Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,398 +1,159 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import logging
|
4 |
-
import yaml
|
5 |
-
import os
|
6 |
-
import json
|
7 |
-
import jwt
|
8 |
-
import redis
|
9 |
-
import sqlite3
|
10 |
-
from datetime import datetime, timedelta
|
11 |
-
from pathlib import Path
|
12 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
13 |
import networkx as nx
|
14 |
import matplotlib.pyplot as plt
|
15 |
import numpy as np
|
16 |
from PIL import Image
|
17 |
import io
|
18 |
-
import
|
19 |
-
from
|
20 |
-
import colorama
|
21 |
-
from colorama import Fore, Style
|
22 |
-
from abc import ABC, abstractmethod
|
23 |
-
from dataclasses import dataclass
|
24 |
-
import plotly.graph_objects as go
|
25 |
-
import hashlib
|
26 |
-
import asyncio
|
27 |
-
import aiohttp
|
28 |
-
from fastapi import FastAPI, HTTPException, Depends, status
|
29 |
-
from fastapi.security import OAuth2PasswordBearer
|
30 |
-
from pydantic import BaseModel, EmailStr
|
31 |
-
import uvicorn
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
max_length: int
|
38 |
-
num_beams: int
|
39 |
-
temperature: float
|
40 |
-
top_k: int
|
41 |
-
top_p: float
|
42 |
-
|
43 |
-
@dataclass
|
44 |
-
class StyleConfig:
|
45 |
-
node_color: str
|
46 |
-
edge_color: str
|
47 |
-
node_size: int
|
48 |
-
font_size: int
|
49 |
-
layout: str
|
50 |
-
|
51 |
-
@dataclass
|
52 |
-
class OutputConfig:
|
53 |
-
width: int
|
54 |
-
height: int
|
55 |
-
dpi: int
|
56 |
-
format: str
|
57 |
-
quality: int
|
58 |
-
|
59 |
-
# Abstract Base Classes for Extensibility
|
60 |
-
class DiagramStrategy(ABC):
|
61 |
-
@abstractmethod
|
62 |
-
def create_diagram(self, components: List[str], style: StyleConfig) -> Image.Image:
|
63 |
-
pass
|
64 |
-
|
65 |
-
class NetworkDiagram(DiagramStrategy):
|
66 |
-
def create_diagram(self, components: List[str], style: StyleConfig) -> Image.Image:
|
67 |
-
G = nx.DiGraph()
|
68 |
-
for i in range(len(components)-1):
|
69 |
-
G.add_edge(components[i], components[i+1])
|
70 |
-
|
71 |
-
plt.figure(figsize=(12, 8))
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
else:
|
78 |
-
pos = nx.kamada_kawai_layout(G)
|
79 |
-
|
80 |
-
nx.draw_networkx_nodes(G, pos,
|
81 |
-
node_color=style.node_color,
|
82 |
-
node_size=style.node_size)
|
83 |
-
nx.draw_networkx_edges(G, pos,
|
84 |
-
edge_color=style.edge_color,
|
85 |
-
arrows=True)
|
86 |
-
nx.draw_networkx_labels(G, pos,
|
87 |
-
font_size=style.font_size)
|
88 |
-
|
89 |
-
buf = io.BytesIO()
|
90 |
-
plt.savefig(buf, format='png', dpi=300)
|
91 |
-
plt.close()
|
92 |
-
buf.seek(0)
|
93 |
-
return Image.open(buf)
|
94 |
-
|
95 |
-
class PlotlyDiagram(DiagramStrategy):
|
96 |
-
def create_diagram(self, components: List[str], style: StyleConfig) -> Image.Image:
|
97 |
-
G = nx.DiGraph()
|
98 |
-
for i in range(len(components)-1):
|
99 |
-
G.add_edge(components[i], components[i+1])
|
100 |
-
|
101 |
-
pos = nx.spring_layout(G)
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
for edge in G.edges():
|
106 |
-
x0, y0 = pos[edge[0]]
|
107 |
-
x1, y1 = pos[edge[1]]
