7MgNpXVlzZ8Ply5ZW4uIiEh2KezIDUVGQkgI/PUXrFhhdTUiIiLZo7AjN+TlBb17m4/VlSUiInmVwo7c1KOPml+XLYO//7a2FhERkexQ2JGbuvNOqFPHHLPz2WdWVyMiIpJ1CjtyS1o+QkRE8rJshZ24uDgeffRRQkND8fLywtPT02FzpgoVKmCz2dJtgwcPBuDixYsMHjyYYsWK4e/vT+fOnYmLi3NqDfldr17g4QHR0RATY3U1IiIiWeOVnRf169ePEydOMH78eEqVKoXNZnN2XXY7duwgJSXF/vynn37i/vvvp2vXrgCMHDmSb775hkWLFhEYGMiQIUPo1KkTW7ZsybGa8ptSpeCBB2DlSpg9G1580eqKREREMs9mGFlfDKBw4cJs3ryZunXr5kBJNzdixAiWLVtGTEwMiYmJlChRgnnz5tGlSxcAfvnlF2rUqEF0dDR33313pq6ZmJhIYGAgCQkJBAQE5GT5edb8+WYLT4UKcPiw2dIjIiJipcz+/s7Wr6yyZcuSjYx02y5dusScOXMYMGAANpuNXbt2cfnyZSIjI+3nhIWFUa5cOaKjo294neTkZBITEx02ubkOHaBwYTh2DL77zupqREREMi9bYWfq1KmMHTuWY8eOObmcm1uyZAnx8fH069cPgNjYWLy9vSlSpIjDecHBwcTGxt7wOlOmTCEwMNC+lS1bNgerdg+FCsH/eg41UFlERPKUbIWd7t27s2HDBipXrkzhwoUJCgpy2HLKxx9/TOvWrQkNDb2t64wbN46EhAT7dvLkSSdV6N7S7sr67DP45x9raxEREcmsbA1Qnjp1qpPLuLXjx4+zZs0avvzyS/u+kJAQLl26RHx8vEPrTlxcHCEhITe8lo+PDz4+PjlZrltq2hTKl4fjx+Grr6BHD6srEhERubVshZ2+ffs6u45bmjFjBiVLlqRNmzb2feHh4RQoUIC1a9fSuXNnAA4ePMiJEyeIiIjI9RrdnYeHOaPy5MlmV5bCjoiI5AXZuhsLICUlhSVLlnDgwAEAatWqRfv27Z0+zw5AamoqFStWpGfPnrzyyisOx5588kmWL1/OzJkzCQgIYOjQoQBs3bo109fX3ViZ9+uvUL26GXxOnTIXChUREbFCZn9/Z6tl59ChQzz00EOcOnWK6tWrA+ag37Jly/LNN99QuXLl7FV9A2vWrOHEiRMMGDAg3bG33noLDw8POnfuTHJyMq1ateK9995z6vvLVdWqQaNGsH27eTv6yJFWVyQiInJz2WrZeeihhzAMg7lz59oHJP/111888sgjeHh48M033zi90Jyklp2see89GDwY6taF3butrkZERPKrzP7+zlbY8fPzY9u2bdSuXdth/969e2nSpAnnzp3LesUWUtjJmr/+MmdVvnwZ9u41FwoVERHJbTk6qaCPjw9JSUnp9p87dw5vb+/sXFLykP/7P6hSxXw8e7bjsagomDQp10sSERG5oWyFnbZt2zJo0CC2b9+OYRgYhsG2bdt44oknaN++vbNrFBfj6Qn/G5fOnDlw5Yr5OCoKJkwwj4uIiLiKbA1QnjZtGn379iUiIoICBQoAcOXKFdq3b8/bb7/t1ALF9YwfDykp8MILEBsLa9fC99+bQefFF83jIiIiriLbt54DxMTE8MsvvwBQo0YNqqT1beQxGrOTPY0amSHHZgPDUNAREZHclaMDlN2Nwk72nDwJ5cqZjz09r3ZniYiI5Aanz7MzatQooqKi8PPzY9SoUTc9980338x8pZJnzZx59XFKCvTsac69IyIi4koyHXZ2797N5cuX7Y8lf0sbjPzii5CYCK+/DgsWmLekK+uKiIgrUTcW6sbKqmuDzvjx5nw7zZpBdLR5fMIEc/CyiIhITsrReXYGDBiQ4Tw758+fz3BJB3EvKSmOg5ELFDBbdf43mTYrV1pXm4iIyPWy1bLj6enJ6dOnKVmypMP+P//8k5CQEK7ksZGqatlxjmXLoF078/Hnn8P/FqIXERHJETnSspOYmEhCQgKGYZCUlERiYqJ9O3v2LMuXL08XgCT/aNsWnn7afDxgABw5Ym09IiIikMVJBYsUKYLNZsNms1GtWrV0x202Gy9osEa+9tJLsGULbN0K3bqZj318rK5KRETysyyFnfXr12MYBi1atOCLL76wr3gO4O3tTfny5QkNDXV6kZJ3pI3fqVsXdu2CMWPMtbRERESskqWw06xZM65cuULfvn1p0KABZcuWzam6JA8rW9ZcILRNG3jnHfNOrS5drK5KRETyqyzfjeXl5cXnn39OSkpKTtQjbuKhh+CZZ8zHAwfC4cPW1iMiIvlXtm49b9GiBRs3bnR2LeJmoqKgSRNz0sFu3eDiRasrEhGR/Chbq563bt2asWPHsm/fPsLDw/Hz83M43r59e6cUJ3nbteN3fvjBHL/zzjtWVyUiIvlNtubZ8fC4cYOQzWbLc11cmmcnZ61YYXZrAXz2GXTtam09IiLiHnJ0BuXU1NQbbnkt6EjOa90axo41Hw8cCIcOWVuPiIjkL9kKOyJZFRUF99wDSUkavyMiIrkr22Fn48aNtGvXjipVqlClShXat2/P5s2bnVmbuBEvL5g/H4oXh927YfRoqysSEZH8IlthZ86cOURGRlKoUCGGDRvGsGHD8PX1pWXLlsybN8/ZNYqbKFPGnH8H4L33YOFCa+sREZH8IVsDlGvUqMGgQYMYOXKkw/4333yTjz76iAMHDjitwNygAcq567nn4OWXoXBhc5blqlWtrkhERPKiHB2gfOTIEdqlLW99jfbt23P06NHsXFLykRdegKZNNX5HRERyR7bCTtmyZVm7dm26/WvWrNESEnJLaeN3SpSAPXvgugZCERERp8rWpIKjR49m2LBh7Nmzh8aNGwOwZcsWZs6cydtvv+3UAsU9lS4Nc+bAgw/C9Onm+lk9elhdlYiIuKNsjdkBWLx4MW+88YZ9fE6NGjV4+umn6dChg1MLzA0as2Od55+Hl14Cf39z/E61alZXJCIieUVmf39nO+y4E4Ud61y5ApGRsHEj3HknREeDr6/VVYmISF6QowOUK1WqxF9//ZVuf3x8PJUqVcrOJSWf8vKCefPM8Tt792r8joiIOF+2ws6xY8cyXBYiOTmZU6dO3XZRkr+Ehprjd2w2+OADc/CyiIiIs2RpgPLSpUvtj1etWkVgYKD9eUpKCmvXrqVChQpOK07yjwceMOffmTwZBg2C+vWhenWrqxIREXeQpTE7aaud22w2rn9ZgQIFqFChAm+88QZt27Z1bpU5TGN2XENKijl+Z8MGqFMHtm3T+B0REbmxHBmzk7ayebly5Thz5ozDaufJyckcPHgwzwUdcR2enub4nZIl4ccfYfhwqysSERF3kK0xO0ePHqV48eIO++Lj451Rj+RzpUrB3Lnm+J2PPjIfi4iI3I5shZ1XX32Vhdes4ti1a1eCgoIoXbo0e/fudVpxkj9FRsL48ebjxx+HX36xth4REcnbshV2pk+fbl8WYvXq1axZs4aVK1fSunVrnn76aacWKPnThAnQvDmcPw9du8KFC1ZXJCIieVW2wk5sbKw97Cxbtoxu3brxwAMP8O9//5sdO3Y4tUDJn9LG7wQHw08/afyOiIhkX7bCTtGiRTl58iQAK1euJDIyEgDDMDKcf0ckO0JCro7f+e9/zbl4REREsipbYadTp0706tWL+++/n7/++ovWrVsDsHv3bqpUqeLUAiV/a9nS7NICc/zO/5ZiExERybRshZ233nqLIUOGULNmTVavXo2/vz8Ap0+f5qmnnnJqgSLjx0OLFua4nW7dNH5HRESyxuUXAj116hTPPPMMK1as4MKFC1SpUoUZM2bQoEEDwOw6mzhxIh999BHx8fE0adKE999/n6pVq2b6PTSpoOuLjYW6dSEuDgYMgI8/troiERGxWmZ/f2d6uYilS5fSunVrChQo4LBsREbat2+f+Upv4uzZszRp0oTmzZuzYsUKSpQoQUxMDEWLFrWf89prrzFt2jRmzZpFxYoVGT9+PK1atWL//v0ULFjQKXWI9UJCzAHL998Pn3wCzZpBnz5WVyUiInlBplt2PDw8iI2NpWTJkvZlIzK8oM3mtEHKY8eOZcuWLWzevDnD44ZhEBoayujRoxkzZgwACQkJBAcHM3PmTHr06JGp91HLTt7x4oswcSIUKgQ7d0KNGlZXJCIiVnH6chGpqamULFnS/vhGmzPvxlq6dCkNGjSga9eulCxZknr16vHRRx/Zjx89epTY2Fj73WAAgYGBNGrUiOjo6BteNzk5mcTERIdN8obnnjMHLV+4YM6/c/681RWJiIiry/IA5dTUVD755BPatm3LHXfcQe3atenQoQOffvppusVBb9eRI0fs429WrVrFk08+ybBhw5g1axZgzvcDEBwc7PC64OBg+7GMTJkyhcDAQPuWNmeQuD5PT/N29JAQ+PlnGDrU6opERMTVZSnsGIZB+/bt+de//sWpU6eoXbs2tWrV4tixY/Tr14+HH37YqcWlpqZSv359Xn75ZerVq8egQYN47LHHmD59+m1dd9y4cSQkJNi3tDmDJG8IDjbH73h4wIwZ8L/sKyIikqEshZ2ZM2eyadMm1q5dy+7du5k/fz4LFixg7969rFmzhnXr1vHpp586rbhSpUpRs2ZNh301atTgxIkTAISEhAAQFxfncE5cXJz9WEZ8fHwICAhw2CRvad4cJk0yHz/5pNnKIyIikpEshZ358+fz7LPP0rx583THWrRowdixY5nrxGWqmzRpwsGDBx32/frrr5QvXx6AihUrEhISwtq1a+3HExMT2b59OxEREU6rQ1zTs8+ad2f98485/47G74iISEayFHZ+/PFHHnzwwRseb926tVNXPR85ciTbtm3j5Zdf5tChQ8ybN48PP/yQwYMHA+adXyNGjGDy5MksXbqUffv20adPH0JDQ+nYsaPT6hDX5OlpLiFRqhTs3w//+7EQERFxkKWw8/fff6cbDHyt4OBgzp49e9tFpWnYsCGLFy9m/vz53HHHHURFRTF16lR69+5tP+ff//43Q4cOZdCgQTRs2JBz586xcuVKzbGTT5QsCfPnm+N3Zs2CmTOtrkhERFxNlmZQ9vT0JDY2lhIlSmR4PC4ujtDQ0Dy3GKjm2cn7XnoJnn8efH1hxw6oVcvqikREJKc5fQZlMO/G6tevHz4+PhkeT05OzlqVIk4ybhxs3AirV5vz73z/PfxvyTYREcnnshR2+vbte8tz+mgOf7GAh4c5fqdePXNl9KeeMru1bDarKxMREau5/EKguUHdWO5j0ybztvTUVHMNrf79ra5IRERyitOXixDJC+69F6KizMeDB8NPP1lbj4iIWE9hR9zO2LHQqpU5/07XrnDunNUViYiIlRR2xO14eMDs2RAaCr/8Ys6wrM5aEZH8S2FH3FKJErBgwdWBy598YnVFIiJiFYUdcVtNm8LkyebjIUNg3z5r6xEREWso7Ihbe+YZePBBuHjRHL+TlGR1RSIiktsUdsStpY3fKV0aDh6EJ57Q+B0RkfxGYUfcXvHi5vgdT0+YNw8+/tjqikREJDcp7Ei+cM895vpZAEOHwo8/WluPiIjkHoUdyTeefhoeekjjd0RE8huFHck3PDzM9bLKlIFff4XHH9f4HRGR/EBhR/KVa8fvzJ8PH31kdUUiIpLTFHYk32nSBF5+2Xw8bBjs3WttPSIikrMUdiRfGjMG2rSB5GSN3xERcXcKO5IvXTt+JyYGBg3S+B0REXelsCP5VrFisHAheHmZ43g+/NDqikREJCco7Ei+1rgxTJliPh4+HHbvtrYeERFxPoUdyfdGjYK2bc3xO926QWKi1RWJiIgzKexIvufhATNnQtmycOiQxu+IiLgbhR0RHMfvLFwI06dbXZGIiDiLwo7I/0REwCuvmI9HjND4HRERd6GwI3KNUaOgWjW4dMmcf+f68TtRUTBpkiWliYhINinsiFzDZoPOnc3Hhw/Dv/51dfxOVBRMmGAuNSEiInmHl9UFiLial1+GP/80181atAjuuQcSEsyg8+KLMH681RWKiEhWKOyIZODDD+HkSVi50px/B+C55xR0RETyInVjidzA8uWOXVZz58LGjdbVIyIi2aOwI3IDkydDSgoUKGA+P3YMmjc3BzH/84+lpYmISBYo7IhkIG0w8osvmndmPfecud8w4K23IDwcdu60tkYREckchR2R61wbdNLG6EyebD4H8PeHAwfg7rth4kS4fNm6WkVE5NY0QFnkOikpGd91lfY8KQmOH4fPPjPPW7YMPv0UatXK/VpFROTWbIahVYASExMJDAwkISGBgIAAq8uRPGLBAnjqKTh7Fnx8zNafkSM1D4+ISG7J7O9vdWOJZFOPHvDTT9C6tbli+tNPw333wZEjVlcmIiLXUtgRuQ2hofDNN+a8PP7+8N13UKcOfPCBVk4XEXEVCjsit8lmg8cegx9/hHvvhfPn4Ykn4KGH4NQpq6sTERGFHREnqVgR1q+HN94wx/CsXAl33AHz5qmVR0TESgo7Ik7k4WFOOvjDD+ZcPPHx0Ls3dOtmrrclIiK5T2FHJAfUrAnR0fDCC+DlBZ9/brbyfP211ZWJiOQ/CjsiOaRAAXNywm3bzPATFwft28OAAZCYaHV1IiL5h8KOSA4LD4ddu2DMGHMw84wZULs2rFtndWUiIvmDS4edSZMmYbPZHLawsDD78YsXLzJ48GCKFSuGv78/nTt3Ji4uzsKKRTJWsCD85z/mqukVK8KJE9CyJQwfDhcuWF2diIh7c+mwA1CrVi1Onz5t37777jv7sZEjR/L111+zaNEiNm7cyO+//06nTp0srFbk5po2NW9Rf/xx8/m0aVCvHmzfbm1dIiLuzOXDjpeXFyEhIfatePHiACQkJPDxxx/z5ptv0