File size: 7,336 Bytes
515bd6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import gradio as gr
import pandas as pd
import torch
from transformers import BertTokenizer, BertModel
import numpy as np
from sklearn.preprocessing import StandardScaler
import logging

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class EasyLearningPlatform:
    def __init__(self):
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        logger.info(f"Using device: {self.device}")
        self.initialize_models()
        
    def initialize_models(self):
        """Initialize BERT model for processing"""
        try:
            self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
            self.model = BertModel.from_pretrained('bert-base-uncased').to(self.device)
        except Exception as e:
            logger.error(f"Error initializing models: {str(e)}")
            raise
    
    def process_learning_request(
        self,
        name: str,
        age: int,
        education_level: str,
        interests: str,
        learning_goal: str,
        preferred_learning_style: str,
        available_hours_per_week: int
    ):
        """Process user input and generate learning recommendations"""
        try:
            # Create user profile
            profile = {
                'name': name,
                'age': age,
                'education': education_level,
                'interests': interests,
                'goal': learning_goal,
                'learning_style': preferred_learning_style,
                'hours_available': available_hours_per_week
            }
            
            # Generate recommendations based on profile
            recommendations = self.generate_recommendations(profile)
            
            # Create response
            return {
                "status": "Success",
                "personal_learning_path": recommendations['learning_path'],
                "estimated_completion_time": recommendations['completion_time'],
                "recommended_resources": recommendations['resources'],
                "next_steps": recommendations['next_steps']
            }
            
        except Exception as e:
            logger.error(f"Error processing request: {str(e)}")
            return {
                "status": "Error",
                "message": "There was an error processing your request. Please try again."
            }
    
    def generate_recommendations(self, profile):
        """Generate personalized learning recommendations"""
        # Simplified recommendation logic
        learning_styles = {
            'visual': ['video tutorials', 'infographics', 'diagrams'],
            'auditory': ['podcasts', 'audio books', 'lectures'],
            'reading/writing': ['textbooks', 'articles', 'written guides'],
            'kinesthetic': ['practical exercises', 'hands-on projects', 'interactive tutorials']
        }
        
        # Get recommended resources based on learning style
        preferred_resources = learning_styles.get(
            profile['learning_style'].lower(),
            learning_styles['visual']  # default to visual if style not found
        )
        
        # Calculate estimated completion time (simplified)
        weekly_hours = min(max(profile['hours_available'], 1), 168)  # Limit between 1 and 168 hours
        estimated_weeks = 12  # Default to 12-week program
        
        return {
            'learning_path': [
                f"Week 1-2: Introduction to {profile['goal']}",
                f"Week 3-4: Fundamental Concepts",
                f"Week 5-8: Core Skills Development",
                f"Week 9-12: Advanced Topics and Projects"
            ],
            'completion_time': f"{estimated_weeks} weeks at {weekly_hours} hours per week",
            'resources': preferred_resources,
            'next_steps': [
                "1. Review your personalized learning path",
                "2. Schedule your study time",
                "3. Start with the recommended resources",
                "4. Track your progress weekly"
            ]
        }

    def create_interface(self):
        """Create the Gradio interface"""
        
        # Define the interface
        iface = gr.Interface(
            fn=self.process_learning_request,
            inputs=[
                gr.Textbox(label="Name"),
                gr.Number(label="Age", minimum=1, maximum=120),
                gr.Dropdown(
                    choices=[
                        "High School",
                        "Bachelor's Degree",
                        "Master's Degree",
                        "PhD",
                        "Other"
                    ],
                    label="Education Level"
                ),
                gr.Textbox(
                    label="Interests",
                    placeholder="e.g., programming, data science, web development"
                ),
                gr.Textbox(
                    label="Learning Goal",
                    placeholder="What do you want to learn?"
                ),
                gr.Dropdown(
                    choices=[
                        "Visual",
                        "Auditory",
                        "Reading/Writing",
                        "Kinesthetic"
                    ],
                    label="Preferred Learning Style",
                    info="How do you learn best?"
                ),
                gr.Slider(
                    minimum=1,
                    maximum=40,
                    value=10,
                    label="Available Hours per Week",
                    info="How many hours can you dedicate to learning each week?"
                )
            ],
            outputs=gr.JSON(label="Your Personalized Learning Plan"),
            title="AI Learning Path Generator",
            description="""
            Welcome to your personalized learning journey! 
            
            Fill in your information below to get a customized learning path:
            1. Enter your basic information
            2. Specify your learning goals
            3. Choose your preferred learning style
            4. Set your weekly time commitment
            Contact-: AJoshi 91-8847374914 email [email protected]
            
            Click submit to generate your personalized learning plan!
            """,
            examples=[
                [
                    "John Doe",
                    25,
                    "Bachelor's Degree",
                    "Machine Learning, Python",
                    "Learn Data Science",
                    "Visual",
                    10
                ],
                [
                    "Jane Smith",
                    30,
                    "Master's Degree",
                    "Web Development, JavaScript",
                    "Full Stack Development",
                    "Kinesthetic",
                    15
                ]
            ]
        )
        return iface

def main():
    # Create and launch the platform
    platform = EasyLearningPlatform()
    interface = platform.create_interface()
    interface.launch(share=True)

if __name__ == "__main__":
    """
    # Run these commands in Google Colab first:
    !pip install gradio transformers torch numpy pandas scikit-learn
    """
    main()