File size: 7,642 Bytes
8a4020d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import gradio as gr
import yfinance as yf
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import plotly.graph_objects as go
from transformers import pipeline
import torch
from textblob import TextBlob
import nltk
from ta.trend import SMAIndicator, MACD
from ta.momentum import RSIIndicator
# Download NLTK data
try:
nltk.download('punkt', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)
except Exception as e:
print(f"NLTK download warning (not critical): {e}")
class StockAnalysisApp:
def __init__(self):
try:
self.sentiment_analyzer = pipeline("sentiment-analysis",
device=0 if torch.cuda.is_available() else -1)
except:
self.sentiment_analyzer = pipeline("sentiment-analysis", device=-1)
def get_stock_data(self, ticker, period='1y'):
"""Fetch stock data"""
try:
stock = yf.Ticker(ticker)
data = stock.history(period=period)
return data, stock.info
except Exception as e:
return None, None
def create_chart(self, data, ticker):
"""Create interactive stock chart"""
try:
fig = go.Figure()
# Candlestick chart
fig.add_trace(go.Candlestick(
x=data.index,
open=data['Open'],
high=data['High'],
low=data['Low'],
close=data['Close'],
name=ticker
))
# Add SMAs
sma20 = SMAIndicator(close=data['Close'], window=20).sma_indicator()
sma50 = SMAIndicator(close=data['Close'], window=50).sma_indicator()
fig.add_trace(go.Scatter(x=data.index, y=sma20,
name='SMA20',
line=dict(color='orange')))
fig.add_trace(go.Scatter(x=data.index, y=sma50,
name='SMA50',
line=dict(color='blue')))
fig.update_layout(
title=f'{ticker} Stock Price',
yaxis_title='Price',
template='plotly_dark',
xaxis_rangeslider_visible=False
)
return fig
except Exception as e:
return None
def get_technical_analysis(self, data):
"""Generate technical analysis"""
try:
current_price = data['Close'].iloc[-1]
prev_price = data['Close'].iloc[-2]
price_change = ((current_price - prev_price) / prev_price) * 100
# Calculate indicators
rsi = RSIIndicator(close=data['Close']).rsi().iloc[-1]
macd = MACD(close=data['Close'])
macd_line = macd.macd().iloc[-1]
signal_line = macd.macd_signal().iloc[-1]
analysis = f"""
Technical Analysis Summary:
Current Price: ${current_price:.2f}
Daily Change: {price_change:.2f}%
Technical Indicators:
- RSI (14): {rsi:.2f} ({'Overbought' if rsi > 70 else 'Oversold' if rsi < 30 else 'Neutral'})
- MACD: {macd_line:.2f}
- Signal Line: {signal_line:.2f}
- MACD Status: {'Bullish' if macd_line > signal_line else 'Bearish'}
Volume Analysis:
- Current Volume: {int(data['Volume'].iloc[-1]):,}
- Avg Volume (20D): {int(data['Volume'].rolling(20).mean().iloc[-1]):,}
"""
return analysis
except Exception as e:
return f"Error in technical analysis: {str(e)}"
def process_query(self, message, history):
"""Process chat queries"""
try:
message = message.strip()
# Extract potential stock ticker
words = message.split()
ticker = None
for word in words:
if word.isupper() and 1 < len(word) <= 5:
ticker = word
break
if ticker:
data, info = self.get_stock_data(ticker)
if data is not None:
analysis = self.get_technical_analysis(data)
return analysis
# General queries
message_lower = message.lower()
if "help" in message_lower:
return """I can help you with:
1. Stock Analysis (e.g., "Analyze AAPL")
2. Technical Indicators (e.g., "What's RSI?")
3. Market Information (e.g., "Tell me about TSLA")
You can also use the interface above to:
- View stock charts
- Get detailed technical analysis
- See price predictions
- Track multiple stocks"""
return "Please provide a stock ticker or ask for help to see what I can do."
except Exception as e:
return f"Error processing query: {str(e)}"
def create_ui():
"""Create the complete Gradio interface"""
app = StockAnalysisApp()
def analyze_stock(ticker, period):
try:
data, info = app.get_stock_data(ticker, period)
if data is None:
return None, "Error fetching stock data"
chart = app.create_chart(data, ticker)
analysis = app.get_technical_analysis(data)
return chart, analysis
except Exception as e:
return None, f"Error: {str(e)}"
# Create the interface
with gr.Blocks(theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# Stock Analysis Dashboard
Enter a stock ticker and select analysis period to get started.
""")
with gr.Row():
with gr.Column(scale=1):
ticker_input = gr.Textbox(
label="Stock Ticker",
placeholder="e.g., AAPL",
value="AAPL"
)
period_input = gr.Dropdown(
choices=["1mo", "3mo", "6mo", "1y", "2y", "5y"],
value="1y",
label="Analysis Period"
)
analyze_button = gr.Button("Analyze Stock")
with gr.Column(scale=2):
with gr.Tab("Chart"):
chart_output = gr.Plot()
with gr.Tab("Analysis"):
analysis_output = gr.Textbox(
label="Technical Analysis",
lines=10
)
gr.Markdown("---")
with gr.Row():
with gr.Column():
gr.Markdown("### Chat with AI Assistant")
chatbot = gr.ChatInterface(
app.process_query,
examples=[
"Analyze AAPL",
"What's the trend for TSLA?",
"Help"
]
)
# Set up event handlers
analyze_button.click(
analyze_stock,
inputs=[ticker_input, period_input],
outputs=[chart_output, analysis_output]
)
return interface
# Launch the application
if __name__ == "__main__":
demo = create_ui()
demo.launch(share=True) |