AntDX316
commited on
Commit
·
be783de
1
Parent(s):
5b8c5f4
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import plotly.express as px
|
5 |
+
import random
|
6 |
+
from datetime import datetime
|
7 |
+
|
8 |
+
# Set page configuration
|
9 |
+
st.set_page_config(
|
10 |
+
page_title="Quick Streamlit Demo",
|
11 |
+
page_icon="📊",
|
12 |
+
layout="wide",
|
13 |
+
initial_sidebar_state="expanded"
|
14 |
+
)
|
15 |
+
|
16 |
+
# Add custom CSS
|
17 |
+
st.markdown("""
|
18 |
+
<style>
|
19 |
+
.main-header {
|
20 |
+
font-size: 2.5rem;
|
21 |
+
color: #1E88E5;
|
22 |
+
}
|
23 |
+
.sub-header {
|
24 |
+
font-size: 1.5rem;
|
25 |
+
color: #424242;
|
26 |
+
}
|
27 |
+
</style>
|
28 |
+
""", unsafe_allow_html=True)
|
29 |
+
|
30 |
+
# App title
|
31 |
+
st.markdown('<p class="main-header">Interactive Streamlit Dashboard</p>', unsafe_allow_html=True)
|
32 |
+
st.markdown("This is a quick demo of Streamlit's capabilities.")
|
33 |
+
|
34 |
+
# Sidebar
|
35 |
+
st.sidebar.title("Controls")
|
36 |
+
data_size = st.sidebar.slider("Data Points", 10, 500, 100)
|
37 |
+
chart_height = st.sidebar.slider("Chart Height", 300, 800, 400)
|
38 |
+
|
39 |
+
# Define color themes dictionary mapping to actual Plotly color sequences
|
40 |
+
color_themes = {
|
41 |
+
"blues": px.colors.sequential.Blues,
|
42 |
+
"reds": px.colors.sequential.Reds,
|
43 |
+
"greens": px.colors.sequential.Greens,
|
44 |
+
"purples": px.colors.sequential.Purples,
|
45 |
+
"oranges": px.colors.sequential.Oranges
|
46 |
+
}
|
47 |
+
|
48 |
+
color_theme = st.sidebar.selectbox("Color Theme", list(color_themes.keys()))
|
49 |
+
|
50 |
+
# Generate random data
|
51 |
+
@st.cache_data
|
52 |
+
def generate_data(n_points):
|
53 |
+
np.random.seed(42)
|
54 |
+
dates = pd.date_range(start=datetime.now().date(), periods=n_points)
|
55 |
+
df = pd.DataFrame({
|
56 |
+
'date': dates,
|
57 |
+
'value': np.random.randn(n_points).cumsum(),
|
58 |
+
'category': np.random.choice(['A', 'B', 'C', 'D'], n_points),
|
59 |
+
'size': np.random.randint(10, 100, n_points)
|
60 |
+
})
|
61 |
+
return df
|
62 |
+
|
63 |
+
# Create tabs
|
64 |
+
tab1, tab2, tab3 = st.tabs(["Chart", "Data Explorer", "About"])
|
65 |
+
|
66 |
+
with tab1:
|
67 |
+
st.markdown('<p class="sub-header">Interactive Data Visualization</p>', unsafe_allow_html=True)
|
68 |
+
|
69 |
+
# Generate and display data
|
70 |
+
df = generate_data(data_size)
|
71 |
+
|
72 |
+
# Create a line chart with Plotly
|
73 |
+
fig = px.line(
|
74 |
+
df, x='date', y='value',
|
75 |
+
color='category',
|
76 |
+
color_discrete_sequence=color_themes[color_theme],
|
77 |
+
height=chart_height
|
78 |
+
)
|
79 |
+
fig.update_layout(
|
80 |
+
title="Time Series Data",
|
81 |
+
xaxis_title="Date",
|
82 |
+
yaxis_title="Value",
|
83 |
+
legend_title="Category",
|
84 |
+
hovermode="x unified"
|
