Anuj-Panthri commited on
Commit
82f856d
·
1 Parent(s): 8a74fe1
kaggle/kernel-metadata.json CHANGED
@@ -1,6 +1,5 @@
1
  {
2
  "id": "anujpanthri/train-image-colorization",
3
- "id_no":345,
4
  "title": "training-image-colorization-model",
5
  "code_file": "train-image-colorization.ipynb",
6
  "language": "python",
 
1
  {
2
  "id": "anujpanthri/train-image-colorization",
 
3
  "title": "training-image-colorization-model",
4
  "code_file": "train-image-colorization.ipynb",
5
  "language": "python",
kaggle/train-image-colorization.ipynb CHANGED
@@ -1,55 +1 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "metadata": {},
7
- "outputs": [],
8
- "source": [
9
- "!git clone https://github.com/AnujPanthri/Image-Colorization.git\n",
10
- "%cd Image-Colorization"
11
- ]
12
- },
13
- {
14
- "cell_type": "code",
15
- "execution_count": null,
16
- "metadata": {},
17
- "outputs": [],
18
- "source": [
19
- "!pip install -r requirements.txt --quiet\n",
20
- "!pip install -e ."
21
- ]
22
- },
23
- {
24
- "cell_type": "code",
25
- "execution_count": null,
26
- "metadata": {},
27
- "outputs": [],
28
- "source": [
29
- "!python3 src/scripts/train.py configs/experiment1.yaml"
30
- ]
31
- },
32
- {
33
- "cell_type": "code",
34
- "execution_count": null,
35
- "metadata": {},
36
- "outputs": [],
37
- "source": [
38
- "!python3 src/scripts/visualize_results.py configs/experiment1.yaml"
39
- ]
40
- }
41
- ],
42
- "metadata": {
43
- "kernelspec": {
44
- "display_name": "Python 3",
45
- "language": "python",
46
- "name": "python3"
47
- },
48
- "language_info": {
49
- "name": "python",
50
- "version": "3.12.1"
51
- }
52
- },
53
- "nbformat": 4,
54
- "nbformat_minor": 2
55
- }
 
1
+ {"metadata":{"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"language_info":{"name":"python","version":"3.10.13","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"},"kaggle":{"accelerator":"none","dataSources":[],"dockerImageVersionId":30698,"isInternetEnabled":true,"language":"python","sourceType":"notebook","isGpuEnabled":false}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"code","source":"!git clone https://github.com/AnujPanthri/Image-Colorization.git\n%cd Image-Colorization","metadata":{"execution":{"iopub.status.busy":"2024-05-07T05:57:35.422571Z","iopub.execute_input":"2024-05-07T05:57:35.423893Z","iopub.status.idle":"2024-05-07T05:57:37.744423Z","shell.execute_reply.started":"2024-05-07T05:57:35.423838Z","shell.execute_reply":"2024-05-07T05:57:37.743082Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"# %cd ..\n# !rm -r Image-Colorization","metadata":{"execution":{"iopub.status.busy":"2024-05-07T05:57:38.982736Z","iopub.execute_input":"2024-05-07T05:57:38.983147Z","iopub.status.idle":"2024-05-07T05:57:38.989575Z","shell.execute_reply.started":"2024-05-07T05:57:38.983115Z","shell.execute_reply":"2024-05-07T05:57:38.987925Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"!pip install -r requirements.txt --quiet\n!pip install -e .","metadata":{"execution":{"iopub.status.busy":"2024-05-07T05:57:39.454444Z","iopub.execute_input":"2024-05-07T05:57:39.454828Z","iopub.status.idle":"2024-05-07T05:58:13.154377Z","shell.execute_reply.started":"2024-05-07T05:57:39.4548Z","shell.execute_reply":"2024-05-07T05:58:13.152964Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"from kaggle_secrets import UserSecretsClient\nuser_secrets = UserSecretsClient()\nCOMET_API_KEY = user_secrets.get_secret(\"comet_api_key\")\n\n!export COMET_API_KEY={COMET_API_KEY}","metadata":{"execution":{"iopub.status.busy":"2024-05-07T05:58:13.157513Z","iopub.execute_input":"2024-05-07T05:58:13.15798Z","iopub.status.idle":"2024-05-07T05:58:14.401676Z","shell.execute_reply.started":"2024-05-07T05:58:13.157935Z","shell.execute_reply":"2024-05-07T05:58:14.400055Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"import os\n\nos.environ[\"COMET_API_KEY\"]=COMET_API_KEY\nconfig_file = \"configs/experiment1.yaml\"","metadata":{"execution":{"iopub.status.busy":"2024-05-07T05:58:14.412023Z","iopub.execute_input":"2024-05-07T05:58:14.412388Z","iopub.status.idle":"2024-05-07T05:58:14.422002Z","shell.execute_reply.started":"2024-05-07T05:58:14.41236Z","shell.execute_reply":"2024-05-07T05:58:14.420946Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"!python3 src/scripts/prepare_dataset.py {config_file}","metadata":{"execution":{"iopub.status.busy":"2024-05-07T05:58:14.423359Z","iopub.execute_input":"2024-05-07T05:58:14.423858Z","iopub.status.idle":"2024-05-07T05:58:20.695681Z","shell.execute_reply.started":"2024-05-07T05:58:14.423828Z","shell.execute_reply":"2024-05-07T05:58:20.694312Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"# !cat src/utils/data_utils.py","metadata":{"execution":{"iopub.status.busy":"2024-05-07T05:58:20.697592Z","iopub.execute_input":"2024-05-07T05:58:20.697948Z","iopub.status.idle":"2024-05-07T05:58:20.703728Z","shell.execute_reply.started":"2024-05-07T05:58:20.697915Z","shell.execute_reply":"2024-05-07T05:58:20.702527Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"# !python3 src/scripts/visualize_dataset.py {config_file}","metadata":{"execution":{"iopub.status.busy":"2024-05-07T05:58:24.072343Z","iopub.execute_input":"2024-05-07T05:58:24.072758Z","iopub.status.idle":"2024-05-07T05:58:27.518713Z","shell.execute_reply.started":"2024-05-07T05:58:24.072725Z","shell.execute_reply":"2024-05-07T05:58:27.517194Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"!python3 src/scripts/train.py {config_file}","metadata":{"execution":{"iopub.status.busy":"2024-05-07T05:58:41.523307Z","iopub.execute_input":"2024-05-07T05:58:41.523718Z","iopub.status.idle":"2024-05-07T06:03:03.088039Z","shell.execute_reply.started":"2024-05-07T05:58:41.523683Z","shell.execute_reply":"2024-05-07T06:03:03.086519Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"# !python3 src/scripts/visualize_results.py {config_file}","metadata":{"execution":{"iopub.status.busy":"2024-05-07T06:03:34.594725Z","iopub.execute_input":"2024-05-07T06:03:34.595185Z","iopub.status.idle":"2024-05-07T06:03:46.842693Z","shell.execute_reply.started":"2024-05-07T06:03:34.595147Z","shell.execute_reply":"2024-05-07T06:03:46.841521Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"","metadata":{},"execution_count":null,"outputs":[]}]}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/scripts/train.py CHANGED
@@ -3,6 +3,7 @@ import argparse
3
  from comet_ml import Experiment
4
  from src.utils.config_loader import Config
5
  from src.utils import config_loader
 
