joethequant commited on
Commit
00aa075
·
1 Parent(s): b2bd3dc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -55
README.md CHANGED
@@ -7,19 +7,15 @@ sdk: static
7
  pinned: true
8
  ---
9
 
10
- ## A Fine-Tuned GPT for De Novo Therapeutic Antibodies
11
 
12
- ### What are antibodies?
 
13
 
14
- Antibodies are proteins that bind to a target protein (called an antigen) in order to mount an immune response. They are incredibly **safe** and **effective** therapeutics against infectious diseases, cancer, and autoimmune disorders.
 
15
 
16
- ### Why aren’t there more antibodies on the market?
17
-
18
- Current antibody discovery methods require a lot of capital, expertise, and luck. Generative AI opens up the possibility of moving from a paradigm of antibody discovery to antibody generation. However, work is required to translate the advances of LLMs to the realm of drug discovery.
19
-
20
- ### What is AntibodyGPT?
21
-
22
- A fine-tuned GPT language model that researchers can use to rapidly generate functional, diverse antibodies for any given target sequence
23
 
24
  ### Key Features
25
 
@@ -30,48 +26,3 @@ A fine-tuned GPT language model that researchers can use to rapidly generate fun
30
  ### Links:
31
  - [Web Demo](https://orca-app-ygzbp.ondigitalocean.app/Demo_Antibody_Generator)
32
  - [Huggingface Model Repository](https://huggingface.co/AntibodyGeneration)
33
- - [OpenSource RunPod Severless Rest API](https://github.com/joethequant/docker_protein_generator)
34
- - [The Code for this App](https://github.com/joethequant/docker_streamlit_antibody_protein_generation)
35
-
36
- ### Additional Resources and Links
37
- - [Progen Foundation Models](https://github.com/salesforce/progen)
38
- - [ANARCI Github](https://github.com/oxpig/ANARCI)
39
- - [ANARCI Webserver](http://opig.stats.ox.ac.uk/webapps/anarci/)
40
- - [TAP: Therapeutic Antibody Profiler](https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabpred/tap)
41
- - [ESM Fold](https://esmatlas.com/resources?action=fold)
42
-
43
-
44
-
45
- ### Example Code To Use AntibodyGPT
46
-
47
- ```python
48
- from models.progen.modeling_progen import ProGenForCausalLM
49
- import torch
50
- from tokenizers import Tokenizer
51
- import json
52
-
53
- # Define the model identifier from Hugging Face's model hub
54
- model_path = 'AntibodyGeneration/fine-tuned-progen2-small'
55
-
56
- # Load the model and tokenizer
57
- model = ProGenForCausalLM.from_pretrained(model_path)
58
- tokenizer = Tokenizer.from_file('tokenizer.json')
59
-
60
- # Define your sequence and other parameters
61
- target_sequence = 'MQIPQAPWPVVWAVLQLGWRPGWFLDSPDRPWNPPTFSPALLVVTEGDNATFTCSFSNTSESFVLNWYRMSPSNQTDKLAAFPEDRSQPGQDCRFRVTQLPNGRDFHMSVVRARRNDSGTYLCGAISLAPKAQIKESLRAELRVTERRAEVPTAHPSPSPRPAGQFQTLVVGVVGGLLGSLVLLVWVLAVICSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPCVPEQTEYATIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL'
62
- number_of_sequences = 2
63
-
64
- # Tokenize the sequence
65
- tokenized_sequence = tokenizer(target_sequence, return_tensors="pt")
66
-
67
- # Move model and tensors to CUDA if available
68
- device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
69
- model = model.to(device)
70
- tokenized_sequence = tokenized_sequence.to(device)
71
-
72
- # Generate sequences
73
- with torch.no_grad():
74
- output = model.generate(**tokenized_sequence, max_length=1024, pad_token_id=tokenizer.pad_token_id, do_sample=True, top_p=0.9, temperature=0.8, num_return_sequences=number_of_sequences)
75
-
76
- # Decoding the output to get generated sequences
77
- generated_sequences = [tokenizer.decode(output_seq, skip_special_tokens=True) for output_seq in output]
 
7
  pinned: true
8
  ---
9
 
10
+ ## AntibodyGPT: A Fine-Tuned GPT for De Novo Therapeutic Antibodies
11
 
12
+ Antibodies are proteins that bind to a target protein (called an antigen) in order to mount an immune response.
13
+ They are incredibly **safe** and **effective** therapeutics against infectious diseases, cancer, and autoimmune disorders.
14
 
15
+ Current antibody discovery methods require a lot of capital, expertise, and luck. Generative AI opens up the possibility of
16
+ moving from a paradigm of antibody discovery to antibody generation. However, work is required to translate the advances of LLMs to the realm of drug discovery.
17
 
18
+ AntibodyGPT is a fine-tuned GPT language model that researchers can use to rapidly generate functional, diverse antibodies for any given target sequence
 
 
 
 
 
 
19
 
20
  ### Key Features
21
 
 
26
  ### Links:
27
  - [Web Demo](https://orca-app-ygzbp.ondigitalocean.app/Demo_Antibody_Generator)
28
  - [Huggingface Model Repository](https://huggingface.co/AntibodyGeneration)