|
108 |
-
edge_x.extend([x0, x1, None])
|
109 |
-
edge_y.extend([y0, y1, None])
|
110 |
-
|
111 |
-
node_x = [pos[node][0] for node in G.nodes()]
|
112 |
-
node_y = [pos[node][1] for node in G.nodes()]
|
113 |
-
|
114 |
-
fig = go.Figure()
|
115 |
-
fig.add_trace(go.Scatter(x=edge_x, y=edge_y,
|
116 |
-
line=dict(width=0.5, color=style.edge_color),
|
117 |
-
hoverinfo='none',
|
118 |
-
mode='lines'))
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
id INTEGER PRIMARY KEY,
|
145 |
-
username TEXT UNIQUE,
|
146 |
-
email TEXT UNIQUE,
|
147 |
-
password_hash TEXT,
|
148 |
-
created_at TIMESTAMP
|
149 |
)
|
150 |
-
''')
|
151 |
-
|
152 |
-
cursor.execute('''
|
153 |
-
CREATE TABLE IF NOT EXISTS diagrams (
|
154 |
-
id INTEGER PRIMARY KEY,
|
155 |
-
user_id INTEGER,
|
156 |
-
title TEXT,
|
157 |
-
description TEXT,
|
158 |
-
created_at TIMESTAMP,
|
159 |
-
image_path TEXT,
|
160 |
-
FOREIGN KEY (user_id) REFERENCES users (id)
|
161 |
-
)
|
162 |
-
''')
|
163 |
-
self.conn.commit()
|
164 |
-
|
165 |
-
# Cache Manager using Redis
|
166 |
-
class CacheManager:
|
167 |
-
def __init__(self, redis_url: str = "redis://localhost"):
|
168 |
-
self.redis_client = redis.from_url(redis_url)
|
169 |
|
170 |
-
|
171 |
-
return
|
172 |
-
|
173 |
-
def cache_diagram(self, key: str, diagram: bytes, expire: int = 3600):
|
174 |
-
self.redis_client.set(key, diagram, ex=expire)
|
175 |
-
|
176 |
-
# Advanced Diagram Generator
|
177 |
-
class AdvancedDiagramGenerator:
|
178 |
-
def __init__(self, config_path: str = "config.yaml"):
|
179 |
-
# Initialize logging first
|
180 |
-
self.setup_logging()
|
181 |
-
|
182 |
-
# Load configuration
|
183 |
-
self.load_config(config_path)
|
184 |
-
|
185 |
-
# Setup components (tokenizer, model, etc.)
|
186 |
-
self.setup_components()
|
187 |
-
|
188 |
-
# Initialize diagram strategies
|
189 |
-
self.strategies = {
|
190 |
-
"network": NetworkDiagram(),
|
191 |
-
"plotly": PlotlyDiagram()
|
192 |
-
}
|
193 |
|
194 |
-
def
|
|
|
195 |
try:
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
'width': 1200,
|
219 |
-
'height': 800,
|
220 |
-
'dpi': 300,
|
221 |
-
'format': 'png',
|
222 |
-
'quality': 95
|
223 |
-
}
|
224 |
-
}
|
225 |
else:
|
226 |
-
|
227 |
-
|
|
|
228 |
|
229 |
-
#
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
# Set default values for model configuration
|
234 |
-
model_config_data = config_data['model']
|
235 |
-
model_config_data.setdefault('name', 't5-small')
|
236 |
-
model_config_data.setdefault('max_length', 512)
|
237 |
-
model_config_data.setdefault('num_beams', 4)
|
238 |
-
model_config_data.setdefault('temperature', 1.0)
|
239 |
-
model_config_data.setdefault('top_k', 50)
|
240 |
-
model_config_data.setdefault('top_p', 0.9)
|
241 |
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
config_data['styles'] = {
|
248 |
-
'network': {
|
249 |
-
'node_color': '#1f77b4',
|
250 |
-
'edge_color': '#7f7f7f',
|
251 |
-
'node_size': 3000,
|
252 |
-
'font_size': 12,
|
253 |
-
'layout': 'spring'
|
254 |
-
}
|
255 |
-
}
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
style_data.setdefault('node_size', 3000)
