import cv2 import numpy as np char_list = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'] char_list_sub = ['A','9','G','Q','8','6'] mappings = {i: char_list[i] for i in range(len(char_list))} font = cv2.FONT_HERSHEY_TRIPLEX font_scale = 0.5 color = (255, 255, 0) thickness = 1 def predict(model, sub_model, img,mappings): kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) img = cv2.resize(img,(32,32)) img = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY) img = cv2.filter2D(img, -1, kernel) _, img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) img = cv2.dilate(img,(3,3),iterations=1) img = img/255. img = img.astype('float32') predval = model.predict(np.expand_dims(img,axis=0)) argval =np.argmax(predval,axis=-1) result = mappings[argval[0]] if result in char_list_sub: predval_new = sub_model.predict(np.expand_dims(img,axis=0)) argval_new =np.argmax(predval_new,axis=-1) result_new = mappings[argval_new[0]] if result == '6' and result_new == 'G': return result return result_new return result def get_results(uploaded_image): original_image = uploaded_image image = cv2.cvtColor(original_image,cv2.COLOR_BGR2GRAY) x,y = image.shape maxH = min(1000,x) maxW = min(1000,y) original_image = cv2.resize(original_image,(maxW,maxH)) image = cv2.resize(image,(maxW,maxH)) _, black_white_image = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) if black_white_image[10,10] == 255 or black_white_image[10,len(image[0])-10] == 255 or black_white_image[len(black_white_image)-1,10] == 255 or black_white_image[len(image)-10,len(image[0])-10] == 255: black_white_image = 255 - black_white_image num_labels, _, stats, _ = cv2.connectedComponentsWithStats(black_white_image, connectivity=8) output_image = original_image.copy() sorted_indices = sorted(range(num_labels), key=lambda i: (stats[i, cv2.CC_STAT_TOP],stats[i, cv2.CC_STAT_LEFT])) grouped_indices = [] current_group = [sorted_indices[0]] for i in range(1, num_labels): current_index = sorted_indices[i] prev_index = current_group[-1] if abs(stats[current_index, cv2.CC_STAT_TOP] - stats[prev_index, cv2.CC_STAT_TOP]) <= 20: current_group.append(current_index) else: current_group.sort(key=lambda idx: stats[idx, cv2.CC_STAT_LEFT]) grouped_indices.extend(current_group) current_group = [current_index] current_group.sort(key=lambda idx: stats[idx, cv2.CC_STAT_LEFT]) grouped_indices.extend(current_group) sorted_indices = grouped_indices detected_contours = [] coords = [] for i in sorted_indices: if i == 0: continue x, y, w, h, area = stats[i] widthFlag = w > 2 and w < 500 and w < (maxW-50) heightFlag = h > 15 and h < 500 and h < (maxH-10) areaFlag = area > 15 and area < 100000 if widthFlag and heightFlag and areaFlag: samp = image[y:y+h,x:x+w] samp = cv2.resize(samp,(32,32)) coords.append((x,y)) detected_contour = output_image[y:y+h,x:x+w] bordered_contour = cv2.copyMakeBorder(detected_contour, 20, 20, 20, 20, cv2.BORDER_CONSTANT, value=[0, 0, 0]) detected_contours.append(bordered_contour) cv2.rectangle(output_image, (x-2, y-2), (x + w+2, y + h+2), (0, 1, 0), 2) output_image = output_image*255 return detected_contours,output_image,coords