File size: 960 Bytes
879a213
15d8761
0e22a89
879a213
0e22a89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e6f560
 
 
 
 
870e8c5
879a213
0e22a89
879a213
 
5d26f3a
0e22a89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TextClassificationPipeline
import operator

def get_sentiment(out):
  d = dict()
  for k in out.keys():
    label = out[k]['label']
    score = out[k]['score']
    d[label] = score
    
  winning_lab = max(d.iteritems(), key=operator.itemgetter(1))[0]
  winning_score = d[winning_lab]
  return winning_lab, winning_score
      


        neg = out[0]
    neu = out[1]
    pos = out[2]
    
  
model_name =  "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
text = st.text_area(f'Ciao! This app uses {model_name}.\nEnter your text  to test it ❤️')


if text:
  out = pipe(text)
  
  st.json(get_sentiment(out[0])