Spaces:
Running
Running
Commit
·
00aa075
1
Parent(s):
b2bd3dc
Update README.md
Browse files
README.md
CHANGED
@@ -7,19 +7,15 @@ sdk: static
|
|
7 |
pinned: true
|
8 |
---
|
9 |
|
10 |
-
## A Fine-Tuned GPT for De Novo Therapeutic Antibodies
|
11 |
|
12 |
-
|
|
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
Current antibody discovery methods require a lot of capital, expertise, and luck. Generative AI opens up the possibility of moving from a paradigm of antibody discovery to antibody generation. However, work is required to translate the advances of LLMs to the realm of drug discovery.
|
19 |
-
|
20 |
-
### What is AntibodyGPT?
|
21 |
-
|
22 |
-
A fine-tuned GPT language model that researchers can use to rapidly generate functional, diverse antibodies for any given target sequence
|
23 |
|
24 |
### Key Features
|
25 |
|
@@ -30,48 +26,3 @@ A fine-tuned GPT language model that researchers can use to rapidly generate fun
|
|
30 |
### Links:
|
31 |
- [Web Demo](https://orca-app-ygzbp.ondigitalocean.app/Demo_Antibody_Generator)
|
32 |
- [Huggingface Model Repository](https://huggingface.co/AntibodyGeneration)
|
33 |
-
- [OpenSource RunPod Severless Rest API](https://github.com/joethequant/docker_protein_generator)
|
34 |
-
- [The Code for this App](https://github.com/joethequant/docker_streamlit_antibody_protein_generation)
|
35 |
-
|
36 |
-
### Additional Resources and Links
|
37 |
-
- [Progen Foundation Models](https://github.com/salesforce/progen)
|
38 |
-
- [ANARCI Github](https://github.com/oxpig/ANARCI)
|
39 |
-
- [ANARCI Webserver](http://opig.stats.ox.ac.uk/webapps/anarci/)
|
40 |
-
- [TAP: Therapeutic Antibody Profiler](https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabpred/tap)
|
41 |
-
- [ESM Fold](https://esmatlas.com/resources?action=fold)
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
### Example Code To Use AntibodyGPT
|
46 |
-
|
47 |
-
```python
|
48 |
-
from models.progen.modeling_progen import ProGenForCausalLM
|
49 |
-
import torch
|
50 |
-
from tokenizers import Tokenizer
|
51 |
-
import json
|
52 |
-
|
53 |
-
# Define the model identifier from Hugging Face's model hub
|
54 |
-
model_path = 'AntibodyGeneration/fine-tuned-progen2-small'
|
55 |
-
|
56 |
-
# Load the model and tokenizer
|
57 |
-
model = ProGenForCausalLM.from_pretrained(model_path)
|
58 |
-
tokenizer = Tokenizer.from_file('tokenizer.json')
|
59 |
-
|
60 |
-
# Define your sequence and other parameters
|
61 |
-
target_sequence = 'MQIPQAPWPVVWAVLQLGWRPGWFLDSPDRPWNPPTFSPALLVVTEGDNATFTCSFSNTSESFVLNWYRMSPSNQTDKLAAFPEDRSQPGQDCRFRVTQLPNGRDFHMSVVRARRNDSGTYLCGAISLAPKAQIKESLRAELRVTERRAEVPTAHPSPSPRPAGQFQTLVVGVVGGLLGSLVLLVWVLAVICSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPCVPEQTEYATIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL'
|
62 |
-
number_of_sequences = 2
|
63 |
-
|
64 |
-
# Tokenize the sequence
|
65 |
-
tokenized_sequence = tokenizer(target_sequence, return_tensors="pt")
|
66 |
-
|
67 |
-
# Move model and tensors to CUDA if available
|
68 |
-
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
69 |
-
model = model.to(device)
|
70 |
-
tokenized_sequence = tokenized_sequence.to(device)
|
71 |
-
|
72 |
-
# Generate sequences
|
73 |
-
with torch.no_grad():
|
74 |
-
output = model.generate(**tokenized_sequence, max_length=1024, pad_token_id=tokenizer.pad_token_id, do_sample=True, top_p=0.9, temperature=0.8, num_return_sequences=number_of_sequences)
|
75 |
-
|
76 |
-
# Decoding the output to get generated sequences
|
77 |
-
generated_sequences = [tokenizer.decode(output_seq, skip_special_tokens=True) for output_seq in output]
|
|
|
7 |
pinned: true
|
8 |
---
|
9 |
|
10 |
+
## AntibodyGPT: A Fine-Tuned GPT for De Novo Therapeutic Antibodies
|
11 |
|
12 |
+
Antibodies are proteins that bind to a target protein (called an antigen) in order to mount an immune response.
|
13 |
+
They are incredibly **safe** and **effective** therapeutics against infectious diseases, cancer, and autoimmune disorders.
|
14 |
|
15 |
+
Current antibody discovery methods require a lot of capital, expertise, and luck. Generative AI opens up the possibility of
|
16 |
+
moving from a paradigm of antibody discovery to antibody generation. However, work is required to translate the advances of LLMs to the realm of drug discovery.
|
17 |
|
18 |
+
AntibodyGPT is a fine-tuned GPT language model that researchers can use to rapidly generate functional, diverse antibodies for any given target sequence
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
### Key Features
|
21 |
|
|
|
26 |
### Links:
|
27 |
- [Web Demo](https://orca-app-ygzbp.ondigitalocean.app/Demo_Antibody_Generator)
|
28 |
- [Huggingface Model Repository](https://huggingface.co/AntibodyGeneration)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|