Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import logging
|
4 |
+
import yaml
|
5 |
+
import os
|
6 |
+
import json
|
7 |
+
import jwt
|
8 |
+
import redis
|
9 |
+
import sqlite3
|
10 |
+
from datetime import datetime, timedelta
|
11 |
+
from pathlib import Path
|
12 |
+
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
13 |
+
import networkx as nx
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import numpy as np
|
16 |
+
from PIL import Image
|
17 |
+
import io
|
18 |
+
import traceback
|
19 |
+
from typing import Tuple, Optional, Dict, List, Union
|
20 |
+
import colorama
|
21 |
+
from colorama import Fore, Style
|
22 |
+
from abc import ABC, abstractmethod
|
23 |
+
from dataclasses import dataclass
|
24 |
+
import plotly.graph_objects as go
|
25 |
+
import hashlib
|
26 |
+
import asyncio
|
27 |
+
import aiohttp
|
28 |
+
from fastapi import FastAPI, HTTPException, Depends, status
|
29 |
+
from fastapi.security import OAuth2PasswordBearer
|
30 |
+
from pydantic import BaseModel, EmailStr
|
31 |
+
import uvicorn
|
32 |
+
|
33 |
+
# Advanced Configuration Models
|
34 |
+
@dataclass
|
35 |
+
class ModelConfig:
|
36 |
+
name: str
|
37 |
+
max_length: int
|
38 |
+
num_beams: int
|
39 |
+
temperature: float
|
40 |
+
top_k: int
|
41 |
+
top_p: float
|
42 |
+
|
43 |
+
@dataclass
|
44 |
+
class StyleConfig:
|
45 |
+
node_color: str
|
46 |
+
edge_color: str
|
47 |
+
node_size: int
|
48 |
+
font_size: int
|
49 |
+
layout: str
|
50 |
+
|
51 |
+
@dataclass
|
52 |
+
class OutputConfig:
|
53 |
+
width: int
|
54 |
+
height: int
|
55 |
+
dpi: int
|
56 |
+
format: str
|
57 |
+
quality: int
|
58 |
+
|
59 |
+
# Abstract Base Classes for Extensibility
|
60 |
+
class DiagramStrategy(ABC):
|
61 |
+
@abstractmethod
|
62 |
+
def create_diagram(self, components: List[str], style: StyleConfig) -> Image.Image:
|
63 |
+
pass
|
64 |
+
|
65 |
+
class NetworkDiagram(DiagramStrategy):
|
66 |
+
def create_diagram(self, components: List[str], style: StyleConfig) -> Image.Image:
|
67 |
+
G = nx.DiGraph()
|
68 |
+
for i in range(len(components)-1):
|
69 |
+
G.add_edge(components[i], components[i+1])
|
70 |
+
|
71 |
+
plt.figure(figsize=(12, 8))
|
72 |
+
|
73 |
+
if style.layout == "spring":
|
74 |
+
pos = nx.spring_layout(G)
|
75 |
+
elif style.layout == "circular":
|
76 |
+
pos = nx.circular_layout(G)
|
77 |
+
else:
|
78 |
+
pos = nx.kamada_kawai_layout(G)
|
79 |
+
|
80 |
+
nx.draw_networkx_nodes(G, pos,
|
81 |
+
node_color=style.node_color,
|
82 |
+
node_size=style.node_size)
|
83 |
+
nx.draw_networkx_edges(G, pos,
|
84 |
+
edge_color=style.edge_color,
|
85 |
+
arrows=True)
|
86 |
+
nx.draw_networkx_labels(G, pos,
|
87 |
+
font_size=style.font_size)
|
88 |
+
|
89 |
+
buf = io.BytesIO()
|
90 |
+
plt.savefig(buf, format='png', dpi=300)
|
91 |
+
plt.close()
|
92 |
+
buf.seek(0)
|
93 |
+
return Image.open(buf)
|
94 |
+
|
95 |
+
class PlotlyDiagram(DiagramStrategy):
|
96 |
+
def create_diagram(self, components: List[str], style: StyleConfig) -> Image.Image:
|
97 |
+
G = nx.DiGraph()
|
98 |
+
for i in range(len(components)-1):
|
99 |
+
G.add_edge(components[i], components[i+1])
|
100 |
+
|
101 |
+
pos = nx.spring_layout(G)
|
102 |
+
|
103 |
+
edge_x = []
|
104 |
+
