Spaces:
Sleeping
Sleeping
File size: 5,473 Bytes
5b8c5f4 6ae4ab5 5b8c5f4 d63d60b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
---
title: HF-Streamlit
emoji: π
colorFrom: gray
colorTo: blue
sdk: streamlit
sdk_version: 1.44.0
app_file: app.py
pinned: false
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
# HF-Streamlit
HF-Streamlit is an interactive data visualization dashboard built with Python and Streamlit that demonstrates the power of modern web-based analytics.
The app generates dynamic time series data and presents it through customizable charts with multiple color themes, real-time filtering capabilities, and exportable datasets.
Users can explore data through an intuitive interface featuring adjustable parameters (data size, chart height, color schemes), filter by categories and value ranges, view key performance metrics, and download filtered results as CSV files.
Perfect for showcasing data science capabilities or as a starting template for building more complex analytical dashboards, this app combines clean UI design with powerful data manipulation features in just a few lines of Python code.
## π Features
- **Interactive Data Visualization**: Dynamic time series charts with customizable color themes
- **Real-time Data Filtering**: Filter datasets by categories and value ranges
- **Data Export**: Download filtered data as CSV files
- **Metrics Dashboard**: Display key performance indicators and statistics
- **Responsive Design**: Clean, modern UI with custom CSS styling
- **Multi-tab Interface**: Organized content across Chart, Data Explorer, and About tabs
## π Quick Start
### Prerequisites
- Python 3.9 or higher
- pip package manager
### Local Installation
1. Clone the repository:
```bash
git clone <repository-url>
cd HF-Streamlit
```
2. Install dependencies:
```bash
pip install -r requirements.txt
```
3. Run the application:
```bash
streamlit run app.py
```
The app will be available at `http://localhost:8501`
## π³ Docker Deployment
### Build and Run with Docker
1. Build the Docker image:
```bash
docker build -t hf-streamlit .
```
2. Run the container:
```bash
docker run -p 7860:7860 hf-streamlit
```
The app will be available at `http://localhost:7860`
### Docker Hub (if applicable)
```bash
docker pull <your-dockerhub-username>/hf-streamlit
docker run -p 7860:7860 <your-dockerhub-username>/hf-streamlit
```
## π οΈ Dependencies
- **streamlit**: Web app framework for Python
- **pandas**: Data manipulation and analysis
- **numpy**: Numerical computing
- **plotly**: Interactive plotting library
## π± Application Structure
```
HF-Streamlit/
βββ app.py # Main Streamlit application
βββ requirements.txt # Python dependencies
βββ Dockerfile # Docker configuration
βββ README.md # Project documentation
βββ HF-docker2/ # Additional Docker configurations
```
## π― Usage
### Dashboard Features
1. **Chart Tab**:
- Adjust data points (10-500) using the sidebar slider
- Customize chart height (300-800px)
- Select from 5 color themes (blues, reds, greens, purples, oranges)
- View real-time metrics and KPIs
2. **Data Explorer Tab**:
- Filter data by categories (A, B, C, D)
- Set value range filters using sliders
- View filtered datasets in tabular format
- Download filtered data as CSV
3. **About Tab**:
- Learn about the application features
- Understand Streamlit capabilities
### Customization
The app includes several customizable parameters:
- **Data Size**: Control the number of data points generated
- **Chart Height**: Adjust visualization height
- **Color Themes**: Choose from predefined color palettes
- **Filtering Options**: Multiple category and range filters
## π§ Configuration
### Environment Variables
The application uses default Streamlit configuration. You can customize it by creating a `.streamlit/config.toml` file:
```toml
[server]
port = 8501
address = "0.0.0.0"
[theme]
primaryColor = "#1E88E5"
backgroundColor = "#FFFFFF"
secondaryBackgroundColor = "#F0F2F6"
```
## π Deployment Options
### Streamlit Cloud
1. Push your code to GitHub
2. Connect your repository to Streamlit Cloud
3. Deploy with one click
### Heroku
1. Add a `Procfile`:
```
web: streamlit run app.py --server.port=$PORT --server.address=0.0.0.0
```
### AWS/GCP/Azure
Use the provided Dockerfile for container-based deployments.
## π€ Contributing
1. Fork the repository
2. Create a feature branch (`git checkout -b feature/amazing-feature`)
3. Commit your changes (`git commit -m 'Add amazing feature'`)
4. Push to the branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request
## π License
This project is open source and available under the [MIT License](LICENSE).
## π Support
If you encounter any issues or have questions:
1. Check the [Streamlit documentation](https://docs.streamlit.io/)
2. Open an issue in this repository
3. Refer to the troubleshooting section below
## π Troubleshooting
### Common Issues
**Port already in use:**
```bash
streamlit run app.py --server.port=8502
```
**Module not found:**
```bash
pip install -r requirements.txt
```
**Docker build fails:**
Ensure Docker is running and you have sufficient disk space.
## π Performance
The application is optimized with:
- `@st.cache_data` decorator for data generation
- Efficient data filtering operations
- Responsive chart rendering with Plotly
---
Made with β€οΈ using [Streamlit](https://streamlit.io/)
|