Antonio49 commited on
Commit
1eb207c
1 Parent(s): ce39344

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -0
app.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Importar librer铆as
2
+ import numpy as np
3
+ from sklearn.model_selection import train_test_split
4
+ from sklearn.preprocessing import StandardScaler
5
+ from sklearn.datasets import load_iris
6
+ import tensorflow as tf
7
+ from keras.models import Sequential
8
+ from keras.layers import Dense
9
+ import gradio as gr
10
+
11
+ # Cargar el conjunto de datos Iris
12
+ iris = load_iris()
13
+ X = iris.data
14
+ y = iris.target
15
+
16
+ # Dividir el conjunto de datos en entrenamiento y prueba
17
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
18
+
19
+ # Normalizar los datos
20
+ scaler = StandardScaler()
21
+ X_train = scaler.fit_transform(X_train)
22
+ X_test = scaler.transform(X_test)
23
+
24
+ # Construir el modelo
25
+ model = Sequential([
26
+ Dense(64, activation='relu', input_dim=4), # Capa oculta con 64 neuronas y funci贸n de activaci贸n ReLU
27
+ Dense(3, activation='softmax') # Capa de salida con 3 neuronas para las clases de iris
28
+ ])
29
+
30
+ # Compilar el modelo
31
+ model.compile(optimizer='adam',
32
+ loss='sparse_categorical_crossentropy',
33
+ metrics=['accuracy'])
34
+
35
+ # Entrenar el modelo
36
+ model.fit(X_train, y_train, epochs=50, batch_size=32, validation_data=(X_test, y_test))
37
+
38
+ # Definir una funci贸n para la predicci贸n
39
+ def predict_iris_species(sepal_length, sepal_width, petal_length, petal_width):
40
+ input_data = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
41
+ scaled_input_data = scaler.transform(input_data)
42
+ prediction = model.predict(scaled_input_data)
43
+ return iris.target_names[np.argmax(prediction)]
44
+
45
+ # Definir la interfaz Gradio
46
+ iface = gr.Interface(
47
+ fn=predict_iris_species,
48
+ inputs=[
49
+ gr.Slider(minimum=0, maximum=10, label="Sepal Length"),
50
+ gr.Slider(minimum=0, maximum=10, label="Sepal Width"),
51
+ gr.Slider(minimum=0, maximum=10, label="Petal Length"),
52
+ gr.Slider(minimum=0, maximum=10, label="Petal Width"),
53
+ ],
54
+ outputs=gr.Label(num_top_classes=3),
55
+ live=True,
56
+ )
57
+
58
+ # Ejecutar la interfaz
59
+ iface.launch()