edge_y = []
|
105 |
+
for edge in G.edges():
|
106 |
+
x0, y0 = pos[edge[0]]
|
107 |
+
x1, y1 = pos[edge[1]]
|
108 |
+
edge_x.extend([x0, x1, None])
|
109 |
+
edge_y.extend([y0, y1, None])
|
110 |
+
|
111 |
+
node_x = [pos[node][0] for node in G.nodes()]
|
112 |
+
node_y = [pos[node][1] for node in G.nodes()]
|
113 |
+
|
114 |
+
fig = go.Figure()
|
115 |
+
fig.add_trace(go.Scatter(x=edge_x, y=edge_y,
|
116 |
+
line=dict(width=0.5, color=style.edge_color),
|
117 |
+
hoverinfo='none',
|
118 |
+
mode='lines'))
|
119 |
+
|
120 |
+
fig.add_trace(go.Scatter(x=node_x, y=node_y,
|
121 |
+
mode='markers+text',
|
122 |
+
marker=dict(size=style.node_size/100,
|
123 |
+
color=style.node_color),
|
124 |
+
text=list(G.nodes()),
|
125 |
+
textposition="bottom center"))
|
126 |
+
|
127 |
+
fig.update_layout(showlegend=False,
|
128 |
+
hovermode='closest',
|
129 |
+
margin=dict(b=0,l=0,r=0,t=0))
|
130 |
+
|
131 |
+
img_bytes = fig.to_image(format="png") # Requires kaleido
|
132 |
+
return Image.open(io.BytesIO(img_bytes))
|
133 |
+
|
134 |
+
# Database Manager
|
135 |
+
class DatabaseManager:
|
136 |
+
def __init__(self, db_path: str = "diagrams.db"):
|
137 |
+
self.conn = sqlite3.connect(db_path)
|
138 |
+
self.create_tables()
|
139 |
+
|
140 |
+
def create_tables(self):
|
141 |
+
cursor = self.conn.cursor()
|
142 |
+
cursor.execute('''
|
143 |
+
CREATE TABLE IF NOT EXISTS users (
|
144 |
+
id INTEGER PRIMARY KEY,
|
145 |
+
username TEXT UNIQUE,
|
146 |
+
email TEXT UNIQUE,
|
147 |
+
password_hash TEXT,
|
148 |
+
created_at TIMESTAMP
|
149 |
+
)
|
150 |
+
''')
|
151 |
+
|
152 |
+
cursor.execute('''
|
153 |
+
CREATE TABLE IF NOT EXISTS diagrams (
|
154 |
+
id INTEGER PRIMARY KEY,
|
155 |
+
user_id INTEGER,
|
156 |
+
title TEXT,
|
157 |
+
description TEXT,
|
158 |
+
created_at TIMESTAMP,
|
159 |
+
image_path TEXT,
|
160 |
+
FOREIGN KEY (user_id) REFERENCES users (id)
|
161 |
+
)
|
162 |
+
''')
|
163 |
+
self.conn.commit()
|
164 |
+
|
165 |
+
# Cache Manager using Redis
|
166 |
+
class CacheManager:
|
167 |
+
def __init__(self, redis_url: str = "redis://localhost"):
|
168 |
+
self.redis_client = redis.from_url(redis_url)
|
169 |
+
|
170 |
+
def get_cached_diagram(self, key: str) -> Optional[bytes]:
|
171 |
+
return self.redis_client.get(key)
|
172 |
+
|
173 |
+
def cache_diagram(self, key: str, diagram: bytes, expire: int = 3600):
|
174 |
+
self.redis_client.set(key, diagram, ex=expire)
|
175 |
+
|
176 |
+
# Advanced Diagram Generator
|
177 |
+
class AdvancedDiagramGenerator:
|
178 |
+
def __init__(self, config_path: str = "config.yaml"):
|
179 |
+
# Initialize logging first
|
180 |
+
self.setup_logging()
|
181 |
+
|
182 |
+
# Load configuration
|
183 |
+
self.load_config(config_path)
|
184 |
+
|
185 |
+
# Setup components (tokenizer, model, etc.)
|
186 |
+
self.setup_components()
|
187 |
+
|
188 |
+
# Initialize diagram strategies
|
189 |
+
self.strategies = {
|
190 |
+
"network": NetworkDiagram(),
|
191 |
+
"plotly": PlotlyDiagram()
|
192 |
+
}
|
193 |
+
|
194 |
+
def load_config(self, config_path: str):
|
195 |
+
try:
|
196 |
+
if not os.path.exists(config_path):
|
197 |
+
self.logger.warning(f"Config file not found at {config_path}. Using default configuration.")
