Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import nltk
|
2 |
+
nltk.download('punkt')
|
3 |
+
|
4 |
+
# Third cell - Main implementation
|
5 |
+
import torch
|
6 |
+
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
|
7 |
+
from newspaper import Article
|
8 |
+
import gradio as gr
|
9 |
+
import warnings
|
10 |
+
warnings.filterwarnings('ignore')
|
11 |
+
|
12 |
+
# Check if GPU is available
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
print(f"Using device: {device}")
|
15 |
+
|
16 |
+
# Initialize model and tokenizer
|
17 |
+
model_name = "google/pegasus-large"
|
18 |
+
try:
|
19 |
+
tokenizer = PegasusTokenizer.from_pretrained(model_name)
|
20 |
+
model = PegasusForConditionalGeneration.from_pretrained(model_name)
|
21 |
+
model = model.to(device)
|
22 |
+
print("Model loaded successfully!")
|
23 |
+
except Exception as e:
|
24 |
+
print(f"Error loading model: {e}")
|
25 |
+
|
26 |
+
def fetch_article_text(url):
|
27 |
+
"""Fetch and extract text from a given URL"""
|
28 |
+
try:
|
29 |
+
article = Article(url)
|
30 |
+
article.download()
|
31 |
+
article.parse()
|
32 |
+
return article.text
|
33 |
+
except Exception as e:
|
34 |
+
return f"Error fetching article: {e}"
|
35 |
+
|
36 |
+
def summarize_text(text, max_length=150, min_length=40):
|
37 |
+
"""Generate summary using the Pegasus model"""
|
38 |
+
try:
|
39 |
+
# Tokenize with padding and truncation
|
40 |
+
inputs = tokenizer(
|
41 |
+
text,
|
42 |
+
max_length=1024,
|
43 |
+
truncation=True,
|
44 |
+
padding="max_length",
|
45 |
+
return_tensors="pt"
|
46 |
+
).to(device)
|
47 |
+
|
48 |
+
# Generate summary
|
49 |
+
summary_ids = model.generate(
|
50 |
+
inputs["input_ids"],
|
51 |
+
max_length=max_length,
|
52 |
+
min_length=min_length,
|
53 |
+
length_penalty=2.0,
|
54 |
+
num_beams=4,
|
55 |
+
early_stopping=True
|
56 |
+
)
|
57 |
+
|
58 |
+
# Decode and return summary
|
59 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
60 |
+
return summary
|
61 |
+
|
62 |
+
except Exception as e:
|
63 |
+
return f"Error generating summary: {e}"
|
64 |
+
|
65 |
+
def process_input(input_text, input_type, max_length=150, min_length=40):
|
66 |
+
"""Process either URL or direct text input"""
|
67 |
+
try:
|
68 |
+
if input_type == "URL":
|
69 |
+
text = fetch_article_text(input_text)
|
70 |
+
if "Error" in text:
|
71 |
+
return text
|
72 |
+
else:
|
73 |
+
text = input_text
|
74 |
+
|
75 |
+
if not text or len(text.strip()) < 100:
|
76 |
+
return "Error: Input text is too short or empty."
|
77 |
+
|
78 |
+
return summarize_text(text, max_length, min_length)
|
79 |
+
|
80 |
+
except Exception as e:
|
81 |
+
return f"Error processing input: {e}"
|
82 |
+
|
83 |
+
# Create Gradio interface
|
84 |
+
def create_interface():
|
85 |
+
with gr.Blocks(title="Research Article Summarizer") as interface:
|
86 |
+
gr.Markdown("# Research Article Summarizer")
|
87 |
+
gr.Markdown("Enter either a URL or paste the article text directly.")
|
88 |
+
|
89 |
+
with gr.Row():
|
90 |
+
input_type = gr.Radio(
|
91 |
+
choices=["URL", "Text"],
|
92 |
+
value="URL",
|
93 |
+
label="Input Type"
|
94 |
+
)
|
95 |
+
|
96 |
+
with gr.Row():
|
97 |
+
input_text = gr.Textbox(
|
98 |
+
lines=5,
|
99 |
+
placeholder="Enter URL or paste article text here...",
|
100 |
+
label="Input"
|
101 |
+
)
|
102 |
+
|
103 |
+
with gr.Row():
|
104 |
+
max_length = gr.Slider(
|
105 |
+
minimum=50,
|
106 |
+
maximum=500,
|
107 |
+
value=150,
|
108 |
+
step=10,
|
109 |
+
label="Maximum Summary Length"
|
110 |
+
)
|
111 |
+
min_length = gr.Slider(
|
112 |
+
minimum=20,
|
113 |
+
maximum=200,
|
114 |
+
value=40,
|
115 |
+
step=10,
|
116 |
+
label="Minimum Summary Length"
|
117 |
+
)
|
118 |
+
|
119 |
+
with gr.Row():
|
120 |
+
submit_btn = gr.Button("Generate Summary")
|
121 |
+
|
122 |
+
with gr.Row():
|
123 |
+
output = gr.Textbox(
|
124 |
+
lines=5,
|
125 |
+
label="Generated Summary"
|
126 |
+
)
|
127 |
+
|
128 |
+
submit_btn.click(
|
129 |
+
fn=process_input,
|
130 |
+
inputs=[input_text, input_type, max_length, min_length],
|
131 |
+
outputs=output
|
132 |
+
)
|
133 |
+
|
134 |
+
return interface
|
135 |
+
|
136 |
+
# Launch the interface
|
137 |
+
demo = create_interface()
|
138 |
+
demo.launch(debug=True, share=True)
|