Antoniskaraolis commited on
Commit
61f52ca
·
1 Parent(s): 1bfa778

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -9
app.py CHANGED
@@ -2,17 +2,12 @@ import gradio as gr
2
  from transformers import pipeline
3
  import librosa
4
 
5
- # Initialize the model
6
  asr_model = pipeline("automatic-speech-recognition", model="openai/whisper-small")
7
 
8
- def transcribe(audio_data):
9
- # librosa expects a file path, but gradio passes a tuple (file name, file object)
10
- # If the audio comes from a microphone, it's in the second position of the tuple
11
- if isinstance(audio_data, tuple):
12
- audio_data = audio_data[1]
13
-
14
  # Load the audio file with librosa
15
- data, samplerate = librosa.load(audio_data, sr=None)
16
  # Pass the audio data to the model for transcription
17
  transcription = asr_model(data, sampling_rate=samplerate)
18
  return transcription["text"]
@@ -20,8 +15,9 @@ def transcribe(audio_data):
20
  # Create the Gradio interface
21
  iface = gr.Interface(
22
  fn=transcribe,
23
- inputs=gr.Audio(type="file", label="Record or Upload Audio"),
24
  outputs="text"
25
  )
26
 
 
27
  iface.launch()
 
2
  from transformers import pipeline
3
  import librosa
4
 
5
+ # Initialize the ASR model
6
  asr_model = pipeline("automatic-speech-recognition", model="openai/whisper-small")
7
 
8
+ def transcribe(file_path):
 
 
 
 
 
9
  # Load the audio file with librosa
10
+ data, samplerate = librosa.load(file_path, sr=None)
11
  # Pass the audio data to the model for transcription
12
  transcription = asr_model(data, sampling_rate=samplerate)
13
  return transcription["text"]
 
15
  # Create the Gradio interface
16
  iface = gr.Interface(
17
  fn=transcribe,
18
+ inputs=gr.Audio(type="filepath", label="Record or Upload Audio"),
19
  outputs="text"
20
  )
21
 
22
+ # Launch the interface
23
  iface.launch()