6
  from src.utils.script_utils import validate_config
7
  import importlib
8
  from pathlib import Path
@@ -47,6 +48,8 @@ def train(args):
47
  if "LOCAL_SYSTEM" not in os.environ:
48
  experiment.log_model(f"{config.task}_{config.dataset}_{config.model}",model_save_path)
49
 
 
 
50
  metrics = model.evaluate()
51
  print("Model Evaluation Metrics:",metrics)
52
 
 
3
  from comet_ml import Experiment
4
  from src.utils.config_loader import Config
5
  from src.utils import config_loader
6
+ from src.utils.data_utils import print_title
7
  from src.utils.script_utils import validate_config
8
  import importlib
9
  from pathlib import Path
 
48
  if "LOCAL_SYSTEM" not in os.environ:
49
  experiment.log_model(f"{config.task}_{config.dataset}_{config.model}",model_save_path)
50
 
51
+ # evaluate model
52
+ print_title("\nEvaluating Model")
53
  metrics = model.evaluate()
54
  print("Model Evaluation Metrics:",metrics)
55
 
src/simple_regression_colorization/model/dataloaders.py CHANGED
@@ -19,7 +19,7 @@ def get_datasets():
19
 
20
  train_paths,val_paths = sklearn.model_selection.train_test_split(trainval_paths,
21
  train_size=0.8,
22
- random_state=324)
23
 
24
  print("train|val|test:",len(train_paths),"|",len(val_paths),"|",len(test_paths))
25
 
@@ -53,7 +53,7 @@ def load_img(img_path):
53
 
54
  def get_tf_ds(image_paths,bs=8,shuffle=False,is_val=False):
55
  ds = tf.data.Dataset.from_tensor_slices(image_paths)
56
- if shuffle: ds = ds.shuffle(len(image_paths))
57
  ds = ds.map(load_img,num_parallel_calls=tf.data.AUTOTUNE)
58
  ds = ds.batch(bs,num_parallel_calls=tf.data.AUTOTUNE,drop_remainder=not is_val)
59
 
 
19
 
20
  train_paths,val_paths = sklearn.model_selection.train_test_split(trainval_paths,
21
  train_size=0.8,
22
+ random_state=config.seed)
23
 
24
  print("train|val|test:",len(train_paths),"|",len(val_paths),"|",len(test_paths))
25
 
 
53
 
54
  def get_tf_ds(image_paths,bs=8,shuffle=False,is_val=False):
55
  ds = tf.data.Dataset.from_tensor_slices(image_paths)
56
+ if shuffle: ds = ds.shuffle(len(image_paths),seed=config.seed)
57
  ds = ds.map(load_img,num_parallel_calls=tf.data.AUTOTUNE)
58
  ds = ds.batch(bs,num_parallel_calls=tf.data.AUTOTUNE,drop_remainder=not is_val)
59