Update app.py
Browse files
app.py
CHANGED
@@ -1,83 +1,46 @@
|
|
1 |
-
import numpy as np
|
2 |
import pandas as pd
|
3 |
import tensorflow as tf
|
4 |
import gradio as gr
|
5 |
from sklearn.preprocessing import StandardScaler
|
6 |
import json
|
7 |
|
8 |
-
#
|
9 |
FOOD_DATABASE = {
|
10 |
'foods': {
|
11 |
'high_protein': {
|
12 |
-
'
|
13 |
'Chicken Breast': {'protein': 31, 'carbs': 0, 'fats': 3.6, 'calories': 165, 'benefits': ['lean protein', 'B vitamins']},
|
14 |
-
'
|
15 |
},
|
16 |
'low_glycemic': {
|
17 |
-
'
|
18 |
'Sweet Potato': {'protein': 2, 'carbs': 27, 'fats': 0, 'calories': 103, 'benefits': ['vitamin A', 'fiber']},
|
19 |
'Greek Yogurt': {'protein': 10, 'carbs': 4, 'fats': 0, 'calories': 59, 'benefits': ['probiotics', 'calcium']}
|
20 |
},
|
21 |
'anti_inflammatory': {
|
22 |
'Spinach': {'protein': 3, 'carbs': 3, 'fats': 0, 'calories': 23, 'benefits': ['antioxidants', 'iron']},
|
23 |
-
'
|
24 |
-
'
|
25 |
}
|
26 |
},
|
27 |
'meal_plans': {
|
28 |
'diabetes_friendly': {
|
29 |
-
'breakfast': ['Greek Yogurt with
|
30 |
-
'lunch': ['Grilled Chicken Salad', 'Lentil Soup', '
|
31 |
-
'dinner': ['
|
32 |
-
'snacks': ['Almonds', 'Hummus with Vegetables', '
|
33 |
},
|
34 |
'heart_healthy': {
|
35 |
-
'breakfast': ['Oatmeal with
|
36 |
'lunch': ['Mediterranean Salad', 'Grilled Fish Tacos', 'Vegetable Soup'],
|
37 |
-
'dinner': ['Grilled Salmon', 'Lean Chicken Breast', '
|
38 |
'snacks': ['Walnuts', 'Fresh Fruit', 'Greek Yogurt']
|
39 |
}
|
40 |
}
|
41 |
}
|
42 |
|
43 |
-
#
|
44 |
-
|
45 |
-
'FTO': {
|
46 |
-
'Risk Variant': {
|
47 |
-
'implications': 'Increased risk of obesity and diabetes',
|
48 |
-
'dietary_recommendations': [
|
49 |
-
'Focus on high-protein meals to increase satiety',
|
50 |
-
'Choose low glycemic index foods',
|
51 |
-
'Increase fiber intake',
|
52 |
-
'Regular meal timing'
|
53 |
-
]
|
54 |
-
}
|
55 |
-
},
|
56 |
-
'ADRB3': {
|
57 |
-
'Risk Variant': {
|
58 |
-
'implications': 'Reduced metabolic rate',
|
59 |
-
'dietary_recommendations': [
|
60 |
-
'Include thermogenic foods',
|
61 |
-
'Higher protein intake',
|
62 |
-
'Controlled portion sizes',
|
63 |
-
'Green tea consumption'
|
64 |
-
]
|
65 |
-
}
|
66 |
-
},
|
67 |
-
'PPARG': {
|
68 |
-
'Risk Variant': {
|
69 |
-
'implications': 'Reduced insulin sensitivity',
|
70 |
-
'dietary_recommendations': [
|
71 |
-
'Choose low glycemic index foods',
|
72 |
-
'Include omega-3 rich foods',
|
73 |
-
'Increase fiber intake',
|
74 |
-
'Include anti-inflammatory foods'
|
75 |
-
]
|
76 |
-
}
|
77 |
-
}
|
78 |
-
}
|
79 |
-
|
80 |
-
def generate_personalized_recommendations(genetic_data, health_metrics):
|
81 |
"""Generate personalized diet recommendations based on genetic and health data"""
|
82 |
|
83 |
recommendations = {
|
@@ -108,6 +71,14 @@ def generate_personalized_recommendations(genetic_data, health_metrics):
|
|
108 |
recommendations['meal_plan'] = FOOD_DATABASE['meal_plans']['heart_healthy']
|
109 |
recommendations['foods_to_focus'].extend(['Leafy greens', 'Berries', 'Whole grains'])
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
return recommendations
|
112 |
|
113 |
def format_recommendations(recommendations):
|
@@ -134,22 +105,10 @@ def format_recommendations(recommendations):
|
|
