Anupam251272's picture
Update app.py
ea2329d verified
import torch
import torchvision
import gradio as gr
import numpy as np
import pandas as pd
from PIL import Image
import torch.nn as nn
from pathlib import Path
import cv2
from torchvision import transforms
from efficientnet_pytorch import EfficientNet
import logging
import warnings
from sklearn.preprocessing import StandardScaler
from typing import Optional, Dict, Any, Tuple
import json
import os
from datetime import datetime
import albumentations as A
from transformers import MarianMTModel, MarianTokenizer
import matplotlib.pyplot as plt
import seaborn as sns
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
warnings.filterwarnings('ignore')
# Set up logging with more detailed configuration
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('skin_diagnostic.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
class ImageValidator:
"""Class for image validation and quality checking"""
@staticmethod
def validate_image(image: np.ndarray) -> Tuple[bool, str]:
"""
Validate image quality and characteristics
Returns: (is_valid, message)
"""
try:
# Check image dimensions
if image.shape[0] < 224 or image.shape[1] < 224:
return False, "Image resolution too low. Minimum 224x224 required."
# Check if image is too dark or too bright
brightness = np.mean(image)
if brightness < 30:
return False, "Image too dark. Please capture in better lighting."
if brightness > 240:
return False, "Image too bright. Please reduce exposure."
# Check for blur
laplacian_var = cv2.Laplacian(cv2.cvtColor(image, cv2.COLOR_RGB2GRAY), cv2.CV_64F).var()
if laplacian_var < 100:
return False, "Image is too blurry. Please provide a clearer image."
# Check for color consistency
color_std = np.std(image, axis=(0,1))
if np.mean(color_std) < 20:
return False, "Image lacks color variation. Please ensure proper lighting."
return True, "Image validation successful"
except Exception as e:
logger.error(f"Image validation error: {str(e)}")
return False, "Error during image validation"
class AdvancedImageAnalysis:
"""Class for sophisticated image analysis techniques"""
def __init__(self):
self.scaler = StandardScaler()
def analyze_lesion(self, image: np.ndarray) -> Dict[str, float]:
"""
Perform advanced analysis of skin lesion characteristics
"""
try:
# Convert to different color spaces
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
lab = cv2.cvtColor(image, cv2.COLOR_RGB2LAB)
# Extract features
features = {
'asymmetry': self._calculate_asymmetry(image),
'border_irregularity': self._analyze_border(image),
'color_variation': self._analyze_color(hsv),
'diameter': self._estimate_diameter(image),
'texture': self._analyze_texture(lab),
'vascularity': self._analyze_vascularity(image),
}
return features
except Exception as e:
logger.error(f"Error in lesion analysis: {str(e)}")
return {}
def _calculate_asymmetry(self, image: np.ndarray) -> float:
"""Calculate asymmetry score of the lesion"""
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# Find contours
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return 0.0
# Get largest contour
largest_contour = max(contours, key=cv2.contourArea)
# Calculate moments
moments = cv2.moments(largest_contour)
if moments['m00'] == 0:
return 0.0
# Calculate center of mass
cx = moments['m10'] / moments['m00']
cy = moments['m01'] / moments['m00']
return float(cv2.matchShapes(largest_contour, cv2.flip(largest_contour, 1), 1, 0.0))
def _analyze_border(self, image: np.ndarray) -> float:
"""Analyze border irregularity"""
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return 0.0
largest_contour = max(contours, key=cv2.contourArea)
perimeter = cv2.arcLength(largest_contour, True)
area = cv2.contourArea(largest_contour)
if area == 0:
return 0.0
circularity = 4 * np.pi * area / (perimeter * perimeter)
return 1 - circularity
def _analyze_color(self, hsv: np.ndarray) -> float:
"""Analyze color variation in the lesion"""
return float(np.std(hsv[:,:,0]))
def _estimate_diameter(self, image: np.ndarray) -> float:
"""Estimate lesion diameter"""
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return 0.0
largest_contour = max(contours, key=cv2.contourArea)
_, _, w, h = cv2.boundingRect(largest_contour)
return max(w, h)
def _analyze_texture(self, lab: np.ndarray) -> float:
"""Analyze texture patterns"""
gray = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)
gray = cv2.cvtColor(gray, cv2.COLOR_BGR2GRAY)
# Calculate GLCM features
glcm = cv2.calcHist([gray], [0], None, [16], [0,256])
