File size: 6,743 Bytes
4dca928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45b0597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dca928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45b0597
4dca928
 
 
 
 
 
45b0597
4dca928
 
 
 
 
 
45b0597
4dca928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45b0597
4dca928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45b0597
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import pandas as pd
import numpy as np
import gradio as gr
import sqlite3
import os
from sklearn.ensemble import IsolationForest
from sklearn.preprocessing import StandardScaler
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)

class DataQualitySystem:
    def __init__(self):
        self.db_name = 'data_quality.db'
        self.setup_database()
        
    def setup_database(self):
        conn = sqlite3.connect(self.db_name)
        cursor = conn.cursor()

        cursor.execute('''
            CREATE TABLE IF NOT EXISTS quality_metrics 
            (timestamp TEXT, metric TEXT, value REAL)
        ''')

        cursor.execute('''
            CREATE TABLE IF NOT EXISTS user_feedback 
            (timestamp TEXT, row_index INTEGER, feedback TEXT)  
        ''')

        conn.commit()
        conn.close()

    def load_and_process_data(self, file):
        try:
            file_path = file.name  # This should work for both CSV and XLSX files
            if file_path.endswith('.csv'):
                df = pd.read_csv(file_path)
            elif file_path.endswith('.xlsx'):
                df = pd.read_excel(file_path)
            else:
                return None, "Unsupported file format. Please use CSV or XLSX."
            
            # Initial data checks
            metrics = self.initial_data_checks(df)
            
            # Anomaly detection
            df_with_anomalies = self.detect_anomalies(df)
            
            # Store quality metrics
            self.store_quality_metrics(metrics)
            
            return df_with_anomalies, "Data processed successfully!"
        except Exception as e:
            logging.error(f"Error processing file: {str(e)}")
            return None, f"Error processing file: {str(e)}"

    def initial_data_checks(self, df):
        metrics = {
            'total_rows': len(df),
            'null_values': df.isnull().sum().sum(),
            'duplicate_entries': df.duplicated().sum(),
        }
        
        # Calculate standard deviation for numeric columns
        numeric_cols = df.select_dtypes(include=[np.number]).columns
        for col in numeric_cols:
            metrics[f'std_dev_{col}'] = df[col].std()
            
        return metrics

    def detect_anomalies(self, df):
        numeric_df = df.select_dtypes(include=[np.number])
        if len(numeric_df.columns) > 0:
            scaler = StandardScaler()
            scaled_data = scaler.fit_transform(numeric_df)
            model = IsolationForest(contamination=0.1, random_state=42)
            df['anomaly'] = model.fit_predict(scaled_data)
            df['anomaly_score'] = model.score_samples(scaled_data)
        return df

    def store_quality_metrics(self, metrics):
        conn = sqlite3.connect(self.db_name)
        cursor = conn.cursor()
        timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
        
        for metric, value in metrics.items():
            cursor.execute(
                'INSERT INTO quality_metrics (timestamp, metric, value) VALUES (?, ?, ?)',
                (timestamp, metric, float(value))
            )
        
        conn.commit()
        conn.close()

    def save_feedback(self, index, feedback):
        conn = sqlite3.connect(self.db_name)
        cursor = conn.cursor()
        timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
        
        cursor.execute(
            'INSERT INTO user_feedback (timestamp, row_index, feedback) VALUES (?, ?, ?)',
            (timestamp, index, feedback)
        )
        
        conn.commit()
        conn.close()
        return "Feedback saved successfully!"

    def generate_report(self, df):
        if df is None:
            return None, None, None
            
        # Create summary statistics plot
        numeric_cols = df.select_dtypes(include=[np.number]).columns
        summary_stats = df[numeric_cols].describe()
        summary_fig = go.Figure(data=[
            go.Table(
                header=dict(values=['Statistic'] + list(summary_stats.columns)),
                cells=dict(values=[summary_stats.index] + [summary_stats[col].tolist() for col in summary_stats.columns])
            )
        ])
        
        # Create anomaly distribution plot
        if 'anomaly_score' in df.columns:
            anomaly_fig = px.histogram(df, x='anomaly_score', 
                                       title='Distribution of Anomaly Scores')
        else:
            anomaly_fig = None
            
        # Create missing values plot
        missing_data = df.isnull().sum()
        missing_fig = px.bar(x=missing_data.index, y=missing_data.values,
                             title='Missing Values by Column')
            
        return summary_fig, anomaly_fig, missing_fig

def create_gradio_interface():
    system = DataQualitySystem()
    
    def process_file(file):
        df, message = system.load_and_process_data(file)
        if df is not None:
            summary_fig, anomaly_fig, missing_fig = system.generate_report(df)
            return message, summary_fig, anomaly_fig, missing_fig
        return message, None, None, None
    
    def submit_feedback(index, feedback):
        return system.save_feedback(index, feedback)
    
    # Create the interface
    with gr.Blocks() as app:
        gr.Markdown("# Data Quality Assurance System")
        
        with gr.Row():
            file_input = gr.File(label="Upload Data File (CSV or XLSX)")
        
        with gr.Row():
            process_btn = gr.Button("Process Data")
            
        output_message = gr.Textbox(label="Status")
        
        with gr.Tabs():
            with gr.TabItem("Summary Statistics"):
                summary_plot = gr.Plot()
            with gr.TabItem("Anomaly Distribution"):
                anomaly_plot = gr.Plot()
            with gr.TabItem("Missing Values"):
                missing_plot = gr.Plot()
                
        with gr.Row():
            feedback_index = gr.Number(label="Row Index")
            feedback_text = gr.Textbox(label="Feedback")
            feedback_btn = gr.Button("Submit Feedback")
            
        # Set up event handlers
        process_btn.click(
            process_file,
            inputs=[file_input],
            outputs=[output_message, summary_plot, anomaly_plot, missing_plot]
        )
        
        feedback_btn.click(
            submit_feedback,
            inputs=[feedback_index, feedback_text],
            outputs=[output_message]
        )
    
    return app

# Launch the interface
if __name__ == "__main__":
    app = create_gradio_interface()
    app.launch()