|
198 |
+
# Default configuration
|
199 |
+
config_data = {
|
200 |
+
'model': {
|
201 |
+
'name': 't5-small',
|
202 |
+
'max_length': 512,
|
203 |
+
'num_beams': 4,
|
204 |
+
'temperature': 1.0,
|
205 |
+
'top_k': 50,
|
206 |
+
'top_p': 0.9
|
207 |
+
},
|
208 |
+
'styles': {
|
209 |
+
'network': {
|
210 |
+
'node_color': '#1f77b4',
|
211 |
+
'edge_color': '#7f7f7f',
|
212 |
+
'node_size': 3000,
|
213 |
+
'font_size': 12,
|
214 |
+
'layout': 'spring'
|
215 |
+
}
|
216 |
+
},
|
217 |
+
'output': {
|
218 |
+
'width': 1200,
|
219 |
+
'height': 800,
|
220 |
+
'dpi': 300,
|
221 |
+
'format': 'png',
|
222 |
+
'quality': 95
|
223 |
+
}
|
224 |
+
}
|
225 |
+
else:
|
226 |
+
with open(config_path) as f:
|
227 |
+
config_data = yaml.safe_load(f)
|
228 |
+
|
229 |
+
# Ensure all required sections exist with defaults
|
230 |
+
if 'model' not in config_data:
|
231 |
+
config_data['model'] = {}
|
232 |
+
|
233 |
+
# Set default values for model configuration
|
234 |
+
model_config_data = config_data['model']
|
235 |
+
model_config_data.setdefault('name', 't5-small')
|
236 |
+
model_config_data.setdefault('max_length', 512)
|
237 |
+
model_config_data.setdefault('num_beams', 4)
|
238 |
+
model_config_data.setdefault('temperature', 1.0)
|
239 |
+
model_config_data.setdefault('top_k', 50)
|
240 |
+
model_config_data.setdefault('top_p', 0.9)
|
241 |
+
|
242 |
+
# Create ModelConfig instance
|
243 |
+
self.model_config = ModelConfig(**model_config_data)
|
244 |
+
|
245 |
+
# Handle styles configuration
|
246 |
+
if 'styles' not in config_data:
|
247 |
+
config_data['styles'] = {
|
248 |
+
'network': {
|
249 |
+
'node_color': '#1f77b4',
|
250 |
+
'edge_color': '#7f7f7f',
|
251 |
+
'node_size': 3000,
|
252 |
+
'font_size': 12,
|
253 |
+
'layout': 'spring'
|
254 |
+
}
|
255 |
+
}
|
256 |
+
|
257 |
+
# Create StyleConfig instances
|
258 |
+
self.style_configs = {}
|
259 |
+
for style_name, style_data in config_data['styles'].items():
|
260 |
+
style_data.setdefault('node_color', '#1f77b4')
|
261 |
+
style_data.setdefault('edge_color', '#7f7f7f')
|
262 |
+
style_data.setdefault('node_size', 3000)
|
263 |
+
style_data.setdefault('font_size', 12)
|
264 |
+
style_data.setdefault('layout', 'spring')
|
265 |
+
self.style_configs[style_name] = StyleConfig(**style_data)
|
266 |
+
|
267 |
+
# Handle output configuration
|
268 |
+
if 'output' not in config_data:
|
269 |
+
config_data['output'] = {}
|
270 |
+
|
271 |
+
output_config_data = config_data['output']
|
272 |
+
output_config_data.setdefault('width', 1200)
|
273 |
+
output_config_data.setdefault('height', 800)
|
274 |
+
output_config_data.setdefault('dpi', 300)
|
275 |
+
output_config_data.setdefault('format', 'png')
|
276 |
+
output_config_data.setdefault('quality', 95)
|
277 |
+
|
278 |
+
# Create OutputConfig instance
|
279 |
+
self.output_config = OutputConfig(**output_config_data)
|
280 |
+
|
281 |
+
self.config = config_data
|
282 |
+
self.logger.info("Configuration loaded successfully")
|
283 |
+
|
284 |
+
except Exception as e:
|
285 |
+
self.logger.error(f"Error loading configuration: {str(e)}")
|
286 |
+
raise RuntimeError(f"Failed to load configuration: {str(e)}")
|
287 |
+
|
288 |
+
def setup_components(self):
|
289 |
+
# Initialize tokenizer and model
|
290 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_config.name)
|
291 |
+
self.model = T5ForConditionalGeneration.from_pretrained(self.model_config.name)
|
292 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
293 |
+
self.model.to(self.device)
|
294 |
+
|
295 |
+
def setup_logging(self):
|
296 |
+
logging.basicConfig(level=logging.INFO)
|
297 |
+
self.logger = logging.getLogger(__name__)
|
298 |
+
|
299 |
+
async def extract_components(self, text: str) -> List[str]:
|
300 |
+