glcm = glcm.flatten() / glcm.sum()
# Calculate entropy
entropy = -np.sum(glcm * np.log2(glcm + 1e-7))
return float(entropy)
def _analyze_vascularity(self, image: np.ndarray) -> float:
"""Analyze vascular patterns"""
# Extract red channel
red_channel = image[:,:,0]
return float(np.percentile(red_channel, 95) - np.percentile(red_channel, 5))
class SkinDiagnosticSystem:
def __init__(self, model_path: Optional[str] = None):
# Define classes and risk levels
self.classes = [
'Melanocytic nevi',
'Melanoma',
'Benign keratosis-like lesions',
'Basal cell carcinoma',
'Actinic keratoses',
'Vascular lesions',
'Dermatofibroma'
]
self.risk_levels = {
'Melanoma': 'High',
'Basal cell carcinoma': 'High',
'Actinic keratoses': 'Moderate',
'Vascular lesions': 'Low to Moderate',
'Benign keratosis-like lesions': 'Low',
'Melanocytic nevi': 'Low',
'Dermatofibroma': 'Low'
}
# Initialize components
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.image_validator = ImageValidator()
self.image_analyzer = AdvancedImageAnalysis()
# Load model
self.model = self._load_model(model_path)
self.transform = self._get_transforms()
# Load medical context
self.medical_context = self._load_medical_context()
def _load_model(self, model_path: Optional[str]) -> nn.Module:
"""Load model with checkpointing support"""
try:
model = EfficientNet.from_pretrained('efficientnet-b4')
num_ftrs = model._fc.in_features
model._fc = nn.Sequential(
nn.Linear(num_ftrs, 512),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(512, len(self.classes))
)
if model_path and os.path.exists(model_path):
logger.info(f"Loading model checkpoint from {model_path}")
checkpoint = torch.load(model_path, map_location=self.device)
model.load_state_dict(checkpoint['model_state_dict'])
logger.info(f"Model checkpoint loaded. Epoch: {checkpoint['epoch']}")
model = model.to(self.device)
model.eval()
return model
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
def _get_transforms(self) -> transforms.Compose:
"""Get image transformations"""
return transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
def _load_medical_context(self) -> Dict[str, Any]:
"""Load medical context and warnings"""
return {
'Melanoma': {
'description': 'A serious form of skin cancer that begins in melanocytes.',
'warning': 'URGENT: Immediate medical attention required. This is a potentially serious condition.',
'risk_factors': [
'UV exposure',
'Fair skin',
'Family history',
'Multiple moles'
],
'follow_up': 'Immediate dermatologist consultation required'
},
'Basal cell carcinoma': {
'description': 'The most common type of skin cancer.',
'warning': 'Medical attention required. While typically slow-growing, treatment is necessary.',
'risk_factors': [
'Sun exposure',
'Fair skin',
'Age over 50',
'Prior radiation therapy'
],
'follow_up': 'Schedule dermatologist appointment within 1-2 weeks'
},
# Add entries for other conditions...
}
def save_checkpoint(self, epoch: int, optimizer: torch.optim.Optimizer, loss: float) -> None:
"""Save model checkpoint"""
checkpoint_dir = Path('checkpoints')
checkpoint_dir.mkdir(exist_ok=True)
checkpoint_path = checkpoint_dir / f'model_checkpoint_epoch_{epoch}.pth'
torch.save({
'epoch': epoch,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
}, checkpoint_path)
logger.info(f"Checkpoint saved: {checkpoint_path}")
def analyze_image(self, image: np.ndarray) -> Dict[str, Any]:
"""Main analysis function with validation and advanced analysis"""
try:
# Validate image
is_valid, validation_message = self.image_validator.validate_image(image)
if not is_valid:
return {'error': validation_message}
# Convert to PIL Image
pil_image = Image.fromarray(image)
# Prepare image for model
img_tensor = self.transform(pil_image).unsqueeze(0).to(self.device)
# Get model predictions
with torch.no_grad():
outputs = self.model(img_tensor)
probs = torch.nn.functional.softmax(outputs, dim=1)
# Get predicted class and probability
pred_prob, pred_idx = torch.max(probs, 1)
condition = self.classes[pred_idx]
confidence = pred_prob.item() * 100
# Perform advanced image analysis
analysis_results = self.image_analyzer.analyze_lesion(image)
# Get medical context
medical_info = self.medical_context.get(condition, {})
# Prepare response
response = {
'condition': condition,
'confidence': confidence,
'risk_level': self.risk_levels.get(condition, 'Unknown'),
'analysis': analysis_results,
'medical_context': medical_info,
'warning': medical_info.get('warning', ''),
'timestamp': datetime.now().isoformat()
}
