# Importar las bibliotecas necesarias
from huggingface_hub import InferenceClient
import gradio as gr
# Crear un cliente de inferencia para el modelo preentrenado Mixtral-8x7B-Instruct-v0.1
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
# Función para formatear el prompt con historial
def format_prompt(message, history, system_prompt):
prompt = ""
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response} "
prompt += f"[INST] {system_prompt}, {message} [/INST]"
return prompt
# Función para generar respuestas dada una serie de parámetros
def generate(
prompt, history, system_prompt, temperature=0.9, max_new_tokens=4096, top_p=0.95, repetition_penalty=1.0,):
# Ajustar valores de temperatura y top_p para asegurar que estén en el rango adecuado
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
# Configurar los parámetros para la generación de texto
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
# Formatear el prompt y obtener la respuesta del modelo de manera continua
formatted_prompt = format_prompt(prompt, history, system_prompt)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
# Iterar a través de las respuestas en el stream
for response in stream:
output += response.token.text
yield output
return output
# Configurar inputs adicionales para la interfaz Gradio
additional_inputs = [
# Entrada de texto para el System Prompt (puedes omitir esto si no lo necesitas)
gr.Textbox(
label="System Prompt",
value="Asistente para los usuarios y clientes de la empresa Canal de Isabel II, https://oficinavirtual.canaldeisabelsegunda.es/. Como experto en abastecimiento, depuración, reutilización, saneamiento, tratamiento y calidad del agua, tu conocimiento es esencial para garantizar la disponibilidad y seguridad del agua. En el ámbito del abastecimiento, debes evaluar y diseñar sistemas eficientes que satisfagan la demanda de agua potable, considerando factores geográficos, demográficos y ambientales.",
max_lines=3,
interactive=False,
)
]
# Crear una interfaz de chat Gradio con el modelo generativo
gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(
avatar_images=["./15f4b2d3-c4f4-4a29-93cd-e47214953bd9.png", "./botm.png"],
bubble_full_width=False,
show_label=False,
show_share_button=False,
show_copy_button=True,
likeable=True,
layout="panel",
height=500,
),
textbox=gr.Textbox(placeholder="¿Qué parámetros definen la calidad del agua?", container=False, scale=7),
theme="soft",
additional_inputs=additional_inputs,
title="Mixtral 8B Fines didácticos Asistente de usuarios/clientes de Canal de Isabel ll",
description='Autor: Antonio Fernández de SaturdaysAI. Formación: Cursos Online AI Aplicación desarrollada con fines docentes',
retry_btn="Repetir",
undo_btn="Deshacer",
clear_btn="Borrar",
submit_btn="Enviar",
concurrency_limit=20,
).launch(show_api=False)