134 |
for option in options:
|
135 |
output += f"• {option}\n"
|
136 |
|
137 |
-
# Foods to Focus On
|
138 |
-
if recommendations['foods_to_focus']:
|
139 |
-
output += "\n✅ FOODS TO FOCUS ON:\n"
|
140 |
-
for food in recommendations['foods_to_focus']:
|
141 |
-
output += f"• {food}\n"
|
142 |
-
|
143 |
-
# Foods to Avoid
|
144 |
-
if recommendations['foods_to_avoid']:
|
145 |
-
output += "\n❌ FOODS TO AVOID:\n"
|
146 |
-
for food in recommendations['foods_to_avoid']:
|
147 |
-
output += f"• {food}\n"
|
148 |
-
|
149 |
return output
|
150 |
|
151 |
def predict_diet(fto_variant, adrb3_variant, pparg_variant, apob_variant,
|
152 |
-
blood_glucose, blood_pressure, bmi, age, activity_level):
|
153 |
|
154 |
# Process genetic data
|
155 |
genetic_data = {
|
@@ -175,7 +134,7 @@ def predict_diet(fto_variant, adrb3_variant, pparg_variant, apob_variant,
|
|
175 |
}
|
176 |
|
177 |
# Generate recommendations
|
178 |
-
recommendations = generate_personalized_recommendations(genetic_data, health_metrics)
|
179 |
|
180 |
# Format and return recommendations
|
181 |
return format_recommendations(recommendations)
|
@@ -192,13 +151,14 @@ iface = gr.Interface(
|
|
192 |
gr.Textbox(label="Blood Pressure (systolic/diastolic)", placeholder="120/80", value="120/80"),
|
193 |
gr.Number(label="BMI", value=25),
|
194 |
gr.Number(label="Age", value=30),
|
195 |
-
gr.Radio(["Sedentary", "Active"], label="Activity Level")
|
|
|
196 |
],
|
197 |
outputs="text",
|
198 |
-
title="
|
199 |
description="Get personalized dietary recommendations based on your genetic profile and health metrics.",
|
200 |
theme="huggingface"
|
201 |
)
|
202 |
|
203 |
# Launch the interface
|
204 |
-
iface.launch(share=True)
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import tensorflow as tf
|
3 |
import gradio as gr
|
4 |
from sklearn.preprocessing import StandardScaler
|
5 |
import json
|
6 |
|
7 |
+
# Indian food database with detailed nutrition information
|
8 |
FOOD_DATABASE = {
|
9 |
'foods': {
|
10 |
'high_protein': {
|
11 |
+
'Paneer': {'protein': 18, 'carbs': 5, 'fats': 20, 'calories': 265, 'benefits': ['calcium', 'high protein']},
|
12 |
'Chicken Breast': {'protein': 31, 'carbs': 0, 'fats': 3.6, 'calories': 165, 'benefits': ['lean protein', 'B vitamins']},
|
13 |
+
'Tofu': {'protein': 8, 'carbs': 1, 'fats': 5, 'calories': 70, 'benefits': ['protein', 'iron']}
|
14 |
},
|
15 |
'low_glycemic': {
|
16 |
+
'Brown Rice': {'protein': 3, 'carbs': 45, 'fats': 1, 'calories': 216, 'benefits': ['fiber', 'minerals']},
|
17 |
'Sweet Potato': {'protein': 2, 'carbs': 27, 'fats': 0, 'calories': 103, 'benefits': ['vitamin A', 'fiber']},
|
18 |
'Greek Yogurt': {'protein': 10, 'carbs': 4, 'fats': 0, 'calories': 59, 'benefits': ['probiotics', 'calcium']}
|
19 |
},
|
20 |
'anti_inflammatory': {
|
21 |
'Spinach': {'protein': 3, 'carbs': 3, 'fats': 0, 'calories': 23, 'benefits': ['antioxidants', 'iron']},
|
22 |
+
'Turmeric': {'protein': 0, 'carbs': 1, 'fats': 0, 'calories': 9, 'benefits': ['curcumin', 'anti-inflammatory']},
|
23 |
+
'Mangoes': {'protein': 0.8, 'carbs': 15, 'fats': 0.6, 'calories': 60, 'benefits': ['vitamin C', 'fiber']}
|
24 |
}
|
25 |
},
|
26 |
'meal_plans': {
|
27 |
'diabetes_friendly': {
|
28 |
+
