|
import streamlit as st |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TextClassificationPipeline |
|
|
|
model_name = "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis" |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True) |
|
text = st.text_area(f'Ciao! This app uses {model_name}.\nEnter your text to test it ❤️') |
|
|
|
if text: |
|
out = pipe(text) |
|
|
|
st.json(out[0][0]) |
|
|