|
263 |
-
style_data.setdefault('font_size', 12)
|
264 |
-
style_data.setdefault('layout', 'spring')
|
265 |
-
self.style_configs[style_name] = StyleConfig(**style_data)
|
266 |
-
|
267 |
-
# Handle output configuration
|
268 |
-
if 'output' not in config_data:
|
269 |
-
config_data['output'] = {}
|
270 |
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
|
|
|
|
|
|
277 |
|
278 |
-
|
279 |
-
self.output_config = OutputConfig(**output_config_data)
|
280 |
-
|
281 |
-
self.config = config_data
|
282 |
-
self.logger.info("Configuration loaded successfully")
|
283 |
-
|
284 |
-
except Exception as e:
|
285 |
-
self.logger.error(f"Error loading configuration: {str(e)}")
|
286 |
-
raise RuntimeError(f"Failed to load configuration: {str(e)}")
|
287 |
-
|
288 |
-
def setup_components(self):
|
289 |
-
# Initialize tokenizer and model
|
290 |
-
self.tokenizer = AutoTokenizer.from_pretrained(self.model_config.name)
|
291 |
-
self.model = T5ForConditionalGeneration.from_pretrained(self.model_config.name)
|
292 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
293 |
-
self.model.to(self.device)
|
294 |
-
|
295 |
-
def setup_logging(self):
|
296 |
-
logging.basicConfig(level=logging.INFO)
|
297 |
-
self.logger = logging.getLogger(__name__)
|
298 |
-
|
299 |
-
async def extract_components(self, text: str) -> List[str]:
|
300 |
-
inputs = self.tokenizer(
|
301 |
-
f"convert to diagram: {text}",
|
302 |
-
return_tensors="pt",
|
303 |
-
max_length=self.model_config.max_length,
|
304 |
-
truncation=True
|
305 |
-
).to(self.device)
|
306 |
-
|
307 |
-
with torch.no_grad():
|
308 |
-
outputs = self.model.generate(
|
309 |
-
inputs.input_ids,
|
310 |
-
max_length=150,
|
311 |
-
num_beams=self.model_config.num_beams,
|
312 |
-
temperature=self.model_config.temperature,
|
313 |
-
top_k=self.model_config.top_k,
|
314 |
-
top_p=self.model_config.top_p
|
315 |
-
)
|
316 |
-
|
317 |
-
decoded = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
318 |
-
components = [comp.strip() for comp in decoded.replace('->', ',').split(',')]
|
319 |
-
return [comp for comp in components if comp]
|
320 |
|
321 |
-
def save_to_database(self, user_id: int, description: str, diagram: Image.Image):
|
322 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
323 |
-
image_path = f"diagrams/user_{user_id}/{timestamp}.png"
|
324 |
-
os.makedirs(os.path.dirname(image_path), exist_ok=True)
|
325 |
-
diagram.save(image_path)
|
326 |
-
|
327 |
-
cursor = self.db.conn.cursor()
|
328 |
-
cursor.execute('''
|
329 |
-
INSERT INTO diagrams (user_id, description, created_at, image_path)
|
330 |
-
VALUES (?, ?, ?, ?)
|
331 |
-
''', (user_id, description, datetime.now(), image_path))
|
332 |
-
self.db.conn.commit()
|
333 |
-
|
334 |
-
async def generate_diagram(self, text: str, style: str, strategy: str) -> Tuple[Optional[Image.Image], str]:
|
335 |
-
try:
|
336 |
-
components = await self.extract_components(text)
|
337 |
-
diagram = self.strategies[strategy].create_diagram(components, self.style_configs[style])
|
338 |
-
return diagram, "Diagram generated successfully!"