# Log analysis results
logger.info(f"Analysis completed for condition: {condition} (confidence: {confidence:.2f}%)")
return response
except Exception as e:
logger.error(f"Error in image analysis: {str(e)}")
return {'error': 'Analysis failed. Please try again.'}
def create_gradio_interface():
system = SkinDiagnosticSystem()
# Load translation models
translation_models = {
'hi': ('Helsinki-NLP/opus-mt-en-hi', MarianTokenizer, MarianMTModel),
'ta': ('Helsinki-NLP/opus-mt-en-ta', MarianTokenizer, MarianMTModel),
'te': ('Helsinki-NLP/opus-mt-en-te', MarianTokenizer, MarianMTModel),
'bn': ('Helsinki-NLP/opus-mt-en-bn', MarianTokenizer, MarianMTModel),
'mr': ('Helsinki-NLP/opus-mt-en-mr', MarianTokenizer, MarianMTModel),
'pa': ('Helsinki-NLP/opus-mt-en-pa', MarianTokenizer, MarianMTModel),
'gu': ('Helsinki-NLP/opus-mt-en-gu', MarianTokenizer, MarianMTModel),
'kn': ('Helsinki-NLP/opus-mt-en-kn', MarianTokenizer, MarianMTModel),
'ml': ('Helsinki-NLP/opus-mt-en-ml', MarianTokenizer, MarianMTModel),
}
def process_image(image, language, email=None):
result = system.analyze_image(image)
if 'error' in result:
return f"Error: {result['error']}"
# Format detailed output
output = "ANALYSIS RESULTS\n" + "="*50 + "\n\n"
# Condition and Risk Level
output += f"Detected Condition: {result['condition']}\n"
output += f"Confidence: {result['confidence']:.2f}%\n"
output += f"Risk Level: {result['risk_level']}\n\n"
# Warning (if any)
if result['warning']:
output += f"⚠️ WARNING ⚠️\n{result['warning']}\n\n"
# Detailed Analysis
output += "Detailed Analysis:\n" + "-"*20 + "\n"
for metric, value in result['analysis'].items():
output += f"{metric}: {value:.2f}\n"
# Medical Context
if 'medical_context' in result and result['medical_context']:
output += "\nMedical Context:\n" + "-"*20 + "\n"
context = result['medical_context']
output += f"Description: {context.get('description', 'N/A')}\n"
if 'risk_factors' in context:
output += "\nRisk Factors:\n"
for factor in context['risk_factors']:
output += f"- {factor}\n"
if 'follow_up' in context:
output += f"\nRecommended Follow-up:\n{context['follow_up']}\n"
# Timestamp
output += f"\nAnalysis Timestamp: {result['timestamp']}\n"
# Disclaimer
output += "\n" + "="*50 + "\n"
output += "DISCLAIMER: This analysis is for informational purposes only and should not replace professional medical advice. Please consult a qualified healthcare provider for proper diagnosis and treatment."
# Translate output to the selected language
if language != 'en':
model_name, tokenizer_class, model_class = translation_models[language]
tokenizer = tokenizer_class.from_pretrained(model_name)
model = model_class.from_pretrained(model_name)
inputs = tokenizer(output, return_tensors="pt", padding=True, truncation=True)
translated = model.generate(**inputs)
translated_output = tokenizer.decode(translated[0], skip_special_tokens=True)
else:
translated_output = output
# Send email if provided
if email:
send_email(email, translated_output)
return translated_output
def send_email(to_email, message):
from_email = "[email protected]"
password = "your_password"
msg = MIMEMultipart()
msg['From'] = from_email
msg['To'] = to_email
msg['Subject'] = "Skin Lesion Analysis Results"
msg.attach(MIMEText(message, 'plain'))
server = smtplib.SMTP('smtp.example.com', 587)
server.starttls()
server.login(from_email, password)
server.sendmail(from_email, to_email, msg.as_string())
server.quit()
# Create enhanced Gradio interface with additional features
iface = gr.Interface(
fn=process_image,
inputs=[
gr.Image(type="numpy", label="Upload Skin Image"),
gr.Dropdown(choices=["en", "hi", "ta", "te", "bn", "mr", "pa", "gu", "kn", "ml"], label="Select Language"),
gr.Textbox(label="Email (optional)", placeholder="Enter your email to receive results")
],
outputs=[
gr.Textbox(label="Analysis Results", lines=20)
],
title="Advanced Skin Lesion Analysis System",
description="""
This system analyzes skin lesions using advanced computer vision and deep learning techniques.
Key Features:
- Lesion classification based on the HAM10000 dataset
- Advanced image quality validation
- Detailed analysis of lesion characteristics
- Medical context and risk assessment
- Option to receive results via email
Important: This tool is for educational purposes only and should not replace professional medical diagnosis.
""",
examples=[
["example_melanoma.jpg", "en", ""],
["example_nevus.jpg", "hi", ""],
["example_bcc.jpg", "ta", ""]
],
analytics_enabled=False,
)
return iface
iface = create_gradio_interface()
iface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
)