85 |
+
)
|
86 |
+
st.plotly_chart(fig, use_container_width=True)
|
87 |
+
|
88 |
+
# Add some metrics
|
89 |
+
col1, col2, col3, col4 = st.columns(4)
|
90 |
+
with col1:
|
91 |
+
st.metric("Max Value", f"{df['value'].max():.2f}", f"{random.uniform(-10, 10):.2f}%")
|
92 |
+
with col2:
|
93 |
+
st.metric("Min Value", f"{df['value'].min():.2f}", f"{random.uniform(-10, 10):.2f}%")
|
94 |
+
with col3:
|
95 |
+
st.metric("Average", f"{df['value'].mean():.2f}", f"{random.uniform(-10, 10):.2f}%")
|
96 |
+
with col4:
|
97 |
+
st.metric("Data Points", len(df), f"{data_size - 50}")
|
98 |
+
|
99 |
+
with tab2:
|
100 |
+
st.markdown('<p class="sub-header">Data Explorer</p>', unsafe_allow_html=True)
|
101 |
+
|
102 |
+
# Filter options
|
103 |
+
st.subheader("Filter Data")
|
104 |
+
|
105 |
+
# Create columns for filters
|
106 |
+
filter_col1, filter_col2 = st.columns(2)
|
107 |
+
|
108 |
+
with filter_col1:
|
109 |
+
selected_categories = st.multiselect(
|
110 |
+
"Select Categories",
|
111 |
+
options=df['category'].unique(),
|
112 |
+
default=df['category'].unique()
|
113 |
+
)
|
114 |
+
|
115 |
+
with filter_col2:
|
116 |
+
min_val, max_val = st.slider(
|
117 |
+
"Value Range",
|
118 |
+
float(df['value'].min()),
|
119 |
+
float(df['value'].max()),
|
120 |
+
[float(df['value'].min()), float(df['value'].max())]
|
121 |
+
)
|
122 |
+
|
123 |
+
# Filter the data
|
124 |
+
filtered_df = df[
|
125 |
+
(df['category'].isin(selected_categories)) &
|
126 |
+
(df['value'] >= min_val) &
|
127 |
+
(df['value'] <= max_val)
|
128 |
+
]
|
129 |
+
|
130 |
+
# Show the filtered dataframe
|
131 |
+
st.subheader(f"Filtered Data ({len(filtered_df)} rows)")
|
132 |
+
st.dataframe(filtered_df, use_container_width=True)
|
133 |
+
|
134 |
+
# Download button
|
135 |
+
csv = filtered_df.to_csv(index=False).encode('utf-8')
|
136 |
+
st.download_button(
|
137 |
+
"Download CSV",
|
138 |
+
csv,
|
139 |
+
"filtered_data.csv",
|
140 |
+
"text/csv",
|
141 |
+
key='download-csv'
|
142 |
+
)
|
143 |
+
|
144 |
+
with tab3:
|
145 |
+
st.markdown('<p class="sub-header">About This App</p>', unsafe_allow_html=True)
|
146 |
+
|
147 |
+
st.markdown("""
|
148 |
+
This is a quick demo showcasing some of Streamlit's features:
|
149 |
+
|
150 |
+
- **Interactive Charts**: Visualize data dynamically
|
151 |
+
- **Data Filtering**: Filter and explore datasets
|
152 |
+
- **Download Capabilities**: Export data as CSV
|
153 |
+
- **Metrics & KPIs**: Display key performance indicators
|
154 |
+
- **Custom Styling**: Enhance UI with custom CSS
|
155 |
+
|
156 |
+
Streamlit makes it easy to create data apps with just a few lines of Python code.
|
157 |
+
""")
|
158 |
+
|
159 |
+
st.info("Made with ❤️ using Streamlit")
|
160 |
+
|
161 |
+
# Footer
|
162 |
+
st.markdown("---")
|
163 |
+
st.markdown("Created as a quick Streamlit demo")
|