qJFC8LDw5kxYwZbt25l27ZtFlctcmP+/jB9OqxYYU5K+Ouv0LgxPP+8ucK6iIg4l8uHnZiYGEJDQ6lUqRK9e/fmxIkTAOzatYvLly8TGRlpPzcsLIxy5coRHR1902smJyeTmJjosInktgcfNJeb6NULUlPhpZegUSPYt8/qykRE3ItLh51GjRoxc+ZMVq5cyfvvv8/Ro0dp2rQpSUlJxMbG4u3tTZEiRRxeExwcTGxs7E2vO2XKFAIDA+1b2bJlc/BTiNxY0aIwdy4sWgTFisGePeaA5ldeMVdfFxGR25enVj2Pj4+nfPnyvPnmm/j6+tK/f3+Sk5Mdzrnrrrto3rw5r7766g2vk5yc7PC6xMREypYtq1XPxVKxsTBo0NW5eCIiYNYsqFrV2rpERFyVW656XqRIEapVq8ahQ4cICQnh0qVLxMfHO5wTFxdHSEjITa/j4+NDQECAwyZitZAQ+Oor+OQTKFzYnJSwbl14912zm0tERLInT4Wdc+fOcfjwYUqVKkV4eDgFChRg7dq19uMHDx7kxIkTREREWFilSPbZbNC/vzlup3lz87b0IUOgVSs4edLq6kRE8iaXDjtjxoxh48aNHDt2jK1bt/Lwww/j6elJz549CQwMZODAgYwaNYr169eza9cu+vfvT0REBHfffbfVpYvclvLlYc0aePttc46eNWvMiQg//VSLioqIZJVLh53ffvuNnj17Ur16dbp160axYsXYtm0bJUqUAOCtt96ibdu2dO7cmXvvvZeQkBC+/PJLi6sWcQ4PDxg2zBy03KgRJCRA377QqROcOWN1dSIieUeeGqCcUzI7wEnEKleuwGuvwaRJcPkylCgBH3wADz9sdWUiItZxywHKIvmVlxc8+yx8/73ZnfXHH2YLT58+cN0YfRERuY7CjkgeUrcu7NgBY8ea3VyzZ5vhZ/VqqysTEXFdCjsieYyPD0yZAps3Q5Uq8Ntv8MADMHgwnD9vdXUiIq5HYUckj2rc2By8PHiw+fy998yWn61braxKRMT1KOyI5GF+fvDOO/Dtt1CmDBw6ZK6sPnYsXDe5uIhIvqWwI+IG7r/fnIiwTx9ztuVXX4WGDc2WHxGR/E5hR8RNFClirqW1eLF5a/q+fXDXXeZq6leuWF2diIh1FHZE3EzHjvDTT+YcPJcvw/PPwz33wMGDVlcmImINhR0RN1SyJHzxhbm8RGAgbN8O9erBtGlaVFRE8h+FHRE3ZbPBo4+a3Vn33w///APDh0PlyjB6dMaviYoyZ2kWEXEnCjsibq5sWVi1Ct59FwoVgmPH4M03zW6uaxeLiYqCCRPA09OyUkVEcoTCjkg+YLPBU0+Zd2c1bmzuW7IEatSA2NirQefFF2H8eCsrFRFxPi+rCxCR3FO1KmzaBK+/Ds89Zw5aLlXKPDZ0qIKOiLgnteyI5DOenvDMM7B7t9nik+b//g8iIuC//4XEROvqExFxNoUdkXxqyRJzzI7X/9p3bTbYtg0ee8xs7enf31x/69pxPSIieZHCjkg+dO0YncuXza+GYd61Vb06XLgAM2fCvfeaz195BX7/3eqqRUSyR2FHJJ/JaDDy+PHm89WroVcv+O47GDDAXHsrJgbGjTPv6mrXzpyh+dIlaz+DiEhWKOyI5DMpKRnfdZUWeFJToUkT+Phj806tjz82n6emwrJl0KmTuejomDGwf781n0FEJCtshqEe+cTERAIDA0lISCAgIMDqckRc0i+/wIwZ5vpbcXFX9999t9kK1L076K+PiOSmzP7+VthBYUckKy5fhhUr4JNPzJaelBRzf6FC0LWrGXyaNnW800tEJCco7GSBwo5I9sTGwuzZZlfXtQuNVqlihp4+faB0aevqExH3prCTBQo7IrfHMCA62mztWbgQzp0z93t4QOvWZvBp2xa8va2tU0Tci8JOFijsiDjPuXOwaJEZfL777ur+EiXMhUkHDIBatayrT0Tch8JOFijsiOSMgwevDmqOjb26v1EjM/T06KFBzSKSfQo7WaCwI5KzrlxxHNR85Yq539f36qDme+/VoGYRyRqFnSxQ2BHJPXFxVwc1//LL1f1VqphLVPTtq0HNIpI5CjtZoLAjkvsMw1yL65NPYMECx0HNDz5otva0a6dBzSJyY5n9/a0ZlEXEEjabucr6Rx+Z43lmzDDn50lNheXLoUsXs4Vn1Cj4+WerqxWRvEwtO6hlR8SV/Prr1UHNp09f3X/XXVcHNQcGWlefiLgOdWNlgcKOiOu5cgVWrjS7ub7+2nFQc5cuMHCgBjWL5HcKO1mgsCPi2uLiYM4cc1DzgQNX91eubA5q7tdPg5pF8iOFnSxQ2BHJGwwDtm+/Oqg5Kcnc7+EBrVqZrT3t2sHLL4OnZ/qV3QGiosz1vCZNytXSRSQHaICyiLgdm81cZf3DD83xPDNnml1ZqanmPD5pg5q//RYmTDCDzbWiosz9np6WlC8iFlHLDmrZEcnrYmLMQc0zZzoOagazpWfWLHjnHTPovPhixi0+IpL3qBsrCxR2RNzDlSuwapXZzbV06dVBzWk6dTKP6W4uEfegbiwRyXe8vKBNG/jiCzh1Ct54w/FurS+/hJIloUMHmDfv6pgfEXFvCjsi4pZKloTz581BzQUKmPuKF4dLl8xWn969zXM6d4aFC81zRcQ9KeyIiFtKG4z84otmwHnxRfjzTxg8GJ5/HqpWhYsXzdaeHj2gRAno1s1sFfrnH6urFxFnUtgREbdzbdBJG4w8frz5/N13zfW2Dh6E3bth3DioVMkMOIsWmXd0lSgBvXrBV1+ZgUhE8jYNUEYDlEXczaRJWZtnxzBg1y747DNzO3786rGAAHOMT7du8MADWphUxJXobqwsUNgRkTSGAd9/b47jWbQIfvvt6rEiRaBjR+jeHVq2vDoWSESs4ZZ3Y73yyivYbDZGjBhh33fx4kUGDx5MsWLF8Pf3p3PnzsTFxVlXpIjkaTYbNGoEb75ptvB89x0MGwalSkF8vDmXT+vWEBICjz0Ga9akv8VdRFxLngk7O3bs4IMPPqBOnToO+0eOHMnXX3/NokWL2LhxI7///judOnWyqEoRcSceHtCkCbz9Npw8CRs3wlNPmXdx/f03/Pe/cP/9EBoKTz4J69ebXWQi4lryRNg5d+4cvXv35qOPPqJo0aL2/QkJCXz88ce8+eabtGjRgvDwcGbMmMHWrVvZtm2bhRWLiLvx9DSXpnj3Xfj9d1i7Fh5/3Lyd/Y8/YPp0aNHCXK5iyBDYvNlcxkJErJcnws7gwYNp06YNkZGRDvt37drF5cuXHfaHhYVRrlw5oqOjb3i95ORkEhMTHTYRkczy9DSDzfTp5vIU335rLkJatKi5Qvu775rBqGxZGDECtm5V8BGxksuHnQULFvDDDz8wZcqUdMdiY2Px9vamSJEiDvuDg4OJjY294TWnTJlCYGCgfStbtqyzyxaRfMLLy+zK+u9/ITYWli+Hvn3NJSl+/93sAmvSBCpUgDFjzMHPui1EJHe5dNg5efIkw4cPZ+7cuRQsWNBp1x03bhwJCQn27eTJk067tojkX97e5uDlmTPNFp6lS+GRR6BwYXPMzxtvmIOfK1WCZ56BH35Q8BHJDS4ddnbt2sWZM2eoX78+Xl5eeHl5sXHjRqZNm4aXlxfBwcFcunSJ+Ph4h9fFxcUREhJyw+v6+PgQEBDgsImIOJOPj7ni+uzZcOYMLF5sztTs5wfHjsFrr0F4OFSrBs89B3v3KviI5BSXnmcnKSmJ49fO7gX079+fsLAwnnnmGcqWLUuJEiWYP38+nTt3BuDgwYOEhYURHR3N3Xffnan30Tw7IpJbLlwwu7oWLoRvvnFcmqJ6dXPywu7doVYt62oUySvcdlLB++67j7p16zJ16lQAnnzySZYvX87MmTMJCAhg6NChAGzdujXT11TYERErnDsHy5aZszYvXw7JyVeP1aplBp9u3SAszLoaRVyZW04qmJG33nqLtm3b0rlzZ+69915CQkL48ssvrS5LROSW/P3Nrq0vvzS7uubMMbu+vL3h559h4kSoUQPuvBNeegkOHTJfN2mSuexFRqKiHJfCEJE82LKTE9SyIyKuJD7eXIT0s8/M29qvnaG5fn0oVgxWr3Zc6BQyXgBVxJ25bTdWTlDYERFX9fffsGSJOcZn7dr0MzS3agWvvgrz55tfFXQkP1HYyQKFHRHJC/780+zy+uwzc2mK6ycqtNnMNbtutgUHm18DAszzRfIyhZ0sUNgRkbwmLs4MPoMHZ++W9YIFbx2I0h77+jq/fhFnyOzvb69crElERJwkONhs6TEMc0DzpUvmDM09e5ozOV+/xcVdfZyYCBcvmvP9HDt26/cKDLxxGLp2K1HCnFH6dk2aZC7JkVF3XFSU2ZWnQdiSFQo7IiJ50PWDkdOeBwTceszOhQuO4SejQJS2JSdDQoK5HTx48+vabGbguVEYunYrWvTG3WienuZngRsPwBbJCoUdEZE8JqO7rtK+ZhQSrleoEFSsaG43YxhmyLlVIIqNNW+dT001v545A/v23fzaBQrcOBTVrGkurDphgtliFRWlO83k9ijsiIjkMSkpGf/ST3t+/R1b2WWzQZEi5nariQ1TUsxutRuFoWu3s2fh8mX47Tdzu5nJk80NoHFjqFIFYmLMrxpgLZmlAcpogLKISG5KTjZbf24WiOLi4PRps8stI4GB0KCB41a+vAJQfqO7sbJAYUdExPWkdV0VKGC2BN11lxlm9uxxXFojTbFijuGnYUMIDVUAcme6G0tERPKsGw3AfvFF2LzZXE5j507YscP8+uOP8NdfsGqVuaUJCUnfAhQcbN3nEmuoZQe17IiIuJIbDUa+2SDlixfNQdE7d17dfv454/FLZco4tv6Eh5utQpL3qGVHRETypOwMwC5Y0AwuDRte3XfhgtnldW0A+uWXqwOjlyy5em7Fio6tP/XrmwOzxT2oZQe17IiI5BdJSbB7t2MAionJ+NyqVa+2/jRoAPXqmSvVi+vQAOUsUNgREcm/4uPhhx+ujv/ZuTPjmaVtNqhRw7EFqG5dLadhJYWdLFDYERGRa/35J+za5dgClNGcQJ6eUKvW1dafBg2gdm3w8cn9mvMjhZ0sUNgREZFbOX3aMQDt2GHOF3S9AgWgTh3HFqBatcz9abT+l3NogLKIiIgTlSoFbduaG5jLaZw65dj6s2MH/P23GYp27YIPPjDP9fExu7zSWoD++gveecc8pvW/cp5adlDLjoiIOIdhmON9rg1Au3aZa4xdL22yxIgIGDwYtm+H//s/rf+VFerGygKFHRERySmpqXD4cPoAdP58+nO9vc3wEx5+tQuscmXw8Mj9uvMChZ0sUNgREZHclJICBw+awad/fzMQ3UhAgBl+rg1AlSppGQzQmB0RERGX5ekJNWvCF1+YQcfbGy5dMruzGjS42gK0dy8kJsL69eaWpkiR9AGoQgUFoBtR2BEREbHAzdb/Shu8fPky7N/veBfY3r3m3EBr15pbmqCg9AGoXDkFIFA3FqBuLBERyV3ZWf8rzaVLVxdCTQtBP/5oBqPrXbsSfFoIKlPGfQKQxuxkgcKOiIjkJmfPs5OcDD/95BiA9u2DK1fSn1uiRPoAFBqaNwOQwk4WKOyIiIi7uXYl+LQA9NNPGS+kGhycPgCVKpX7NWeVwk4WKOyIiEh+8M8/ZpfXtQHo558zvhssNPRq8En7Ghyc+zXfjMJOFijsiIhIfnXhgjno+do5gA4cyDgAlSnjOAA6PNzsFrtebi2HoVvPRURE5JYKFTInMoyIuLrv/HnYs8cxAP3yi7kY6m+/wVdfXT23XLn0AcjT0xxoDa6xHIZadlDLjoiIyK0kJaUPQAcPZnxuhQpmiNq/H/r2hTffhHffvfWdZlmlbqwsUNgRERHJusRE2L3bMQDFxNz4fGev+6WwkwUKOyIiIs4RHw8//HB1APRnn5n7vb3NW+SdKbO/v7W0mIiIiDhNkSLQogU8/TTccYe5L205jKgoa2pS2BERERGnu3YwcnKy+XXCBGsCj+7GEhEREafKaNmLtK8Z3aWV0xR2RERExKlSUjIejJz2PKNZnHOSBiijAcoiIiJ5kQYoi4iIiKCwIyIiIm5OYUdERETcmsKOiIiIuDWFHREREXFrLh123n//ferUqUNAQAABAQFERESwYsUK+/GLFy8yePBgihUrhr+/P507dyYuLs7CikVERMTVuHTYKVOmDK+88gq7du1i586dtGjRgg4dOvDzzz8DMHLkSL7++msWLVrExo0b+f333+nUqZPFVYuIiIgryXPz7AQFBfGf//yHLl26UKJECebNm0eXLl0A+OWXX6hRowbR0dHcfffdmb6m5tkRERHJe9xunp2UlBQWLFjA+fPniYiIYNeuXVy+fJnIyEj7OWFhYZQrV47o6GgLKxURERFX4vLLRezbt4+IiAguXryIv78/ixcvpmbNmuzZswdvb2+KFCnicH5wcDCxsbE3vWZycjLJ16wzn5iYmBOli4iIiAtw+bBTvXp19uzZQ0JCAp9//jl9+/Zl48aNt3XNKVOm8MILL6Tbr9AjIiKSd6T93r7ViJw8N2YnMjKSypUr0717d1q2bMnZs2cdWnfKly/PiBEjGDly5A2vcX3LzqlTp6hZs2ZOli0iIiI55OTJk5QpU+aGx12+Zed6qampJCcnEx4eToECBVi7di2dO3cG4ODBg5w4cYKIiIibXsPHxwcfHx/7c39/f06ePEnhwoWx2WxOqzUxMZGyZcty8uRJtx347O6fUZ8v73P3z6jPl/e5+2fMyc9nGAZJSUmEhobe9DyXDjvjxo2jdevWlCtXjqSkJObNm8eGDRtYtWoVgYGBDBw4kFGjRhEUFERAQABDhw4lIiIiS3diAXh4eNw0Ed6utHmC3Jm7f0Z9vrzP3T+jPl/e5+6fMac+X2Bg4C3Pcemwc+bMGfr06cPp06cJDAykTp06rFq1ivvvvx+At956Cw8PDzp37kxycjKtWrXivffes7hqERERcSUuHXY+/vjjmx4vWLAg7777Lu+++24uVSQiIiJ5TZ6ZZycv8vHxYeLEiQ7jg9yNu39Gfb68z90/oz5f3ufun9EVPl+euxtLREREJCvUsiMiIiJuTWFHRERE3JrCjoiIiLg1hR0RERFxawo7OWDTpk20a9eO0NBQbDYbS5Yssbokp5oyZQoNGzakcOHClCxZko4dO3Lw4EGry3Kq999/nzp16tgnwYqIiGDFihVWl5VjXnnlFWw2GyNGjLC6FKeYNGkSNpvNYQsLC7O6LKc7deoUjzzyCMWKFcPX15fatWuzc+dOq8tyigoVKqT7M7TZbAwePNjq0pwiJSWF8ePHU7FiRXx9falcuTJRUVG3XOMpr0lKSmLEiBGUL18eX19fGjduzI4dO3K9DpeeZyevOn/+PHfeeScDBgygU6dOVpfjdBs3bmTw4ME0bNiQK1eu8Oyzz/LAAw+wf/9+/Pz8rC7PKcqUKcMrr7xC1apVMQyDWbNm0aFDB3bv3k2tWrWsLs+pduzYwQcffECdOnWsLsWpatWqxZo1a+zPvbzc65+7s2fP0qRJE5o3b86KFSsoUaIEMTExFC1a1OrSnGLHjh2kpKTYn//000/cf//9dO3a1cKqnOfVV1/l/fffZ9asWdSqVYudO3fSv39/AgMDGTZsmNXlOc2//vUvfvrpJ2bPnk1oaChz5swhMjKS/fv3U7p06dwrxJAcBRiLFy+2uowcdebMGQMwNm7caHUpOapo0aLGf//7X6vLcKqkpCSjatWqxurVq41mzZoZw4cPt7okp5g4caJx5513Wl1GjnrmmWeMe+65x+oycs3w4cONypUrG6mpqVaX4hRt2rQxBgwY4LCvU6dORu/evS2qyPkuXLhgeHp6GsuWLXPYX79+feO5557L1VrUjSW3LSEhAYCgoCCLK8kZKSkpLFiwgPPnz99ykdm8ZvDgwbRp04bIyEirS3G6mJgYQkNDqVSpEr179+bEiRNWl+RUS5cupUGDBnTt2pWSJUtSr149PvroI6vLyhGXLl1izpw5DBgwwKmLNVupcePGrF27ll9//RWAvXv38t1339G6dWuLK3OeK1eukJKSQsGCBR32+/r68t133+VqLe7Vriu5LjU1lREjRtCkSRPuuOMOq8txqn379hEREcHFixfx9/dn8eLF1KxZ0+qynGbBggX88MMPlvSf57RGjRoxc+ZMqlevzunTp3nhhRdo2rQpP/30E4ULF7a6PKc4cuQI77//PqNGjeLZZ59lx44dDBs2DG9vb/r27Wt1eU61ZMkS4uPj6devn9WlOM3YsWNJTEwkLCwMT09PUlJSeOmll+jdu7fVpTlN4cKFiYiIICoqiho1ahAcHMz8+fOJjo6mSpUquVtMrrYj5UO4eTfWE088YZQvX944efKk1aU4XXJyshETE2Ps3LnTGDt2rFG8eHHj559/trospzhx4oRRsmRJY+/evfZ97tSNdb2zZ88aAQEBbtUNWaBAASMiIsJh39ChQ427777boopyzgMPPGC0bdvW6jKcav78+UaZMmWM+fPnGz/++KPx6aefGkFBQcbMmTOtLs2pDh06ZNx7770GYHh6ehoNGzY0evfubYSFheVqHWrZkWwbMmQIy5YtY9OmTZQpU8bqcpzO29vb/r+P8PBwduzYwdtvv80HH3xgcWW3b9euXZw5c4b69evb96WkpLBp0ybeeecdkpOT8fT0tLBC5ypSpAjVqlXj0KFDVpfiNKVKlUrX0lijRg2++OILiyrKGcePH2fNmjV8+eWXVpfiVE8//TRjx46lR48eANSuXZvjx48zZcoUt2qZq1y5Mhs3buT8+fMkJiZSqlQpunfvTqVKlXK1Do3ZkSwzDIMhQ4awePFi1q1bR8WKFa0uKVekpqaSnJxsdRlO0bJlS/bt28eePXvsW4MGDejduzd79uxxq6ADcO7cOQ4fPkypUqWsLsVpmjRpkm7Kh19//ZXy5ctbVFHOmDFjBiVLlqRNmzZWl+JUFy5cwMPD8Vewp6cnqampFlWUs/z8/ChVqhRnz55l1apVdOjQIVffXy07OeDcuXMO/4M8evQoe/bsISgoiHLlyllYmXMMHjyYefPm8dVXX1G4cGFiY2MBCAwMxNfX1+LqnGPcuHG0bt2acuXKkZSUxLx589iwYQOrVq2yujSnKFy4cLoxVn5+fhQrVswtxl6NGTOGdu3aUb58eX7//XcmTpyIp6cnPXv2tLo0pxk5ciSNGzfm5Zdfplu3bnz//fd8+OGHfPjhh1aX5jSpqanMmDGDvn37ut3UAe3ateOll16iXLly1KpVi927d/Pmm28yYMAAq0tzqlWrVmEYBtWrV+fQoUM8/fTThIWF0b9//9wtJFc7zfKJ9evXG0C6rW/fvlaX5hQZfTbAmDFjhtWlOc2AAQOM8uXLG97e3kaJEiWMli1bGt9++63VZeUodxqz0717d6NUqVKGt7e3Ubp0aaN79+7GoUOHrC7L6b7++mvjjjvuMHx8fIywsDDjww8/tLokp1q1apUBGAcPHrS6FKdLTEw0hg8fbpQrV84oWLCgUalSJeO5554zkpOTrS7NqRYuXGhUqlTJ8Pb2NkJCQozBgwcb8fHxuV6HzTDcbLpGERERkWtozI6IiIi4NYUdERERcWsKOyIiIuLWFHZERETErSnsiIiIiFtT2BERERG3prAjIiIibk1hR0Rcyn333ceIESOsLuOWJk2aRHBwMDabjSVLllhdjojchMKOiDhFu3btePDBBzM8tnnzZmw2Gz/++GMuV5UzDhw4wAsvvMAHH3zA6dOnad26dbpzjh07hs1mY8+ePfZ9SUlJNG/enJo1a/Lbb7/lYsUi+ZvCjog4xcCBA1m9enWGv8RnzJhBgwYNqFOnjgWVOd/hw4cB6NChAyEhIfj4+NzyNX/88QfNmzfn/PnzbN68mTJlyuR0mSLyPwo7IuIUbdu2pUSJEsycOdNh/7lz51i0aBEDBw7kr7/+omfPnpQuXZpChQpRu3Zt5s+ff9PrZtRNVKRIEYf3OXnyJN26daNIkSIEBQXRoUMHjh07Zj++YcMG7rrrLvz8/ChSpAhNmjTh+PHjN3zPffv20aJFC3x9fSlWrBiDBg3i3LlzgNl91a5dOwA8PDyw2Wy3/N6cPHmSpk2bEhgYyLp16yhWrNgtXyMizqOwIyJO4eXlRZ8+fZg5cybXLrm3aNEiUlJS6NmzJxcvXiQ8PJxvvvmGn376iUGDBvHoo4/y/fffZ/t9L1++TKtWrShcuDCbN29my5Yt+Pv78+CDD3Lp0iWuXLlCx44dadasGT/++CPR0dEMGjTohiHl/PnztGrViqJFi7Jjxw4WLVrEmjVrGDJkCGCuqD5jxgwATp8+zenTp29a38GDB2nSpAk1a9Zk+fLl+Pv7Z/uzikg25frSoyLitg4cOGAAxvr16+37mjZtajzyyCM3fE2bNm2M0aNH259fv/o6YCxevNjhNYGBgcaMGTMMwzCM2bNnG9WrVzdSU1Ptx5OTkw1fX19j1apVxl9//WUAxoYNGzL1GT788EOjaNGixrlz5+z7vvnmG8PDw8OIjY01DMMwFi9ebNzqn8+jR48agOHt7W00b97cuHLlSqbeX0ScTy07IuI0YWFhNG7cmE8++QSAQ4cOsXnzZgYOHAhASkoKUVFR1K5dm6CgIPz9/Vm1ahUnTpzI9nvu3buXQ4cOUbhwYfz9/fH39ycoKIiLFy9y+PBhgoKC6NevH61ataJdu3a8/fbbN22NOXDgAHfeeSd+fn72fU2aNCE1NZWDBw9mub727duzefNmvvzyy2x9PhG5fQo7IuJUAwcO5IsvviApKYkZM2ZQuXJlmjVrBsB//vMf3n77bZ555hnWr1/Pnj17aNWqFZcuXbrh9Ww2m0O3GJhdV2nOnTtHeHg4e/bscdh+/fVXevXqBZgDpKOjo2ncuDELFy6kWrVqbNu2LQc+fXrPPfccEyZMoFevXnz22We58p4i4sjL6gJExL1069aN4cOHM2/ePD799FOefPJJ+/iYLVu20KFDBx555BEAUlNT+fXXX6lZs+YNr1eiRAmHlpiYmBguXLhgf16/fn0WLlxIyZIlCQgIuOF16tWrR7169Rg3bhwRERHMmzePu+++O915NWrUYObMmZw/f97eurNlyxY8PDyoXr161r4Z/zN+/Hg8PDzo3bs3hmHQvXv3bF1HRLJHLTsi4lT+/v50796dcePGcfr0afr162c/VrVqVVavXs3WrVs5cOAAjz/+OHFxcTe9XosWLXjnnXfYvXs3O3fu5IknnqBAgQL2471796Z48eJ06NCBzZs3c/ToUTZs2MCwYcP47bffOHr0KOPGjSM6Oprjx4/z7bffEhMTQ40aNTJ8v969e1OwYEH69u3LTz/9xPr16xk6dCiPPvoowcHB2f6+PPfcc0RFRdG7d+9b3oEmIs6lsCMiTjdw4EDOnj1Lq1atCA0Nte9//vnnqV+/Pq1ateK+++4jJCSEjh073vRab7zxBmXLlqVp06b06tWLMWPGUKhQIfvxQoUKsWnTJsqVK0enTp2oUaMGAwcO5OLFiwQEBFCoUCF++eUXOnfuTLVq1Rg0aBCDBw/m8ccfz/D9ChUqxKpVq/j7779p2LAhXbp0oWXLlrzzzju3/X0ZO3YsL7/8Mo8++ijz5s277euJSObYjOs7w0VERETciFp2RERExK0p7IiIiIhbU9gRERERt6awIyIiIm5NYUdERETcmsKOiIiIuDWFHREREXFrCjsiIiLi1hR2RERExK0p7IiIiIhbU9gRERERt6awIyIiIm7t/wHDeSnKOL5drQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "plt.plot(K, distortions, 'bx-')\n", + "plt.xlabel('Values of K')\n", + "plt.ylabel('Distortion')\n", + "plt.title('The Elbow Method using Distortion')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "b00c0e1c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQsElEQVR4nO3deXwM9/8H8NduyH0LiZCIus+Io0QEIaSo46tFiTqLtu5Uv8QVpIS2WlpKUZQ6Qlvafksj7ivqDFr3EUlD4ii5SMLu/P6Y326ycsfuzh6v5+Mxj8zOzuy+JxH7yueYkQmCIICIiIjIRMilLoCIiIhImxhuiIiIyKQw3BAREZFJYbghIiIik8JwQ0RERCaF4YaIiIhMCsMNERERmRSGGyIiIjIpDDdERERkUhhuyOwcPHgQMpkMP/74o9SlqHXs2BEdO3ZUPzbEGg3FsGHDYG9vr5f3kslkmDNnjl7eS8XHxwfDhg3T63saAyl+FmS8GG7IJMhkslItBw8e1FtNCQkJxdaycOFCvdWibcOGDYNMJoOjoyOePXtW4Pnr16+rz/Pzzz8v8+s/ffoUc+bM0evPi8Tfo3Hjxkn2/rt27WKAIa2oIHUBRNqwceNGjccbNmxAbGxsge0NGjTA5cuX9VkaBg4ciO7duxfY7ufnp9c6tK1ChQp4+vQpfvvtN/Tv31/juU2bNsHa2hrZ2dnleu2nT59i7ty5AKDRomUOrl69CrncPP/u3LVrF5YvX15owHn27BkqVOBHFpUO/6WQSRg8eLDG4xMnTiA2NrbAdgB6DzfNmzcvtA5jZ2VlhYCAAGzZsqVAuNm8eTN69OiBn376SaLqjJeVlZXUJehdVlYW7Ozsit3H2tpaT9WQKTDPPw+IACiVSsyfPx/Vq1eHtbU1OnfujBs3bhTY788//8Qbb7wBJycn2NraokOHDjh27JhealQoFJg+fTo8PDxgZ2eHXr16ISkpqcB+27dvR4sWLWBjYwM3NzcMHjwYycnJ6ud//fVXyGQyXLhwQb3tp59+gkwmQ9++fTVeq0GDBhgwYECp6hs0aBB2796NJ0+eqLedOnUK169fx6BBgwo95smTJ5g0aRK8vLxgZWWF2rVrY9GiRVAqlQDE7rzKlSsDAObOnavu3nr5r/nk5GT06dMH9vb2qFy5MqZMmQKFQqGxT1ZWFj766CP1e9WrVw+ff/45BEHQ2C8nJweTJ09G5cqV4eDggF69euGff/4p1fdg/fr1kMlkSEhI0NiuGjeVv2vt+vXreOutt+Dh4QFra2tUr14d77zzDtLS0tT7vDzmRvX6x44dQ1hYGCpXrgw7Ozv85z//wYMHDzTeU6lUYs6cOfD09IStrS2CgoJw6dKlco/jUZ3Dtm3btPa7MmfOHMhkMly6dAmDBg2Ci4sL2rVrh2HDhmH58uUANLuZVV7+N3Dnzh18+OGHqFevHmxsbFCpUiX069evwM+BzBNbbshsLVy4EHK5HFOmTEFaWho+/fRThIaG4s8//1Tvs3//fnTr1g0tWrRAREQE5HI51q1bh06dOuHIkSN4/fXXS3yfp0+f4uHDhwW2Ozs7l9jMPn/+fMhkMkydOhX379/HkiVLEBwcjPj4eNjY2AAQP/yGDx+OVq1aISoqCqmpqVi6dCmOHTuGc+fOwdnZGe3atYNMJsPhw4fRtGlTAMCRI0cgl8tx9OhR9fs9ePAAV65cKfW4i759++L999/Hzz//jBEjRgAQW23q16+P5s2bF/q96NChA5KTkzFmzBh4e3vj+PHjCA8Px71797BkyRJUrlwZK1aswAcffID//Oc/6