joethequant commited on
Commit
36e6877
·
1 Parent(s): f83cdf5

Update README.md

Browse files

Added general information to home page

Files changed (1) hide show
  1. README.md +76 -1
README.md CHANGED
@@ -7,4 +7,79 @@ sdk: static
7
  pinned: false
8
  ---
9
 
10
- Edit this `README.md` markdown file to author your organization card.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  pinned: false
8
  ---
9
 
10
+ ## A Fine-Tuned GPT for De Novo Therapeutic Antibodies
11
+
12
+ ### What are antibodies?
13
+
14
+ Antibodies are proteins that bind to a target protein (called an antigen) in order to mount an immune response
15
+
16
+ They are incredibly **safe** and **effective** therapeutics against infectious diseases, cancer, and autoimmune disorders.
17
+
18
+ ### Why aren’t there more antibodies on the market?
19
+
20
+ Current antibody discovery methods require a lot of capital, expertise, and luck.
21
+
22
+ Generative AI opens up the possibility of moving from a paradigm of antibody discovery to antibody generation.
23
+
24
+ However, work is required to translate the advances of LLMs to the realm of drug discovery.
25
+
26
+ ### What is AntibodyGPT?
27
+
28
+ A fine-tuned GPT language model that researchers can use to rapidly generate functional, diverse antibodies for any given target sequence
29
+
30
+ ### Key Features
31
+
32
+ - Rapid generation
33
+ - Only requires target sequence
34
+ - Outputs diverse, human-like antibodies
35
+
36
+ ### Links:
37
+ - [Web Demo](https://orca-app-ygzbp.ondigitalocean.app/Demo_Antibody_Generator)
38
+ - [Huggingface Model Repository](https://huggingface.co/AntibodyGeneration)
39
+ - [OpenSource RunPod Severless Rest API](https://github.com/joethequant/docker_protein_generator)
40
+ - [The Code for this App](https://github.com/joethequant/docker_streamlit_antibody_protein_generation)
41
+
42
+ ### Additional Resources and Links
43
+ - [Progen Foundation Models](https://github.com/salesforce/progen)
44
+ - [ANARCI Github](https://github.com/oxpig/ANARCI)
45
+ - [ANARCI Webserver](http://opig.stats.ox.ac.uk/webapps/anarci/)
46
+ - [TAP: Therapeutic Antibody Profiler](https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabpred/tap)
47
+ - [ESM Fold](https://esmatlas.com/resources?action=fold)
48
+
49
+
50
+
51
+ ### Example Code To Use AntibodyGPT
52
+
53
+ ```python
54
+ from models.progen.modeling_progen import ProGenForCausalLM
55
+ import torch
56
+ from tokenizers import Tokenizer
57
+ import json
58
+
59
+ # Define the model identifier from Hugging Face's model hub
60
+ model_path = 'AntibodyGeneration/fine-tuned-progen2-small'
61
+
62
+ # Load the model and tokenizer
63
+ model = ProGenForCausalLM.from_pretrained(model_path)
64
+ tokenizer = Tokenizer.from_file('tokenizer.json')
65
+
66
+ # Define your sequence and other parameters
67
+ target_sequence = 'MQIPQAPWPVVWAVLQLGWRPGWFLDSPDRPWNPPTFSPALLVVTEGDNATFTCSFSNTSESFVLNWYRMSPSNQTDKLAAFPEDRSQPGQDCRFRVTQLPNGRDFHMSVVRARRNDSGTYLCGAISLAPKAQIKESLRAELRVTERRAEVPTAHPSPSPRPAGQFQTLVVGVVGGLLGSLVLLVWVLAVICSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPCVPEQTEYATIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL'
68
+ number_of_sequences = 2
69
+
70
+ # Tokenize the sequence
71
+ tokenized_sequence = tokenizer(target_sequence, return_tensors="pt")
72
+
73
+ # Move model and tensors to CUDA if available
74
+ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
75
+ model = model.to(device)
76
+ tokenized_sequence = tokenized_sequence.to(device)
77
+
78
+ # Generate sequences
79
+ with torch.no_grad():
80
+ output = model.generate(**tokenized_sequence, max_length=1024, pad_token_id=tokenizer.pad_token_id, do_sample=True, top_p=0.9, temperature=0.8, num_return_sequences=number_of_sequences)
81
+
82
+ # Decoding the output to get generated sequences
83
+ generated_sequences = [tokenizer.decode(output_seq, skip_special_tokens=True) for output_seq in output]
84
+
85
+ ```