|
339 |
except Exception as e:
|
340 |
-
|
341 |
-
return None, f"Error: {str(e)}"
|
342 |
|
343 |
-
# FastAPI Integration
|
344 |
-
app = FastAPI()
|
345 |
-
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
346 |
-
|
347 |
-
class DiagramRequest(BaseModel):
|
348 |
-
text: str
|
349 |
-
style: str = "network"
|
350 |
-
strategy: str = "network"
|
351 |
-
|
352 |
-
# Initialize the generator
|
353 |
-
generator = AdvancedDiagramGenerator()
|
354 |
-
|
355 |
-
# Gradio Interface
|
356 |
def create_gradio_interface():
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
iface = gr.Interface(
|
361 |
-
fn=
|
362 |
inputs=[
|
363 |
gr.Textbox(
|
364 |
label="Enter your diagram description",
|
365 |
-
placeholder="e.g., 'Create a
|
366 |
lines=3
|
367 |
),
|
368 |
gr.Dropdown(
|
369 |
-
choices=list(generator.
|
370 |
label="Diagram Style",
|
371 |
-
value="
|
372 |
-
),
|
373 |
-
gr.Dropdown(
|
374 |
-
choices=list(generator.strategies.keys()),
|
375 |
-
label="Visualization Strategy",
|
376 |
-
value="network"
|
377 |
)
|
378 |
],
|
379 |
outputs=[
|
380 |
gr.Image(label="Generated Diagram", type="pil"),
|
381 |
gr.Textbox(label="Status")
|
382 |
],
|
383 |
-
title="
|
384 |
description="""
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
- Database storage
|
389 |
-
- Multiple output formats
|
390 |
-
- Custom styling options
|
391 |
-
""",
|
392 |
-
theme=gr.themes.Glass()
|
393 |
)
|
394 |
return iface
|
395 |
|
396 |
if __name__ == "__main__":
|
397 |
iface = create_gradio_interface()
|
398 |
-
iface.launch(
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
4 |
import networkx as nx
|
5 |
import matplotlib.pyplot as plt
|
6 |
import numpy as np
|
7 |
from PIL import Image
|
8 |
import io
|
9 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
10 |
+
from scipy.spatial import distance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
class DiagramGenerator:
|
13 |
+
def __init__(self):
|
14 |
+
# Initialize device
|
15 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Load model
|
18 |
+
self.model_name = "t5-small"
|
19 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
20 |
+
self.model = T5ForConditionalGeneration.from_pretrained(self.model_name).to(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Initialize vectorizer
|
23 |
+
self.vectorizer = TfidfVectorizer(stop_words='english')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Style configurations
|
26 |
+
self.styles = {
|
27 |
+
"flowchart": {
|
28 |
+
"node_color": "lightblue",
|
29 |
+
"edge_color": "gray",
|
30 |
+
"node_size": 3000
|
31 |
+
},
|
32 |
+
"mindmap": {
|
33 |
+
"node_color": "lightgreen",
|
34 |
+
"edge_color": "darkgreen",
|
35 |
+
"node_size": 2500
|
36 |
+
},
|
37 |
+
"sequence": {
|
38 |
+
"node_color": "lightyellow",
|
39 |
+
"edge_color": "orange",
|
40 |
+
"node_size": 3500
|
41 |
+
},
|
42 |
+
"kga": {
|
43 |
+
"node_color": "lightcoral",
|
44 |
+
"edge_color": "darkred",
|
45 |
+
"node_size": 3000
|
46 |
+
}
|
47 |
+
}
|
48 |
|
49 |
+
def extract_components(self, text: str) -> list:
|
50 |
+
"""Extract components from text using T5 model."""
|
51 |
+
inputs = self.tokenizer(
|
52 |
+
text,
|
53 |
+
max_length=512,
|
54 |
+
truncation=True,
|
55 |
+
return_tensors="pt"
|
56 |
+
).to(self.device)
|
57 |
|
58 |
+
outputs = self.model.generate(
|
59 |
+
inputs['input_ids'],
|
60 |
+
num_beams=4,
|
61 |
+
max_length=512
|
|
|
|
|
|
|
|
|
|
|
62 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
decoded_output = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
65 |
+
return [comp.strip() for comp in decoded_output.split(",")]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
def create_diagram(self, text: str, style: str = "flowchart"):
|
68 |
+
"""Create diagram from text with specified style."""