vClqhsQQ19ISAhat26Nzz//HHv37sXixYtRq1YtfPDBBwAAQRDQq1cvHDhwACNHjkSzZs0QExODjz/+GMnJyfjyyy/Vr/fee+/hhx9+wKBBg9C2bVvs378fPXr0KNX3oLRyc3MREhKCnJwcjB8/Hh4eHkhOTsb//vc/PHnyBE5OTsUeP378eLi4uCAiIgIJCQlYsmQJxo0bh+joaPU+4eHh+PTTT9GzZ0+EhITg/PnzCAkJKXf3oIouflf69euHOnXqYMGCBRAEAX5+frh7926h3cmFOXXqFI4fP4533nkH1atXR0JCAlasWIGOHTvi0qVLsLW1faVzJiMnEJmgsWPHCkX98z5w4IAAQGjQoIGQk5Oj3r506VIBgHDx4kVBEARBqVQKderUEUJCQgSlUqne7+nTp0LNmjWFLl26FFvD7du3BQBFLnFxcep9O3ToIHTo0KFAjdWqVRPS09PV27dt2yYAEJYuXSoIgiDk5uYKVapUERo3biw8e/ZMvd///vc/AYAwe/Zs9bZGjRoJ/fv3Vz9u3ry50K9fPwGAcPnyZUEQBOHnn38WAAjnz58v9tyGDh0q2NnZCYIgCG+//bbQuXNnQRAEQaFQCB4eHsLcuXPV5//ZZ5+pj4uMjBTs7OyEa9euabzetGnTBAsLCyExMVEQBEF48OCBAECIiIgo9L0BCPPmzdPY7ufnJ7Ro0UL9eOfOnQIA4ZNPPtHY7+233xZkMplw48YNQRAEIT4+XgAgfPjhhxr7DRo0qMga8lu3bp0AQLh9+7bGdtXP8MCBA4IgCMK5c+cEAML27duLfb0aNWoIQ4cOLfD6wcHBGv8OJ0+eLFhYWAhPnjwRBEEQUlJShAoVKgh9+vTReL05c+YIADResygAhLFjxxY4B23+rkRERAgAhIEDBxZ4/+J+b1/+WTx9+rTAPnFxcQIAYcOGDSWeK5k2dkuR2Ro+fDgsLS3VjwMDAwEAt27dAgDEx8eru1cePXqEhw8f4uHDh8jKykLnzp1x+PBhdVdKcUaPHo3Y2NgCS8OGDUs8dsiQIXBwcFA/fvvtt1G1alXs2rULAHD69Gncv38fH374ocaYhB49eqB+/fr4/fffNc7vyJEjAICMjAycP38eo0ePhpubm3r7kSNH4OzsjMaNG5dYm8qgQYNw8OBBpKSkYP/+/UhJSSmyS2r79u0IDAyEi4uL+vv58OFDBAcHQ6FQ4PDhw6V+3/fff1/jcWBgoPpnB4iDUy0sLDBhwgSN/T766CMIgoDdu3er9wNQYL9JkyaVupbSULXMxMTE4OnTp2U+fvTo0RrdNIGBgVAoFLhz5w4AYN++fXjx4gU+/PBDjePGjx//ClWLdPG78vLPr6xULZcA8Pz5czx69Ai1a9eGs7Mzzp49+0qvTcbPrLulDh8+jM8++wxnzpzBvXv3sGPHDvTp06fUx8+ZM0c9oyM/W1tbZGVlabFS0gVvb2+Nxy4uLgCAx48fAxDHRwDA0KFDi3yNtLQ09XFFqVOnDoKDg8tVY506dTQey2Qy1K5dWz2uQPXBVq9evQLH1q9fX6PLKTAwECtXrsSNGzdw8+ZNyGQy+Pv7q0PPqFGjcOTIEQQEBJRptk737t3h4OCA6OhoxMfHo1WrVho15nf9+nVcuHBBPabmZffv3y/Ve1pbWxd4DRcXF/XPDhC/N56enhrhEBDHFKmeV32Vy+WoVauWxn6FfU9fRc2aNREWFoYvvvgCmzZtQmBgIHr16oXBgweX2CUFlPzvVXU+tWvX1tjP1dW1xH+jr/re5fldqVmz5ivV9OzZM0RFRWHdunVITk7WGEeVfwwTmSezDjdZWVnw9fXFiBEjCgyqLI0pU6YU+Oujc+fOaNWqlbZKJB2ysLAodLvqP0nVX5qfffYZmjVrVui++rqYnDa0a9cOgBjqb926hebNm8POzg6BgYH46quvkJmZiXPnzmH+/Pllel0rKyv07dsX33//PW7dulXsdUqUSiW6dOmC//73v4U+X7du3VK9Z1E/Oynkb03J7+XBzQCwePFiDBs2DL/88gv27NmDCRMmICoqCidOnED16tWLfZ+S/r3qki5+V/K3vJTH+PHjsW7dOkyaNAn+/v5wcnKCTCbDO++8U6oWVTJtZh1uunXrhm7duhX5fE5ODmbMmIEtW7bgyZMnaNy4MRYtWqS+7oa9vb3GL+z58+dx6dIlrFy5Utelkx6o/pJ3dHQsd8vLq1L9RawiCAJu3LihHlxbo0YNAOK1UTp16qSx79WrV9XPA+Jf397e3jhy5Ahu3bql7lpo3749wsLCsH37digUCrRv377MdQ4aNAhr166FXC7HO++8U+R+tWrVQmZmZonfz6ICQ1nUqFEDe/fuRUZGhkbrzZUrV9TPq74qlUrcvHlTo7Xm6tWrpXofVWtE/hljQF5LysuaNGmCJk2aYObMmTh+/DgCAgKwcuVKfPLJJ6U+t8KozufGjRsarSKPHj3SaNHSBW39rpTl5/7jjz9i6NChWLx4sXpbdnZ2gZ8DmSeOuSnGuHHjEBcXh61bt+LChQvo168f3njjjQIfOCpr1qxB3bp11R8aZNxatGiBWrVq4fPPP0dmZmaB51+ehqsLGzZsQEZGhvrxjz/+iHv37qlDecuWLVGlShWsXLkSOTk56v12796Ny5cvF5jxExgYiP379+PkyZPqf6fNmjWDg4MDFi5cCBsbG7Ro0aLMdQYFBSEyMhLLli2Dh4dHkfv1798fcXFxiImJKfDckydP8OLFCwBQz3R5lQ+q7t27Q6FQYNmyZRrbv/zyS8hkMvX3UPX1q6++0thvyZIlpXof1Qd7/vFCCoUCq1at0tgvPT1dfX4qTZo0gVwu1/jZlVfnzp1RoUIFrFixQmP7y+evC9r6XVFd66Y0P3cLC4sCrVZff/11oS1mZH7MuuWmOImJiVi3bh0SExPh6ekJQOyG+uOPP7Bu3TosWLBAY//s7Gxs2rQJ06ZNk6Jc0gG5XI41a9agW7duaNSoEYYPH45q1aohOTkZBw4cgKOjI3777bcSX+fs2bP44YcfCmyvVasW/P39iz3W1dUV7dq1w/Dhw5GamoolS5agdu3aGDVqFACgYsWKWLRoEYYPH44OHTpg4MCB6qngPj4+mDx5ssbrBQYGYtOmTZDJZOpuKgsLC7Rt2xYxMTHo2LGjxsDR0pLL5Zg5c2aJ+3388cf49ddf8eabb2LYsGFo0aIFsrKycPHiRfz4449ISEiAm5sbbGxs0LBhQ0RHR6Nu3bpwdXVF48aNyzTQuWfPnggKCsKMGTOQkJAAX19f7NmzB7/88gsmTZqkDiXNmjXDwIED8c033yAtLQ1t27bFvn37Cr2OS2EaNWqENm3aIDw8HP/++y9cXV2xdevWAkFm//79GDduHPr164e6devixYsX2LhxIywsLPDWW2+V+ryK4u7ujokTJ2Lx4sXo1asX3njjDZw/fx67d++Gm5ubVlrDiqKt3xVVsJ4wYQJCQkJgYWFRZEvgm2++iY0bN8LJyQkNGzZEXFwc9u7di0qVKmn13Mg4MdwU4eLFi1AoFAXGAOTk5BT6y7Njxw5kZGQUO6COjE/Hjh0RFxenbpXIzMyEh4cHWrdujTFjxpTqNbZs2YItW7YU2D506NASw8306dNx4cIFREVFISMjA507d8Y333yjcQ2PYcOGwdbWFgsXLsTUqVPVF3hbtGgRnJ2dNV5P1VpTv359jX/HgYGBiImJ0Xmro62tLQ4dOoQFCxZg+/bt2LBhAxwdHVG3bl3MnTtXY2DtmjVrMH78eEyePBm5ubmIiIgoU7iRy+X49ddfMXv2bERHR2PdunXw8fHBZ599ho8++khj37Vr16Jy5crYtGkTdu7ciU6dOuH333+Hl5dXqd5r06ZNGDNmDBYuXAhnZ2eMHDkSQUFB6NKli3ofX19fhISE4LfffkNycjJsbW3h6+uL3bt3o02bNqU+r+IsWrQItra2WL16Nfbu3Qt/f3/s2bMH7dq10/kVfrXxu9K3b1+MHz8eW7duxQ8//ABBEIoMN0uXLoWFhQU2bdqE7OxsBAQEYO/evQgJCdHmaZGRkgn6GI1mBGQymcZsqejoaISGhuLvv/8uMJjO3t6+QNN7586d4ejoiB07duirZCKiEj158gQuLi745JNPMGPGDKnLIdILttwUwc/PDwqFAvfv3y/xr9nbt2/jwIED+PXXX/VUHRFRQc+ePSswC0k1dsjcbkBK5s2sw01mZqZGv/rt27cRHx8PV1dX1K1bF6GhoRgyZAgWL14MPz8/PHjwAPv27UPTpk01BmquXbsWVatWLXbmFRGRrkVHR2P9+vXo3r077O3tcfToUWzZsgVdu3ZFQECA1OUR6Y1Zd0sdPHgQQUFBBbYPHToU69evx/Pnz/HJJ59gw4YNSE5OhpubG9q0aYO5c+eiSZMmAMTrO9SoUQNDhgwp8/VBiIi06ezZs/jvf/+L+Ph4pKenw93dHW+99RY++eQTo7omE9GrMutwQ0RERKaH17khIiIik8JwQ0RERCbF7AYUK5VK3L17Fw4ODjq9qBURERFpjyAIyMjIgKenZ8k39xUkdOjQIeHNN98UqlatKgAQduzYUez+P/30kxAcHCy4ubkJDg4OQps2bYQ//vijTO+ZlJQkAODChQsXLly4GOGSlJRU4me9pC03Zb0r9+HDh9GlSxcsWLAAzs7OWLduHXr27Ik///wTfn5+pXpP1Q30kpKS4Ojo+Er1ExERkX6kp6fDy8tL40a4RTGY2VIvXyG4tBo1aoQBAwZg9uzZpdo/PT0dTk5OSEtLY7ghIiIyEmX5/DbqAcVKpRIZGRlwdXWVuhQiIiIyEEY9oPjzzz9HZmYm+vfvX+Q+OTk5yMnJUT9OT0/XR2lEREQkEaNtudm8eTPmzp2Lbdu2oUqVKkXuFxUVBScnJ/VS2rv8EhERkXEyynCzdetWvPfee9i2bRuCg4OL3Tc8PBxpaWnqJSkpSU9VEhERkRSMrltqy5YtGDFiBLZu3apx88qiWFlZwcrKSg+VERERkSGQNNwUd1dub29vhIeHIzk5GRs2bAAgdkUNHToUS5cuRevWrZGSkgIAsLGxgZOTkyTnQERERIZF0m6p06dPw8/PT32NmrCwMPj5+amndd+7dw+JiYnq/VetWoUXL15g7NixqFq1qnqZOHGiJPUTERGR4TGY69zoC69zQ0REZHzM5jo3RERERC9juCEiIiKTwnDziubMASIjC38uMlJ8noiIiPSH4eYVWVgAs2cXDDiRkeJ2Cwtp6iIiIjJXRnedG0Mza5b4dfZsICsLCA0Fdu4UH8+bl/c8ERER6QdnS2nJoEHAli2ATAYIAoMNERGRNpXl85vhRkuSk4Hq1cV1S0sg3706iYiI6BVxKrgE1q7NW8/NLXqQMREREekWw40WqAYPt20rPm7evPBBxkRERKR7DDevSBVs5s0TvwLA/fvA3LkMOERERFLgbKlXpFDkDR5+9gywsgL++Qfo108cXKxQSF0hERGReWG4eUX5L9JnYwO0bw/ExgIxMZwtRUREJAV2S2lZSIj4dc8eaesgIiIyVww3Wta1q/j14EFOByciIpICw42WNW4MVK0qjr85elTqaoiIiMwPw42WyWR5rTfsmiIiItI/hhsdUIWbmBhp6yAiIjJHDDc60KWL+PX8eSAlRdpaiIiIzA3DjQ5UrixepRgQp4UTERGR/jDc6AinhBMREUmD4UZHVONuYmMBpVLaWoiIiMwJw42OtG0L2NkBqanAhQtSV0NERGQ+GG50xNISCAoS19k1RUREpD8MNzrEKeFERET6x3CjQ6pBxUePAllZ0tZCRERkLhhudKhOHaBGDSA3Fzh8WOpqiIiIzAPDjQ7lvxUDu6aIiIj0g+FGx3i9GyIiIv1iuNGxTp0AuRy4fBlISpK6GiIiItPHcKNjLi5A69biOltviIiIdI/hRg9U424YboiIiHSP4UYPVONuYmMBhULaWoiIiEwdw40etGoFODkBjx8DZ85IXQ0REZFpY7jRgwoVgM6dxXVOCSciItIthhs94ZRwIiIi/WC40RPVoOK4OCAtTdpaiIiITBnDjZ74+AB164oDig8ckLoaIiIi08Vwo0ecEk5ERKR7DDd6xPtMERER6R7DjR4FBQEVKwK3bgE3b0pdDRERkWliuNEje3ugbVtxna03REREusFwo2ecEk5ERKRbDDd6php3s38/8Py5tLUQERGZIoYbPfPzA9zcgIwM4MQJqashIiIyPQw3eiaXA126iOvsmiIiItI+hhsJcEo4ERGR7jDcSEAVbk6fBh49krYWIiIiU8NwIwFPT6BxY0AQgH37pK6GiIjItDDcSEQ1JZxdU0RERNrFcCOR/PeZEgRpayEiIjIlDDcSCQwErK2Bf/4BLl+WuhoiIiLTwXAjERsboH17cZ1TwomIiLSH4UZC+bumiIiISDskDTeHDx9Gz5494enpCZlMhp07d5Z4zMGDB9G8eXNYWVmhdu3aWL9+vc7r1BXVoOKDB4HsbElLISIiMhmShpusrCz4+vpi+fLlpdr/9u3b6NGjB4KCghAfH49JkybhvffeQ4yRTjlq1AioWhV49gw4dkzqaoiIiExDBSnfvFu3bujWrVup91+5ciVq1qyJxYsXAwAaNGiAo0eP4ssvv0SIqhnEiMhkYtfU99+LU8I7d5a6IiIiIuNnVGNu4uLiEBwcrLEtJCQEcXFxRR6Tk5OD9PR0jcWQqDIZx90QERFph1GFm5SUFLi7u2tsc3d3R3p6Op49e1boMVFRUXByclIvXl5e+ii11IKDxRac8+eBlBSpqyEiIjJ+RhVuyiM8PBxpaWnqJSkpSeqSNFSuDDRvLq7HxkpbCxERkSkwqnDj4eGB1NRUjW2pqalwdHSEjY1NocdYWVnB0dFRYzE0nBJORESkPUYVbvz9/bHvpTtNxsbGwt/fX6KKtCP/uBulUtpaiIiIjJ2k4SYzMxPx8fGIj48HIE71jo+PR2JiIgCxS2nIkCHq/d9//33cunUL//3vf3HlyhV888032LZtGyZPnixF+Vrj7w/Y2QH37wMXLkhdDRERkXGTNNycPn0afn5+8PPzAwCEhYXBz88Ps2fPBgDcu3dPHXQAoGbNmvj9998RGxsLX19fLF68GGvWrDHKaeD5WVoCQUHiupFesoeIiMhgyATBvO5JnZ6eDicnJ6SlpRnU+Jtly4Dx44FOnYCXet6IiIjMXlk+v41qzI0pUw0qPnoUyMqSthYiIiJjxnBjIOrUAXx8gNxc4NAhqashIiIyXgw3BkJ1KwaAU8KJiIheBcONAVGFGw4qJiIiKj+GGwPSuTMglwNXrgD5JokRERFRGTDcGBBnZ6B1a3Gdt2IgIiIqH4YbA6O6ZA+7poiIiMqH4cbAqMbd7N0LKBTS1kJERGSMGG4MTKtWgJMT8PgxcPq01NUQEREZH4YbA1OhAhAcLK5zSjgREVHZMdwYIE4JJyIiKj+GGwOkCjcnTgBpadLWQkREZGwYbgyQjw9Qt644oPjAAamrISIiMi4MNwaKU8KJiIjKh+HGQPE+U0REROXDcGOgOnYEKlYEbt0CbtyQuhoiIiLjwXBjoOztgYAAcZ2tN0RERKXHcGPA2DVFRERUdgw3Bkw1qHj/fuD5c2lrISIiMhYMNwasWTPAzQ3IyBCveUNEREQlY7gxYHI50KWLuM4p4URERKXDcGPgVF1THHdDRERUOgw3Bk7VcnP6NPDokbS1EBERGQOGGwPn6Qk0aQIIArB3r9TVEBERGT6GGyPAKeFERESlx3BjBFThJiZGbMEhIiKiojHcGIHAQMDaGkhOBi5flroaIiIiw8ZwYwRsbID27cV1TgknIiIqHsONkeCUcCIiotJhuDESqnE3hw4B2dnS1kJERGTIGG6MRKNG4rTwZ8+Ao0elroaIiMhwMdwYCZmMU8KJiIhKg+HGiOSfEk5ERESFY7gxIl26iC04Fy4A9+5JXQ0REZFhYrgxIm5uQPPm4jpvxUBERFQ4hhsjo5oSzq4pIiKiwjHcGBnVuJvYWECplLYWIiIiQ8RwY2T8/QF7e+D+feD8eamrISIiMjwMN0bG0hIIChLXOSWciIioIIYbI8Tr3RARERWN4cYIqQYVHz0KZGVJWwsREZGhYbgxQrVrAz4+QG6ueK8pIiIiysNwY4RkMk4JJyIiKgrDjZHiuBsiIqLCMdwYqU6dAAsL4MoVIDFR6mqIiIgMB8ONkXJ2Blq3FtfZekNERJSH4caIsWuKiIioIIYbI6YaVLx3L6BQSFsLERGRoWC4MWItW4rdU48fA6dPS10NERGRYWC4MWIVKgCdO4vrnBJOREQkYrgxcqquKY67ISIiEjHcGDnVoOITJ4C0NGlrISIiMgSSh5vly5fDx8cH1tbWaN26NU6ePFns/kuWLEG9evVgY2MDLy8vTJ48GdnZ2Xqq1vDUqAHUqycOKN6/X+pqiIiIpCdpuImOjkZYWBgiIiJw9uxZ+Pr6IiQkBPfv3y90/82bN2PatGmIiIjA5cuX8d133yE6OhrTp0/Xc+WGhVPCiYiI8kgabr744guMGjUKw4cPR8OGDbFy5UrY2tpi7dq1he5//PhxBAQEYNCgQfDx8UHXrl0xcODAElt7TJ0q3MTEAIIgbS1ERERSkyzc5Obm4syZMwgODs4rRi5HcHAw4uLiCj2mbdu2OHPmjDrM3Lp1C7t27UL37t2LfJ+cnBykp6drLKamY0egYkXg9m3g5k2pqyEiIpKWZOHm4cOHUCgUcHd319ju7u6OlJSUQo8ZNGgQ5s2bh3bt2qFixYqoVasWOnbsWGy3VFRUFJycnNSLl5eXVs/DENjbAwEB4jq7poiIyNxJPqC4LA4ePIgFCxbgm2++wdmzZ/Hzzz/j999/R2RkZJHHhIeHIy0tTb0kJSXpsWL9UU0J5/VuiIjI3FWQ6o3d3NxgYWGB1NRUje2pqanw8PAo9JhZs2bh3XffxXvvvQcAaNKkCbKysjB69GjMmDEDcnnBrGZlZQUrKyvtn4CB6doVCA8XZ0w9fy52UxEREZkjyVpuLC0t0aJFC+zbt0+9TalUYt++ffD39y/0mKdPnxYIMBYWFgAAwcxH0jZrBlSuDGRmAkUMWSIiIjILknZLhYWFYfXq1fj+++9x+fJlfPDBB8jKysLw4cMBAEOGDEF4eLh6/549e2LFihXYunUrbt++jdjYWMyaNQs9e/ZUhxxzJZcDXbqI6xx3Q0RE5kyybikAGDBgAB48eIDZs2cjJSUFzZo1wx9//KEeZJyYmKjRUjNz5kzIZDLMnDkTycnJqFy5Mnr27In58+dLdQoGpWtXYPNmMdx88onU1RAREUlDJphZf056ejqcnJyQlpYGR0dHqcvRqnv3AE9PQCYD7t8H3NykroiIiEg7yvL5bVSzpah4VasCTZqIF/LLN5SJiIjIrDDcmBhOCSciInPHcGNi8t9nyrw6HImIiEQMNyamXTvA2hpITgYuXZK6GiIiIv1juDExNjZAhw7iOqeEExGROWK4MUH5u6aIiIjMDcONCVINKj50CMjOlrYWIiIifWO4MUENGwLVqgHPngFHj0pdDRERkX4x3JggmSyva4pTwomIyNww3JgojrshIiJzxXBjooKDxRacCxfE2zIQERGZC4YbE+XmBrRoIa7HxkpbCxERkT4x3Jgwdk0REZE5YrgxYaop4Xv2AEqltLUQERHpC8ONCWvTBrC3Bx48AM6fl7oaIiIi/WC4MWGWlkBQkLjOrikiIjIXDDcmTtU1xevdEBGRuWC4MXGqQcVHjwJZWdLWQkREpA8MNyaudm2gZk3g+XPg4EGpqyEiItI9hhsTl/9WDBx3Q0RE5oDhxgww3BARkTlhuDEDnToBFhbAlStAYqLU1RAREekWw40ZcHYGWrcW19l6Q0REpo7hxkxwSjgREZkLhhszoRp3s3cvoFBIWwsREZEuMdyYiVatxO6pJ0+AU6ekroaIiEh3GG7MhIUFEBwsrnPcDRERmTKGGzPCKeFERGQOGG7MiCrcnDgBpKVJWwsREZGuVCjvgadPn8a2bduQmJiI3Nxcjed+/vnnVy6MtK9GDaBePeDqVWD/fuA//5G6IiIiIu0rV8vN1q1b0bZtW1y+fBk7duzA8+fP8ffff2P//v1wcnLSdo2kRZwSTkREpq5c4WbBggX48ssv8dtvv8HS0hJLly7FlStX0L9/f3h7e2u7RtIiVddUTAwgCNLWQkREpAvlCjc3b95Ejx49AACWlpbIysqCTCbD5MmTsWrVKq0WSNrVoQNQsSKQkADcvCl1NURERNpXrnDj4uKCjIwMAEC1atXw119/AQCePHmCp0+faq860jp7e6BdO3GdXVNERGSKyhVu2rdvj9jYWABAv379MHHiRIwaNQoDBw5E586dtVogaR+nhBMRkSmTCULZR178+++/yM7OhqenJ5RKJT799FMcP34cderUwcyZM+Hi4qKLWrUiPT0dTk5OSEtLg6Ojo9TlSOLcOaB5c7EV59EjwNJS6oqIiIiKV5bP73KFG2PGcAMolYCHB/DgAXDoENC+vdQVERERFa8sn9+l7pZKT0/XWC9uIcMml7NrioiITFepw42Liwvu378PAHB2doaLi0uBRbWdDF/+KeFERESmpNRXKN6/fz9cXV0BAAcOHNBZQaQfXbqIX8+cAR4+BNzcpK2HiIhIW0odbjp06KBer1mzJry8vCCTyTT2EQQBSUlJ2quOdKZqVaBpU+DCBWDvXuCdd6SuiIiISDvKNRW8Zs2aePDgQYHt//77L2rWrPnKRZF+cNwNERGZonKFG0EQCrTaAEBmZiasra1fuSjSj/z3mTKvOXNERGTKynRX8LCwMACATCbDrFmzYGtrq35OoVDgzz//RLNmzbRaIOlOu3aAtTVw9y5w6RLQqJHUFREREb26MoWbc+fOARBbbi5evAjLfFd/s7S0hK+vL6ZMmaLdCklnrK3Fe03FxIhdUww3RERkCsoUblSzpIYPH46vvvoKDg4OOimK9CckRAw3MTHA5MlSV0NERPTqyjzm5vnz59i4cSPu3Lmji3pIz1SDig8dArKzpa2FiIhIG8ocbipWrAhvb28oFApd1EN61rAhUK2aGGyOHJG6GiIioldXrtlSM2bMwPTp0/Hvv/9qux7SM5mMU8KJiMi0lOvGmX5+frhx4waeP3+OGjVqwM7OTuP5s2fPaq1AbeONMwvauhUYOFC8qN/581JXQ0REVFBZPr/LNKBYpU+fPuU5jAxUcLDYgnPhAnDvnnj1YiIiImNVrpYbY8aWm8K1agWcPg18/z0wZIjU1RAREWkqy+d3ucbcAMCTJ0+wZs0ahIeHq8fenD17FsnJyWV6neXLl8PHxwfW1tZo3bo1Tp48WeL7jh07FlWrVoWVlRXq1q2LXbt2lfc06P/lv1oxERGRMStXuLlw4QLq1q2LRYsW4fPPP8eTJ08AAD///DPCw8NL/TrR0dEICwtDREQEzp49C19fX4SEhOD+/fuF7p+bm4suXbogISEBP/74I65evYrVq1ejWrVq5TkNykc1qDg2FlAqpa2FiIjoVZQr3ISFhWHYsGG4fv26xr2kunfvjsOHD5f6db744guMGjUKw4cPR8OGDbFy5UrY2tpi7dq1he6/du1a/Pvvv9i5cycCAgLg4+ODDh06wNfXtzynQfn4+wP29sCDBxxUTERExq1c4ebUqVMYM2ZMge3VqlVDSkpKqV4jNzcXZ86cQXBwcF4xcjmCg4MRFxdX6DG//vor/P39MXbsWLi7u6Nx48ZYsGABr7mjBRUrAp06ievsmiIiImNWrnBjZWWF9PT0AtuvXbuGypUrl+o1Hj58CIVCAXd3d43t7u7uRQakW7du4ccff4RCocCuXbswa9YsLF68GJ988kmR75OTk4P09HSNhQrH690QEZEpKFe46dWrF+bNm4fnz58DEO8SnpiYiKlTp+Ktt97SaoH5KZVKVKlSBatWrUKLFi0wYMAAzJgxAytXrizymKioKDg5OakXLy8vndVn7FSDio8eBTIzpa2FiIiovMoVbhYvXozMzExUqVIFz549Q4cOHVC7dm04ODhg/vz5pXoNNzc3WFhYIDU1VWN7amoqPDw8Cj2matWqqFu3LiwsLNTbGjRogJSUFOTm5hZ6THh4ONLS0tRLUlJSKc/S/NSqBdSsCTx/Lt5rioiIyBiVK9w4OTkhNjYWv/32G7766iuMGzcOu3btwqFDhwpcrbgolpaWaNGiBfbt26feplQqsW/fPvj7+xd6TEBAAG7cuAFlvuk8165dQ9WqVWFpaVnoMVZWVnB0dNRYqHAyWV7rDbumiIjIWJXrCsUq7dq1Q7t27cp9fFhYGIYOHYqWLVvi9ddfx5IlS5CVlYXhw4cDAIYMGYJq1aohKioKAPDBBx9g2bJlmDhxIsaPH4/r169jwYIFmDBhwqucBuXTtSuwciUHFRMRkfEqd7jZt28f9u3bh/v372u0pAAocir3ywYMGIAHDx5g9uzZSElJQbNmzfDHH3+oBxknJiZCLs9rXPLy8kJMTAwmT56Mpk2bolq1apg4cSKmTp1a3tOgl3TqBFhYAFevAnfuADVqSF0RERFR2ZTr9gtz587FvHnz0LJlS1StWhUymUzj+R07dmitQG3j7RdK1q4dcOwYsGoVMGqU1NUQERHp4caZK1euxPr16/Huu++Wq0AybF27iuFmzx6GGyIiMj7lGlCcm5uLtm3barsWMhCqQcV79wIvXkhbCxERUVmVK9y899572Lx5s7ZrIQPRsiXg4gI8eSLeKZyIiMiYlKtbKjs7G6tWrcLevXvRtGlTVKxYUeP5L774QivFkTQsLIDgYGD7drFrqk0bqSsiIiIqvXKFmwsXLqBZs2YAgL/++kub9ZCB6NpVDDcxMcDs2VJXQ0REVHrlCjcHDhzQdh1kYFT3mfrzT7F7ytlZymqIiIhKr0zhpm/fviXuI5PJ8NNPP5W7IDIM3t5A/frAlSvA/v1AKX70REREBqFM4cbJyUlXdZAB6tpVDDd79jDcEBGR8SjXRfyMGS/iV3q7dgE9egA+PsCtW+K9p4iIiKRQls/vck0FJ/PQoQNQsSKQkADcuCF1NURERKXDcENFsrMTb8UA8C7hRERkPBhuqFiqqxXzLuFERGQsGG6oWKop4QcOALm50tZCRERUGgw3VCxfX6BKFSAzEzhxQupqiIiISsZwQ8WSy4EuXcR1dk0REZExYLihEqm6pjiomIiIjAHDDZVI1XJz5gzw8KG0tRAREZWE4YaKNWcOsGYN0LQpIAjA3r15z0VGis8TEREZEoYbKpaFhXhXcAcH8bFq3E1kpLjdwkK62oiIiApTrruCk/mYNUv8Onu2+HXPHmDePCAiQvyqep6IiMhQsOWGSjRrVl64uXuXwYaIiAwbww2Vyty54rRwlSFDpKuFiIioOAw3VCqRkYBSmXdncH9/4OlTaWsiIiIqDMMNlUg1eHjePPEO4ba2wL17YsARBKmrIyIi0sRwQ8XKH2xmzQK8vYHffxdbcC5cAHr0kLpCIiIiTQw3VCyFouDg4Y4dgS+/FNf/+EO8qSYREZGhkAmCeXUspKenw8nJCWlpaXB0dJS6HKMlCMDQocDGjYCbG3D6NFCjhtRVERGRqSrL5zdbbqhcZDLg22+B5s3FWzL07Qs8eyZ1VURERAw39ApsbICffxZbbs6eBcaM4QBjIiKSHsMNvZIaNYBt28TbMGzcCHz9tdQVERGRuWO4oVcWFAR8/rm4HhYGHDwoaTlERGTmGG5IKyZOBEJDxdlV/fsDiYlSV0REROaK4Ya0QiYDVq0C/PyABw84wJiIiKTDcENaY2srDjCuVAk4cwZ4/30OMCYiIv1juCGt8vERBxjL5cCGDcDy5VJXRERE5obhhrSuUyfgs8/E9cmTgcOHpa2HiIjMC8MN6cTkycCgQcCLF8DbbwNJSVJXRERE5oLhhnRCJgNWrwaaNRMHGL/1FpCdLXVVRERkDhhuSGdsbYEdOwBXV+DUKeCDDzjAmIiIdI/hhnTKxweIjhYHGK9fD3zzjdQVERGRqWO4IZ0LDgY+/VRcnzQJOHJE0nKIiMjEMdyQXoSFAQMH5g0w/ucfqSsiIiJTxXBDeiGTAWvWAL6+wP37HGBMRES6w3BDepN/gPHJk8DYsRxgTERE2sdwQ3pVsyawdas4wHjtWmDlSqkrIiIiU8NwQ3rXpQuwcKG4PmECcPSotPUQEZFpYbghSUyZAgwYkDfAODlZ6oqIiMhUMNyQJGQy4LvvgKZNgdRUcYBxTo7UVRERkSlguCHJ2NmJA4xdXIA//+QAYyIi0g6GG5LUa6/lDTD+7jvg22+lroiIiIwdww1JrmtXICpKXJ8wATh2TNp6iIjIuDHckEH4+GOgf3/g+XNxgPHdu1JXRERExorhhgyCTCZe96ZJEyAlhQOMiYio/Awi3Cxfvhw+Pj6wtrZG69atcfLkyVIdt3XrVshkMvTp00e3BZJe5B9gfOIEMH681BUREZExkjzcREdHIywsDBERETh79ix8fX0REhKC+/fvF3tcQkICpkyZgsDAQD1VSvpQqxawZYvYkrN6NbBqldQVERGRsZE83HzxxRcYNWoUhg8fjoYNG2LlypWwtbXF2rVrizxGoVAgNDQUc+fOxWuvvabHakkfQkKABQvE9XHjgOPHpa2HiIiMi6ThJjc3F2fOnEFwcLB6m1wuR3BwMOLi4oo8bt68eahSpQpGjhxZ4nvk5OQgPT1dYyHDN3WqOLD4+XNx/A0HGBMRUWlJGm4ePnwIhUIBd3d3je3u7u5ISUkp9JijR4/iu+++w+rVq0v1HlFRUXByclIvXl5er1w36Z5MBqxbBzRuLA4wfvttDjAmIqLSkbxbqiwyMjLw7rvvYvXq1XBzcyvVMeHh4UhLS1MvSUlJOq6StMXeXhxg7OwMxMUBEydKXRERERmDClK+uZubGywsLJCamqqxPTU1FR4eHgX2v3nzJhISEtCzZ0/1NqVSCQCoUKECrl69ilq1amkcY2VlBSsrKx1UT/pQu7Y4wLh7d/HqxS1aAKNGSV0VEREZMklbbiwtLdGiRQvs27dPvU2pVGLfvn3w9/cvsH/9+vVx8eJFxMfHq5devXohKCgI8fHx7HIyUW+8AcyfL66PHSu24hARERVF0pYbAAgLC8PQoUPRsmVLvP7661iyZAmysrIwfPhwAMCQIUNQrVo1REVFwdraGo0bN9Y43tnZGQAKbCfTMm0acOYM8NNP4gDjM2eAqlWlroqIiAyR5OFmwIABePDgAWbPno2UlBQ0a9YMf/zxh3qQcWJiIuRyoxoaRDogkwHr1wNXrgB//y0OMD5wALC0lLoyIiIyNDJBEASpi9Cn9PR0ODk5IS0tDY6OjlKXQ2V0/TrQqhWQlgZ88AHwzTdSV0RERPpQls9vNomQUalTB9i8WWzJWbEC+O47qSsiIiJDw3BDRqd7dyAyUlz/8EPgzz+lrYeIiAwLww0ZpenTgb59gdxc8WsR13wkIiIzxHBDRkk1wLhhQ/HWDP36iUGHiIiI4YaMloMDsHMn4OQEHD0KTJ4sdUVERGQIGG7IqNWpA2zaJLbkfPMNUMzN5ImIyEww3JDR69EDmDdPXP/gA+DkSWnrISIiaTHckEmYPh3o0ydvgPFLtysjIiIzwnBDJkEuBzZsABo0AJKTOcCYiMicMdyQyXBwAHbsABwdgSNHgI8+kroiIiKSAsMNmZR69cQBxgCwbJk4XZyIiMwLww2ZnDffBObOFdfffx84dUraeoiISL8YbsgkzZwJ9O4N5ORwgDERkblhuCGTpBpgXL8+8M8/QP/+wPPnUldFRET6wHBDJsvRUbyCsYMDcPgwBxgTEZkLhhsyafXqAT/8IK5//TXw/ffS1kNERLrHcEMmr1cvYM4ccX3MGOD0aUnLISIiHWO4IbMwa5YYclQDjO/fl7oiIiLSFYYbMguqAcb16gFJSRxgTERkyhhuyGw4OeUNMD50CPj4Y6krIiIiXWC4IbNSvz6wcaO4vnRp3joREZkOhhsyO717A7Nni+ujRwNnzkhbDxERaRfDDZmliAjxNg3Z2eIA4wcPpK6IiIi0heGGzJJcLl7/pm5dIDEReP114MWLgvtFRuZNIyciIuPAcENmSzXA2NISSEgA2rfXfD4yUuy+srCQojoiIiovhhsyaw0aANHR4npcHPD22+K6KtjMmydeI4eIiIwHww2ZvT598gLMTz8BFSsy2BARGTOGGyKI42p69BDXVWNvrKyAR48kK4mIiMqJ4YYI4gBjPz/NbVOnAtWrA6NGARcuSFMXERGVHcMNEcQxNp98InZFPXsG/Oc/4vbsbGDNGsDXF+jYUey2KmxWFRERGQ6GGzJ7Lw8etrYGfv4ZmDtXfL5xY3HG1KFD4oDj114DFi4EHj6Utm4iIiocww2ZPYWi8MHDqsDz1lvAnTvAzJlA5crijTfDwwEvL2DkSCA+XpKyiYioCDJBEASpi9Cn9PR0ODk5IS0tDY6OjlKXQ0YmOxvYtg346ivN2za0bw+MHy/OvKpQQbLyiIhMVlk+v9lyQ1QG1tbAkCHAqVPA8ePAO++IYebwYaBfP7HLKiqKXVZERFJiuCEqB5kM8PcHtmwRu6xmzcrrspo+XZxlNWIEcO6c1JUSEZkfhhuiV+TpKY7NSUoCNmwAWrQAcnKAdeuA5s2BwEBg+3bg+XOpKyUiMg8MN0RaYmUFvPtuXpfVwIFil9XRo0D//mKX1YIFvAM5EZGuMdwQaZmqy2rzZrHLavZsoEoV4J9/gBkzxFlWw4cDZ89KXSkRkWliuCHSIU9P8Xo5iYlil1XLlmKX1fr1YvdVu3bi7Ct2WRERaQ/DDZEeqLqsTp4U7z4+aJDYZXXsGDBgAFCzJjB/PrusiIi0geGGSI9kMqBNG2DTprwuK3d3IDlZvEhg9erAsGGa19AhIqKyYbghkoiqy+rOHWDjRuD114HcXOD778Xuq4AAIDqaXVZERGXFcEMkMSsrYPBg4M8/gRMngNBQoGLFvIsE+viIN/W8f1/qSomIjAPDDZEBad0a+OEHcQDynDlil9Xdu+JFAr28gKFDgdOnpa6SiMiwMdwQGSAPDyAiQgw5mzaJoSc3V5xx1aoV0LYtsHUru6yIiArDcENkwCwtxZlVJ06I3VaDB4tdVnFx4kUCa9QAIiOB1FSpKyUiMhwMN0RG4vXXxYHHiYniQGQPD+DePXHGlbd33g09iYjMHcMNkZHx8BADzZ07YpdVmzZil5VqxpXq6si5uVJXSkQkDZkgCILURehTeno6nJyckJaWBkdHR6nLIdKKU6eAr7/WHIfj4QG8/z6QkQE4OYmDkl8WGQkoFOLgZSIiQ1aWz2+23BCZgFatxMHGqi6rqlWBlBQxtHz5pdjSM2aM5jGRkeJ2CwtJSiYi0hm23BCZoNxc4KefxNacuLi87dWqAdOnA5cuAcuXA/PmFd6iQ0RkaMry+c1wQ2TiVF1WmzeLXVAq1tZAUJB4886AAHG8jo2NdHUSERXH6Lqlli9fDh8fH1hbW6N169Y4efJkkfuuXr0agYGBcHFxgYuLC4KDg4vdn8jcqbqskpM1u6Cys4Hdu4EZM4COHcVxOW3aAFOmADt28IrIRGS8JA830dHRCAsLQ0REBM6ePQtfX1+EhITgfhH/sx48eBADBw7EgQMHEBcXBy8vL3Tt2hXJycl6rpzIuKxaJbbcWFqKj99/H1i6FOjXT7zP1fPn4rV0Fi8G+vYVr45cty4wYgTw3XfA1auAebXzEpGxkrxbqnXr1mjVqhWWLVsGAFAqlfDy8sL48eMxbdq0Eo9XKBRwcXHBsmXLMGTIkBL3Z7cUmSPV4GHVGJuXHwsCkJAAHDsmLkePAn//XTDMuLmJXVgBAWJ3VvPm4r2xiIh0rSyf3xX0VFOhcnNzcebMGYSHh6u3yeVyBAcHIy7/KMhiPH36FM+fP4erq2uhz+fk5CAnJ0f9OD09/dWKJjIyLwcZIO/r7Nl5j2vWFJfBg8Vtjx+Lg5FVYefkSeDhQ+CXX8QFEIPN66/nhZ22bQEXF/2eHxHRyyQNNw8fPoRCoYC7u7vGdnd3d1y5cqVUrzF16lR4enoiODi40OejoqIwd+7cV66VyFgpFIXPilI9zj/IOD8XF6B7d3EBxBlYZ8/mhZ1jx4AHD4AjR8RFpVGjvLATECAGJplM++dFRFQUSbul7t69i2rVquH48ePw9/dXb//vf/+LQ4cO4c8//yz2+IULF+LTTz/FwYMH0bRp00L3KazlxsvLi91SRK9IEIDr1zXDztWrBffz8MgLOu3aAc2aARUk/bOKiIyR0XRLubm5wcLCAqkv3fUvNTUVHh4exR77+eefY+HChdi7d2+RwQYArKysYMVBAURaJ5OJA47r1gWGDxe3PXgAHD+eF3ZOnxYvJvjjj+ICALa24qwsVdhp0wbg3xlEpE2ShhtLS0u0aNEC+/btQ58+fQCIA4r37duHcePGFXncp59+ivnz5yMmJgYtW7bUU7VEVJLKlYHevcUFAJ49EwOOKuwcOwY8eQLs3y8uACCXA02banZleXlJdgpEZAIkny0VHR2NoUOH4ttvv8Xrr7+OJUuWYNu2bbhy5Qrc3d0xZMgQVKtWDVFRUQCARYsWYfbs2di8eTMCAgLUr2Nvbw97e/sS34+zpYiko1QCly/nhZ2jR4Hbtwvu5+2tGXYaN+ZtIojMndFdoXjZsmX47LPPkJKSgmbNmuGrr75C69atAQAdO3aEj48P1q9fDwDw8fHBnTt3CrxGREQE5pTi7n8MN0SG5e7dvFadY8eAc+cKDnJ2dBTvdp7/asp2duJzc+aIwYc3BiUybUYXbvSJ4YbIsGVmitPOVa07cXHinc3zq1AB8PMTw87du0B0dMEZYYVNgSci48VwUwyGGyLjolAAFy9qdmX980/h+zZrJt79/NQpYO1a8Q7pqmv5EJFxY7gpBsMNkfFLTNQMOxcvFn5rCEdHoF49zaVuXaBOHXHWFhEZD4abYjDcEJmetDSx++rNN/PG68jl4gDmonh7Fww+9eoB1auLxxKRYTGa69wQEWmDk5PYFaW6MWhuLjBzJtC/v3hhwZeXx4/F1p/ERCA2VvO1bGzyrt/zcvDh30NExoHhhoiMXlE3Bq1QofDBxA8fFh56bt4Ur81z/ry4vMzDo2AXV7164i0meNVlIsPBX0ciMmqlvTFofm5ueXc4z+/FC/G6O9euFQw+KSl5y6FDmsdVrAjUqlV4N5ebm/bPmYiKx3BDREatvDcGLUyFCuJg4zp1gB49NJ9LS9MMPar1a9fE1p4rV8TlZa6umq08qqV2bfGu6qXBa/kQlQ3DDREZteI+1LV5fRsnJ6BVK3HJT6kUp6YX1s2VmAj8+6842DkuTvM4uRzw8Sm8m8vTU/NO6hYWhbdC5W+1IqI8nC1FRKQjT58CN24UHnzS04s+zt6+YEvP4cPAihUFxxXxIoVkLjgVvBgMN0QkNUEAUlMLBp5r14Bbt0ruSpPJxNdo2VLsPvPwANzdxa+qdV7Hh0wNw00xGG6IyJDl5ooBp7DWnocPS/86jo6ageflAKR6XKWKOH2eyNDxOjdEREbK0hKoX19cXjZ9OhAVJQ58fvEC6NhR3C//TK6UFCA7W+z2Sk8Hrl8v+T0rVSo6/OR/XKmSbu7OzgHTpG0MN0RERiAyUgw2L4+56dRJHIujIgjijUZVQSc1VTP45H+cmiqGpEePxOXvv4uvQS4XW3qKawlSrTs7aw6KLg4HTJO2MdwQERm4slzLRyYTu6QcHcVBycVRKsWrNb/c8lNYIHrwQNxfta0klpal6xbz8Cj8XDhgml4Fx9wQERk4Q+i2efFCDDgltQalpABPnpTtte3sxJCTmwskJeXdF6xnT2DECDEEqRY7O52cHhkBDiguBsMNEZFuZWcD9++X3Bp07544Xb4s7O01w45qUbUE5V/s7XVzfiQNDigmIiLJWFuLd1339i5538zMvLDz9ddAdLTYSqVQiNf3cXbOC0bZ2eL+mZnifcBKYmtbeOgpKgiVdowQGT6GGyIikoy9vXgrii1bxGBT1EUKVQOlU1M1F1Uwennbs2diq9CtW+JSEhubwkNPYWHIwaFsQcgQuhXNDcMNERFJqrQDplUDpevUKf71BEFs3SkpBKm2P30qhqHbt8WlJNbWRbcAvbzN0ZGzwaTAcENERJLS5s1PAbFVxcFBXGrXLnn/0gQh1basLLF77M4dcSmJlZUYcqpVE4PML78Ab7wBnD0L7N4NvPsu0K0bkJAg3kHezo7dY9rAAcVERESllJVV+iCUmVn217eyEkNOWRZra+2fpyHigGIiIiIdsLMDXntNXEry9GnB0DN2rNgSJZcDQUHiLTUePhSn2efmAjk5QHKyuJSlprKEoUqVgIoVy/89KIyhjStiuCEiItIBW1ugZk1xAfI+5C0txSDToUNeGBAEsVVIFXZKuygU4nFZWaXrJlNxcipbIHJxKf7WG4Y2rojhhoiISMdeHjStegyIj2UyceaYvT3g41O61xQEIC1NvHVGacPQo0d5x6WllW5KPSDW5+padPjx8gJCQ8VzevRIbKX5+mvprjLNMTdEREQ6VNStJKS4xYRCIV5BuiytQ2W94jQghiFB0O65ccwNERGRgdD2bLBXYWEhjrmpVEm8SGJpPH8O/Ptv6cNQQoIYbCwtpbsvGFtuiIiISCtUrVGqcUVStdzItfOWREREZM7yd7Pl5IhfZ88Wt+sbu6WIiIjolZT2KtP6wnBDREREr8SQxhUBHHMjdTlERERUChxzQ0RERGaL4YaIiIhMCsMNERERmRSGGyIiIjIpDDdERERkUhhuiIiIyKQw3BAREZFJYbghIiIik8JwQ0RERCaF4YaIiIhMitndW0p1t4n09HSJKyEiIqLSUn1ul+auUWYXbjIyMgAAXl5eEldCREREZZWRkQEnJ6di9zG7G2cqlUrcvXsXDg4OkMlkWn3t9PR0eHl5ISkpySRvymnq5weY/jny/IyfqZ8jz8/46eocBUFARkYGPD09IZcXP6rG7Fpu5HI5qlevrtP3cHR0NNl/tIDpnx9g+ufI8zN+pn6OPD/jp4tzLKnFRoUDiomIiMikMNwQERGRSWG40SIrKytERETAyspK6lJ0wtTPDzD9c+T5GT9TP0een/EzhHM0uwHFREREZNrYckNEREQmheGGiIiITArDDREREZkUhhsiIiIyKQw3WnD48GH07NkTnp6ekMlk2Llzp9QlaVVUVBRatWoFBwcHVKlSBX369MHVq1elLktrVqxYgaZNm6ovOOXv74/du3dLXZbOLFy4EDKZDJMmTZK6FK2ZM2cOZDKZxlK/fn2py9Kq5ORkDB48GJUqVYKNjQ2aNGmC06dPS12W1vj4+BT4GcpkMowdO1bq0rRCoVBg1qxZqFmzJmxsbFCrVi1ERkaW6j5JxiIjIwOTJk1CjRo1YGNjg7Zt2+LUqVOS1GJ2VyjWhaysLPj6+mLEiBHo27ev1OVo3aFDhzB27Fi0atUKL168wPTp09G1a1dcunQJdnZ2Upf3yqpXr46FCxeiTp06EAQB33//PXr37o1z586hUaNGUpenVadOncK3336Lpk2bSl2K1jVq1Ah79+5VP65QwXT+e3v8+DECAgIQFBSE3bt3o3Llyrh+/TpcXFykLk1rTp06BYVCoX78119/oUuXLujXr5+EVWnPokWLsGLFCnz//fdo1KgRTp8+jeHDh8PJyQkTJkyQujyteO+99/DXX39h48aN8PT0xA8//IDg4GBcunQJ1apV028xAmkVAGHHjh1Sl6FT9+/fFwAIhw4dkroUnXFxcRHWrFkjdRlalZGRIdSpU0eIjY0VOnToIEycOFHqkrQmIiJC8PX1lboMnZk6darQrl07qcvQq4kTJwq1atUSlEql1KVoRY8ePYQRI0ZobOvbt68QGhoqUUXa9fTpU8HCwkL43//+p7G9efPmwowZM/ReD7ulqMzS0tIAAK6urhJXon0KhQJbt25FVlYW/P39pS5Hq8aOHYsePXogODhY6lJ04vr16/D09MRrr72G0NBQJCYmSl2S1vz6669o2bIl+vXrhypVqsDPzw+rV6+Wuiydyc3NxQ8//IARI0Zo/QbHUmnbti327duHa9euAQDOnz+Po0ePolu3bhJXph0vXryAQqGAtbW1xnYbGxscPXpU7/WYTrst6YVSqcSkSZMQEBCAxo0bS12O1ly8eBH+/v7Izs6Gvb09duzYgYYNG0pdltZs3boVZ8+elaz/W9dat26N9evXo169erh37x7mzp2LwMBA/PXXX3BwcJC6vFd269YtrFixAmFhYZg+fTpOnTqFCRMmwNLSEkOHDpW6PK3buXMnnjx5gmHDhklditZMmzYN6enpqF+/PiwsLKBQKDB//nyEhoZKXZpWODg4wN/fH5GRkWjQoAHc3d2xZcsWxMXFoXbt2vovSO9tRSYOJt4t9f777ws1atQQkpKSpC5Fq3JycoTr168Lp0+fFqZNmya4ubkJf//9t9RlaUViYqJQpUoV4fz58+ptptYt9bLHjx8Ljo6OJtO1WLFiRcHf319j2/jx44U2bdpIVJFude3aVXjzzTelLkOrtmzZIlSvXl3YsmWLcOHCBWHDhg2Cq6ursH79eqlL05obN24I7du3FwAIFhYWQqtWrYTQ0FChfv36eq+F4UbLTDncjB07Vqhevbpw69YtqUvRuc6dOwujR4+Wugyt2LFjh/o/G9UCQJDJZIKFhYXw4sULqUvUiZYtWwrTpk2Tugyt8Pb2FkaOHKmx7ZtvvhE8PT0lqkh3EhISBLlcLuzcuVPqUrSqevXqwrJlyzS2RUZGCvXq1ZOoIt3JzMwU7t69KwiCIPTv31/o3r273mvgmBsqkSAIGDduHHbs2IH9+/ejZs2aUpekc0qlEjk5OVKXoRWdO3fGxYsXER8fr15atmyJ0NBQxMfHw8LCQuoStS4zMxM3b95E1apVpS5FKwICAgpcfuHatWuoUaOGRBXpzrp161ClShX06NFD6lK06unTp5DLNT9yLSwsoFQqJapId+zs7FC1alU8fvwYMTEx6N27t95r4JgbLcjMzMSNGzfUj2/fvo34+Hi4urrC29tbwsq0Y+zYsdi8eTN++eUXODg4ICUlBQDg5OQEGxsbiat7deHh4ejWrRu8vb2RkZGBzZs34+DBg4iJiZG6NK1wcHAoMD7Kzs4OlSpVMplxU1OmTEHPnj1Ro0YN3L17FxEREbCwsMDAgQOlLk0rJk+ejLZt22LBggXo378/Tp48iVWrVmHVqlVSl6ZVSqUS69atw9ChQ01qKj8A9OzZE/Pnz4e3tzcaNWqEc+fO4YsvvsCIESOkLk1rYmJiIAgC6tWrhxs3buDjjz9G/fr1MXz4cP0Xo/e2IhN04MABAUCBZejQoVKXphWFnRsAYd26dVKXphUjRowQatSoIVhaWgqVK1cWOnfuLOzZs0fqsnTK1MbcDBgwQKhatapgaWkpVKtWTRgwYIBw48YNqcvSqt9++01o3LixYGVlJdSvX19YtWqV1CVpXUxMjABAuHr1qtSlaF16erowceJEwdvbW7C2thZee+01YcaMGUJOTo7UpWlNdHS08NprrwmWlpaCh4eHMHbsWOHJkyeS1CITBBO6PCIRERGZPY65ISIiIpPCcENEREQmheGGiIiITArDDREREZkUhhsiIiIyKQw3REREZFIYboiIiMikMNwQkaQ6duyISZMmSV1GiebMmQN3d3fIZDLs3LlT6nKIqBgMN0RULj179sQbb7xR6HNHjhyBTCbDhQsX9FyVbly+fBlz587Ft99+i3v37qFbt24F9klISIBMJkN8fLx6W0ZGBoKCgtCwYUP8888/eqyYyLwx3BBRuYwcORKxsbGFfmivW7cOLVu2RNOmTSWoTPtu3rwJAOjduzc8PDxgZWVV4jEPHjxAUFAQsrKycOTIEVSvXl3XZRLR/2O4IaJyefPNN1G5cmWsX79eY3tmZia2b9+OkSNH4tGjRxg4cCCqVasGW1tbNGnSBFu2bCn2dQvr9nF2dtZ4n6SkJPTv3x/Ozs5wdXVF7969kZCQoH7+4MGDeP3112FnZwdnZ2cEBATgzp07Rb7nxYsX0alTJ9jY2KBSpUoYPXo0MjMzAYjdUT179gQAyOVyyGSyEr83SUlJCAwMhJOTE/bv349KlSqVeAwRaQ/DDRGVS4UKFTBkyBCsX78e+W9Rt337digUCgwcOBDZ2dlo0aIFfv/9d/z1118YPXo03n33XZw8ebLc7/v8+XOEhITAwcEBR44cwbFjx2Bvb4833ngDubm5ePHiBfr06YMOHTrgwoULiIuLw+jRo4sMJVlZWQgJCYGLiwtOnTqF7du3Y+/evRg3bhwA8Y7j69atAwDcu3cP9+7dK7a+q1evIiAgAA0bNsSuXbtgb29f7nMlonKS5HadRGQSLl++LAAQDhw4oN4WGBgoDB48uMhjevToIXz00Ufqxy/foRyAsGPHDo1jnJyc1Heh37hxo1CvXj1BqVSqn8/JyRFsbGyEmJgY4dGjRwIA4eDBg6U6h1WrVgkuLi5CZmametvvv/8uyOVyISUlRRAEQdixY4dQ0n+Xt2/fFgAIlpaWQlBQkPDixYtSvT8RaR9bboio3OrXr4+2bdti7dq1AIAbN27gyJEjGDlyJABAoVAgMjISTZo0gaurK+zt7RETE4PExMRyv+f58+dx48YNODg4wN7eHvb29nB1dUV2djZu3rwJV1dXDBs2DCEhIejZsyeWLl1abGvL5cuX4evrCzs7O/W2gIAAKJVKXL16tcz19erVC0eOHMHPP/9crvMjolfHcENEr2TkyJH46aefkJGRgXXr1qFWrVro0KEDAOCzzz7D0qVLMXXqVBw4cADx8fEICQlBbm5uka8nk8k0urkAsStKJTMzEy1atEB8fLzGcu3aNQwaNAiAOKA5Li4Obdu2RXR0NOrWrYsTJ07o4OwLmjFjBmbPno1BgwZh27ZtenlPItJUQeoCiMi49e/fHxMnTsTmzZuxYcMGfPDBB+rxLceOHUPv3r0xePBgAIBSqcS1a9fQsGHDIl+vcuXKGi0t169fx9OnT9WPmzdvjujoaFSpUgWOjo5Fvo6fnx/8/PwQHh4Of39/bN68GW3atCmwX4MGDbB+/XpkZWWpW2+OHTsGuVyOevXqle2b8f9mzZoFuVyO0NBQCIKAAQMGlOt1iKh82HJDRK/E3t4eAwYMQHh4OO7du4dhw4apn6tTpw5iY2Nx/PhxXL58GWPGjEFqamqxr9epUycsW7YM586dw+nTp/H++++jYsWK6udDQ0Ph5uaG3r1748iRI7h9+zYOHjyICRMm4J9//sHt27cRHh6OuLg43LlzB3v27MH169fRoEGDQt8vNDQU1tbWGDp0KP766y8cOHAA48ePx7vvvgt3d/dyf19mzJiByMhIhIaGljhDjIi0i+GGiF7ZyJEj8fjxY4SEhMDT01O9febMmWjevDlCQkLQsWNHeHh4oE+fPsW+1uLFi+Hl5YXAwEAMGjQIU6ZMga2trfp5W1tbHD58GN7e3ujbty8aNGiAkSNHIjs7G46OjrC1tcWVK1fw1ltvoW7duhg9ejTGjh2LMWPGFPp+tra2iImJwb///otWrVrh7bffRufOnbFs2bJX/r5MmzYNCxYswLvvvovNmze/8usRUenIhJc7t4mIiIiMGFtuiIiIyKQw3BAREZFJYbghIiIik8JwQ0RERCaF4YaIiIhMCsMNERERmRSGGyIiIjIpDDdERERkUhhuiIiIyKQw3BAREZFJYbghIiIik8JwQ0RERCbl/wC6bDpygPq1oQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(K, inertias, 'bx-')\n", + "plt.xlabel('Values of K')\n", + "plt.ylabel('Inertia')\n", + "plt.title('The Elbow Method using Inertia')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "b861318d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
KNeighborsClassifier(n_neighbors=7)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "KNeighborsClassifier(n_neighbors=7)" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "### Using KNN Classifier for model building \n", + "\n", + "from sklearn.neighbors import KNeighborsClassifier\n", + "KNN = KNeighborsClassifier(n_neighbors=7)\n", + "KNN.fit(x_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "0fa39a79", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1,\n", + " 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1,\n", + " 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0,\n", + " 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1,\n", + " 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0,\n", + " 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0])" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pred = KNN.predict(x_test)\n", + "pred" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "00e8aaac", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The accuracy of the KNN with K=3 is 73.38%\n" + ] + } + ], + "source": [ + "\n", + "#validation of built model\n", + "from sklearn.metrics import accuracy_score\n", + "\n", + "print('The accuracy of the KNN with K=3 is {}%'.format(round(accuracy_score(pred,y_test)*100,2)))" + ] + }, + { + "cell_type": "markdown", + "id": "18a5e293", + "metadata": {}, + "source": [ + "# After removing outliers" + ] + }, + { + "cell_type": "markdown", + "id": "c94e2623", + "metadata": {}, + "source": [ + "# Logistic regression algorithm" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "1d45bc1f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAge
061487235033.60.62750
11856629026.60.35131
318966239428.10.16721
55116740025.60.20130
637850328831.00.24826
...........................
762989620022.50.14233
76421227027036.80.34027
7655121722311226.20.24530
7661126600030.10.34947
7671937031030.40.31523
\n", + "

536 rows × 8 columns

\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "0 6 148 72 35 0 33.6 \n", + "1 1 85 66 29 0 26.6 \n", + "3 1 89 66 23 94 28.1 \n", + "5 5 116 74 0 0 25.6 \n", + "6 3 78 50 32 88 31.0 \n", + ".. ... ... ... ... ... ... \n", + "762 9 89 62 0 0 22.5 \n", + "764 2 122 70 27 0 36.8 \n", + "765 5 121 72 23 112 26.2 \n", + "766 1 126 60 0 0 30.1 \n", + "767 1 93 70 31 0 30.4 \n", + "\n", + " DiabetesPedigreeFunction Age \n", + "0 0.627 50 \n", + "1 0.351 31 \n", + "3 0.167 21 \n", + "5 0.201 30 \n", + "6 0.248 26 \n", + ".. ... ... \n", + "762 0.142 33 \n", + "764 0.340 27 \n", + "765 0.245 30 \n", + "766 0.349 47 \n", + "767 0.315 23 \n", + "\n", + "[536 rows x 8 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "0 1\n", + "1 0\n", + "3 0\n", + "5 0\n", + "6 1\n", + " ..\n", + "762 0\n", + "764 0\n", + "765 0\n", + "766 1\n", + "767 0\n", + "Name: Outcome, Length: 536, dtype: int64" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# X = feature values, all the columns except the species column\n", + "X = df.iloc[:, :-1]\n", + "display(X)\n", + "\n", + "# y = target values, only the species column\n", + "y = df.iloc[:, -1]\n", + "display(y)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "b0f0460a", + "metadata": {}, + "outputs": [], + "source": [ + "x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "79b2be77", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 9 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 2.96667D+02 |proj g|= 1.10990D+04\n", + "\n", + "At iterate 50 f= 2.02517D+02 |proj g|= 4.42026D+01\n", + "\n", + "At iterate 100 f= 1.97367D+02 |proj g|= 4.69292D-01\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 9 100 117 1 0 0 4.693D-01 1.974D+02\n", + " F = 197.36675032332181 \n", + "\n", + "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n", + " This problem is unconstrained.\n", + "[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s finished\n" + ] + }, + { + "data": { + "text/html": [ + "
LogisticRegression(verbose=1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "LogisticRegression(verbose=1)" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Train the model\n", + "model = LogisticRegression(verbose=1)\n", + "model.fit(x_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "4d518a37", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0\n", + " 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]\n", + "\n", + " precision recall f1-score support\n", + "\n", + " 0 0.84 0.98 0.90 82\n", + " 1 0.85 0.42 0.56 26\n", + "\n", + " accuracy 0.84 108\n", + " macro avg 0.84 0.70 0.73 108\n", + "weighted avg 0.84 0.84 0.82 108\n", + "\n" + ] + } + ], + "source": [ + "#Test the model\n", + "predictions = model.predict(x_test)\n", + "print(predictions)# printing predictions\n", + "\n", + "print()# Printing new line\n", + "\n", + "#Check precision, recall, f1-score\n", + "print( classification_report(y_test, predictions) )" + ] + }, + { + "cell_type": "markdown", + "id": "ada0bcab", + "metadata": {}, + "source": [ + "# KNN Algotithm" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "e557db81", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "KNN = KNeighborsClassifier(n_neighbors=7)\n", + "KNN.fit(x_train, y_train)\n", + "pred = KNN.predict(x_test)\n", + "pred" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "5528c2d6", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The accuracy of the KNN with K=7 is 82.41%\n" + ] + } + ], + "source": [ + "#validation of built model\n", + "from sklearn.metrics import accuracy_score\n", + "\n", + "print('The accuracy of the KNN with K=7 is {}%'.format(round(accuracy_score(pred,y_test)*100,2)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ee4d7bfe", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 61, + "id": "b51c60b4", + "metadata": {}, + "outputs": [], + "source": [ + "import pickle" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "id": "e8eac62e", + "metadata": {}, + "outputs": [], + "source": [ + "pkl_filename= \"knn_pickle.pkl\"\n", + "\n", + "with open(\"knn_pickle.pkl\", \"wb\") as f:\n", + " pickle.dump(KNN,f)" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "id": "6b6150e4", + "metadata": {}, + "outputs": [], + "source": [ + "with open(pkl_filename, \"rb\") as f:\n", + " model = pickle.load(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "id": "2fc32a92", + "metadata": {}, + "outputs": [], + "source": [ + "import gradio as gr" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "id": "cbe5d4ea", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running on local URL: http://127.0.0.1:7862\n", + "\n", + "Setting up a public link... we have recently upgraded the way public links are generated. If you encounter any problems, please report the issue and downgrade to gradio version 3.13.0\n", + ".\n", + "Running on public URL: https://d94a2ec9-ca36-46c1.gradio.live\n", + "\n", + "This share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co/spaces\n" + ] + }, + { + "data": { + "text/html": [ + "
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def make_prediction(Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age):\n", + " with open(pkl_filename, \"rb\") as f:\n", + " model = pickle.load(f)\n", + " preds = model.predict([[Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age]])\n", + " if preds == 1:\n", + " return \"patient having diabetese\"\n", + " return \"patient does not have diabetese\"\n", + "\n", + "#Create the input component for Gradio since we are expecting 4 inputs\n", + "\n", + "Pregnancies=gr.Number(label = \"Preg_number\")\n", + "Glucose= gr.Number(label = \"glucose level\")\n", + "BP = gr.Number(label = \"BP Level\")\n", + "SkinThickness = gr.Number(label = \"Pkin thickness\")\n", + "Insulin = gr.Number(label = \"insulin level\")\n", + "BMI= gr.Number(label = \"BMI Level\")\n", + "Dpf = gr.Number(label = \"dpf\")\n", + "Age= gr.Number(label = \"Patients age\")\n", + "# We create the output\n", + "output = gr.Textbox()\n", + "\n", + "\n", + "app = gr.Interface(fn = make_prediction, inputs=[Pregnancies, Glucose, BP, SkinThickness, Insulin, BMI, Dpf, Age], outputs=output)\n", + "app.launch(share =True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "02257143", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + }, + "vscode": { + "interpreter": { + "hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}