inputs = self.tokenizer(
|
301 |
+
f"convert to diagram: {text}",
|
302 |
+
return_tensors="pt",
|
303 |
+
max_length=self.model_config.max_length,
|
304 |
+
truncation=True
|
305 |
+
).to(self.device)
|
306 |
+
|
307 |
+
with torch.no_grad():
|
308 |
+
outputs = self.model.generate(
|
309 |
+
inputs.input_ids,
|
310 |
+
max_length=150,
|
311 |
+
num_beams=self.model_config.num_beams,
|
312 |
+
temperature=self.model_config.temperature,
|
313 |
+
top_k=self.model_config.top_k,
|
314 |
+
top_p=self.model_config.top_p
|
315 |
+
)
|
316 |
+
|
317 |
+
decoded = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
318 |
+
components = [comp.strip() for comp in decoded.replace('->', ',').split(',')]
|
319 |
+
return [comp for comp in components if comp]
|
320 |
+
|
321 |
+
def save_to_database(self, user_id: int, description: str, diagram: Image.Image):
|
322 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
323 |
+
image_path = f"diagrams/user_{user_id}/{timestamp}.png"
|
324 |
+
os.makedirs(os.path.dirname(image_path), exist_ok=True)
|
325 |
+
diagram.save(image_path)
|
326 |
+
|
327 |
+
cursor = self.db.conn.cursor()
|
328 |
+
cursor.execute('''
|
329 |
+
INSERT INTO diagrams (user_id, description, created_at, image_path)
|
330 |
+
VALUES (?, ?, ?, ?)
|
331 |
+
''', (user_id, description, datetime.now(), image_path))
|
332 |
+
self.db.conn.commit()
|
333 |
+
|
334 |
+
async def generate_diagram(self, text: str, style: str, strategy: str) -> Tuple[Optional[Image.Image], str]:
|
335 |
+
try:
|
336 |
+
components = await self.extract_components(text)
|
337 |
+
diagram = self.strategies[strategy].create_diagram(components, self.style_configs[style])
|
338 |
+
return diagram, "Diagram generated successfully!"
|
339 |
+
except Exception as e:
|
340 |
+
self.logger.error(f"Error generating diagram: {str(e)}")
|
341 |
+
return None, f"Error: {str(e)}"
|
342 |
+
|
343 |
+
# FastAPI Integration
|
344 |
+
app = FastAPI()
|
345 |
+
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
346 |
+
|
347 |
+
class DiagramRequest(BaseModel):
|
348 |
+
text: str
|
349 |
+
style: str = "network"
|
350 |
+
strategy: str = "network"
|
351 |
+
|
352 |
+
# Initialize the generator
|
353 |
+
generator = AdvancedDiagramGenerator()
|
354 |
+
|
355 |
+
# Gradio Interface
|
356 |
+
def create_gradio_interface():
|
357 |
+
def generate(text: str, style: str, strategy: str) -> Tuple[Optional[Image.Image], str]:
|
358 |
+
return asyncio.run(generator.generate_diagram(text, style, strategy))
|
359 |
+
|
360 |
+
iface = gr.Interface(
|
361 |
+
fn=generate,
|
362 |
+
inputs=[
|
363 |
+
gr.Textbox(
|
364 |
+
label="Enter your diagram description",
|
365 |
+
placeholder="e.g., 'Create a flowchart for software development lifecycle'",
|
366 |
+
lines=3
|
367 |
+
),
|
368 |
+
gr.Dropdown(
|
369 |
+
choices=list(generator.style_configs.keys()),
|
370 |
+
label="Diagram Style",
|
371 |
+
value="network"
|
372 |
+
),
|
373 |
+
gr.Dropdown(
|
374 |
+
choices=list(generator.strategies.keys()),
|
375 |
+
label="Visualization Strategy",
|
376 |
+
value="network"
|
377 |
+
)
|
378 |
+
],
|
379 |
+
outputs=[
|
380 |
+
gr.Image(label="Generated Diagram", type="pil"),
|
381 |
+
gr.Textbox(label="Status")
|
382 |
+
],
|
383 |
+
title="Advanced Enterprise Diagram Generator",
|
384 |
+
description="""
|
385 |
+
Enterprise-grade diagram generation tool with advanced features:
|
386 |
+
- Multiple visualization strategies
|
387 |
+
- Caching system
|
388 |
+
- Database storage
|
389 |
+
- Multiple output formats
|
390 |
+
- Custom styling options
|
391 |
+
""",
|
392 |
+
theme=gr.themes.Glass()
|
393 |
+
)
|
394 |
+
return iface
|
395 |
+
|
396 |
+
if __name__ == "__main__":
|
397 |
+
iface = create_gradio_interface()
|
398 |
+
iface.launch(share=True)
|