|
69 |
try:
|
70 |
+
# Extract components
|
71 |
+
components = self.extract_components(text)
|
72 |
+
if not components:
|
73 |
+
return None, "No components extracted from text."
|
74 |
+
|
75 |
+
# Create figure
|
76 |
+
plt.figure(figsize=(12, 8))
|
77 |
+
G = nx.DiGraph()
|
78 |
+
|
79 |
+
if style == "kga":
|
80 |
+
# Create KGA diagram
|
81 |
+
tfidf_matrix = self.vectorizer.fit_transform(components)
|
82 |
+
similarity_matrix = 1 - distance.squareform(
|
83 |
+
distance.pdist(tfidf_matrix.toarray(), metric='cosine')
|
84 |
+
)
|
85 |
+
|
86 |
+
# Add edges based on similarity
|
87 |
+
for i in range(len(components)):
|
88 |
+
for j in range(i + 1, len(components)):
|
89 |
+
if similarity_matrix[i][j] > 0.5:
|
90 |
+
G.add_edge(components[i], components[j])
|
91 |
+
G.add_edge(components[j], components[i])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
else:
|
93 |
+
# Create sequential diagram
|
94 |
+
for i in range(len(components)-1):
|
95 |
+
G.add_edge(components[i], components[i+1])
|
96 |
|
97 |
+
# Draw diagram
|
98 |
+
pos = nx.spring_layout(G)
|
99 |
+
style_config = self.styles[style]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
nx.draw_networkx_nodes(
|
102 |
+
G, pos,
|
103 |
+
node_color=style_config['node_color'],
|
104 |
+
node_size=style_config['node_size']
|
105 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
nx.draw_networkx_edges(
|
108 |
+
G, pos,
|
109 |
+
edge_color=style_config['edge_color'],
|
110 |
+
arrows=True if style != "kga" else False
|
111 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
nx.draw_networkx_labels(G, pos)
|
114 |
+
plt.title(f"{style.capitalize()} Diagram")
|
115 |
+
plt.axis('off')
|
116 |
+
|
117 |
+
# Save to buffer
|
118 |
+
buf = io.BytesIO()
|
119 |
+
plt.savefig(buf, format='png', bbox_inches='tight', dpi=100)
|
120 |
+
plt.close()
|
121 |
+
buf.seek(0)
|
122 |
|
123 |
+
return Image.open(buf), "Diagram generated successfully!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
except Exception as e:
|
126 |
+
return None, f"Error generating diagram: {str(e)}"
|
|
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
def create_gradio_interface():
|
129 |
+
generator = DiagramGenerator()
|
130 |
+
|
|
|
131 |
iface = gr.Interface(
|
132 |
+
fn=generator.create_diagram,
|
133 |
inputs=[
|
134 |
gr.Textbox(
|
135 |
label="Enter your diagram description",
|
136 |
+
placeholder="e.g., 'Create a knowledge graph for artificial intelligence concepts'",
|
137 |
lines=3
|
138 |
),
|
139 |
gr.Dropdown(
|
140 |
+
choices=list(generator.styles.keys()),
|
141 |
label="Diagram Style",
|
142 |
+
value="flowchart"
|
|
|
|
|
|
|
|
|
|
|
143 |
)
|
144 |
],
|
145 |
outputs=[
|
146 |
gr.Image(label="Generated Diagram", type="pil"),
|
147 |
gr.Textbox(label="Status")
|
148 |
],
|
149 |
+
title="AI-Powered Diagram Generator",
|
150 |
description="""
|
151 |
+
Create various types of diagrams from text descriptions.
|
152 |
+
Supports flowcharts, mindmaps, sequence diagrams, and knowledge graphs.
|
153 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
154 |
)
|
155 |
return iface
|
156 |
|
157 |
if __name__ == "__main__":
|
158 |
iface = create_gradio_interface()
|
159 |
+
iface.launch()
|