Spaces:
Runtime error
Runtime error
Upload assessment3_antonis_karaolis.py
Browse files
assessment3_antonis_karaolis.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Assessment3_Antonis_Karaolis.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1Qd3aOoBB6q1uy2pHPeLudMlsYd9J30-C
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install -U sentence-transformers
|
11 |
+
!pip install transformers
|
12 |
+
!pip install gradio
|
13 |
+
!pip install chromadb
|
14 |
+
!pip install datasets
|
15 |
+
pip install accelerate -U
|
16 |
+
pip install transformers[torch]
|
17 |
+
|
18 |
+
import pandas as pd
|
19 |
+
from sentence_transformers import SentenceTransformer
|
20 |
+
import chromadb
|
21 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments
|
22 |
+
import gradio as gr
|
23 |
+
import torch
|
24 |
+
from accelerate import Accelerator
|
25 |
+
from transformers import Trainer, TrainingArguments
|
26 |
+
from datasets import Dataset
|
27 |
+
from torch.cuda.amp import autocast
|
28 |
+
|
29 |
+
emails_df = pd.read_csv('/content/emails.csv', nrows=500, on_bad_lines='skip')
|
30 |
+
emails_df['message'] = emails_df['message'].apply(lambda x: x.strip() if type(x) == str else '')
|
31 |
+
|
32 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
33 |
+
|
34 |
+
emails_embeddings = model.encode(emails_df['message'].tolist(), show_progress_bar=True)
|
35 |
+
|
36 |
+
chroma_client = chromadb.Client()
|
37 |
+
collection = chroma_client.create_collection(name="enron_emails_subset")
|
38 |
+
|
39 |
+
collection.add(
|
40 |
+
embeddings=emails_embeddings.tolist(),
|
41 |
+
documents=emails_df['message'].tolist(),
|
42 |
+
metadatas=[{"email_id": idx} for idx in emails_df.index],
|
43 |
+
ids=[str(idx) for idx in emails_df.index]
|
44 |
+
)
|
45 |
+
|
46 |
+
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
47 |
+
tokenizer.pad_token = tokenizer.eos_token
|
48 |
+
|
49 |
+
def tokenize_function(examples):
|
50 |
+
with autocast():
|
51 |
+
result = tokenizer(examples['message'], truncation=True, padding="max_length", max_length=128)
|
52 |
+
result["labels"] = result["input_ids"].copy()
|
53 |
+
return result
|
54 |
+
|
55 |
+
emails_df = pd.read_csv('/content/emails.csv', nrows=500, on_bad_lines='skip')
|
56 |
+
dataset = Dataset.from_pandas(emails_df[['message']])
|
57 |
+
dataset = dataset.map(tokenize_function, batched=True, num_proc=4)
|
58 |
+
|
59 |
+
train_dataset = dataset.train_test_split(test_size=0.1)['train']
|
60 |
+
|
61 |
+
model = GPT2LMHeadModel.from_pretrained('distilgpt2')
|
62 |
+
model.resize_token_embeddings(len(tokenizer))
|
63 |
+
|
64 |
+
training_args = TrainingArguments(
|
65 |
+
output_dir='/content/model_output',
|
66 |
+
num_train_epochs=1,
|
67 |
+
per_device_train_batch_size=8,
|
68 |
+
gradient_accumulation_steps=2,
|
69 |
+
save_steps=250,
|
70 |
+
logging_dir='/content/logs',
|
71 |
+
logging_strategy="steps",
|
72 |
+
logging_steps=50
|
73 |
+
)
|
74 |
+
|
75 |
+
trainer = Trainer(
|
76 |
+
model=model,
|
77 |
+
args=training_args,
|
78 |
+
train_dataset=train_dataset,
|
79 |
+
tokenizer=tokenizer
|
80 |
+
)
|
81 |
+
|
82 |
+
trainer.train()
|
83 |
+
|
84 |
+
model.save_pretrained('/content/model_output')
|
85 |
+
tokenizer.save_pretrained('/content/model_output')
|
86 |
+
|
87 |
+
model = GPT2LMHeadModel.from_pretrained('/content/model_output')
|
88 |
+
tokenizer = GPT2Tokenizer.from_pretrained('/content/model_output')
|
89 |
+
|
90 |
+
def answer_question(question):
|
91 |
+
model.eval()
|
92 |
+
inputs = tokenizer.encode(question, return_tensors='pt')
|
93 |
+
outputs = model.generate(inputs, max_length=100, num_return_sequences=1)
|
94 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
95 |
+
|
96 |
+
# Gradio interface
|
97 |
+
iface = gr.Interface(fn=answer_question, inputs="text", outputs="text")
|
98 |
+
iface.launch()
|