import whisper import gradio as gr def transcribe_audio(file_info): model = whisper.load_model("base") # Choose the appropriate model size audio = whisper.load_audio(file_info.name) audio = whisper.pad_or_trim(audio) mel = whisper.log_mel_spectrogram(audio).to(model.device) _, probs = model.detect_language(mel) language = max(probs, key=probs.get) print(f"Detected language: {language}") result = model.transcribe(mel) return result["text"] iface = gr.Interface( fn=transcribe_audio, inputs="audio", outputs="text" ) iface.launch()