'breakfast': ['Greek Yogurt with Mangoes', 'Quinoa Porridge', 'Vegetable Upma'],
|
29 |
+
'lunch': ['Grilled Chicken Salad', 'Lentil Soup', 'Palak Paneer'],
|
30 |
+
'dinner': ['Grilled Salmon', 'Vegetable Stir-fry', 'Masoor Dal'],
|
31 |
+
'snacks': ['Almonds', 'Hummus with Vegetables', 'Cucumber Salad']
|
32 |
},
|
33 |
'heart_healthy': {
|
34 |
+
'breakfast': ['Oatmeal with Mangoes', 'Whole Grain Toast with Avocado', 'Smoothie Bowl'],
|
35 |
'lunch': ['Mediterranean Salad', 'Grilled Fish Tacos', 'Vegetable Soup'],
|
36 |
+
'dinner': ['Grilled Salmon', 'Lean Chicken Breast', 'Vegetable Biryani'],
|
37 |
'snacks': ['Walnuts', 'Fresh Fruit', 'Greek Yogurt']
|
38 |
}
|
39 |
}
|
40 |
}
|
41 |
|
42 |
+
# Modify the genetic profile analysis function as per Indian dietary trends
|
43 |
+
def generate_personalized_recommendations(genetic_data, health_metrics, diet_type):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
"""Generate personalized diet recommendations based on genetic and health data"""
|
45 |
|
46 |
recommendations = {
|
|
|
71 |
recommendations['meal_plan'] = FOOD_DATABASE['meal_plans']['heart_healthy']
|
72 |
recommendations['foods_to_focus'].extend(['Leafy greens', 'Berries', 'Whole grains'])
|
73 |
|
74 |
+
# Adjust meal plan based on dietary preference (veg, non-veg, vegan)
|
75 |
+
if diet_type == "Vegetarian":
|
76 |
+
recommendations['meal_plan'] = {meal: [food for food in options if food != 'Chicken Breast' and food != 'Grilled Salmon']
|
77 |
+
for meal, options in recommendations['meal_plan'].items()}
|
78 |
+
elif diet_type == "Vegan":
|
79 |
+
recommendations['meal_plan'] = {meal: [food for food in options if 'Paneer' not in food and 'Chicken Breast' not in food and 'Grilled Salmon' not in food]
|
80 |
+
for meal, options in recommendations['meal_plan'].items()}
|
81 |
+
|
82 |
return recommendations
|
83 |
|
84 |
def format_recommendations(recommendations):
|
|
|
105 |
for option in options:
|
106 |
output += f"• {option}\n"
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
return output
|
109 |
|
110 |
def predict_diet(fto_variant, adrb3_variant, pparg_variant, apob_variant,
|
111 |
+
blood_glucose, blood_pressure, bmi, age, activity_level, diet_type):
|
112 |
|
113 |
# Process genetic data
|
114 |
genetic_data = {
|
|
|
134 |
}
|
135 |
|
136 |
# Generate recommendations
|
137 |
+
recommendations = generate_personalized_recommendations(genetic_data, health_metrics, diet_type)
|
138 |
|
139 |
# Format and return recommendations
|
140 |
return format_recommendations(recommendations)
|
|
|
151 |
gr.Textbox(label="Blood Pressure (systolic/diastolic)", placeholder="120/80", value="120/80"),
|
152 |
gr.Number(label="BMI", value=25),
|
153 |
gr.Number(label="Age", value=30),
|
154 |
+
gr.Radio(["Sedentary", "Active"], label="Activity Level"),
|
155 |
+
gr.Radio(["Vegetarian", "Non-Vegetarian", "Vegan"], label="Diet Preference")
|
156 |
],
|
157 |
outputs="text",
|
158 |
+
title="Indian Diet-Based Nutrigenomics Recommendation System",
|
159 |
description="Get personalized dietary recommendations based on your genetic profile and health metrics.",
|
160 |
theme="huggingface"
|
161 |
)
|
162 |
|
163 |
# Launch the interface
|
164 |
+
iface.launch(share=True)
|