Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
6 |
+
from googletrans import Translator
|
7 |
+
from gtts import gTTS
|
8 |
+
import librosa
|
9 |
+
import tempfile
|
10 |
+
import soundfile as sf
|
11 |
+
|
12 |
+
class RealTimeTranslator:
|
13 |
+
def __init__(self):
|
14 |
+
# Initialize Whisper model for speech recognition
|
15 |
+
self.processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
16 |
+
self.model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
17 |
+
|
18 |
+
# Use GPU if available
|
19 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
+
self.model = self.model.to(self.device)
|
21 |
+
|
22 |
+
# Initialize translator
|
23 |
+
self.translator = Translator()
|
24 |
+
|
25 |
+
# Supported languages
|
26 |
+
self.languages = {
|
27 |
+
'en': 'English',
|
28 |
+
'fr': 'French',
|
29 |
+
'hi': 'Hindi',
|
30 |
+
'es': 'Spanish',
|
31 |
+
'de': 'German',
|
32 |
+
'ja': 'Japanese'
|
33 |
+
}
|
34 |
+
|
35 |
+
def speech_to_text(self, audio_path, source_lang):
|
36 |
+
"""Convert speech to text using Whisper"""
|
37 |
+
# Load and preprocess audio
|
38 |
+
audio, _ = librosa.load(audio_path, sr=16000)
|
39 |
+
input_features = self.processor(audio, sampling_rate=16000, return_tensors="pt").input_features
|
40 |
+
input_features = input_features.to(self.device)
|
41 |
+
|
42 |
+
# Generate token ids
|
43 |
+
predicted_ids = self.model.generate(input_features)
|
44 |
+
|
45 |
+
# Decode token ids to text
|
46 |
+
transcription = self.processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
47 |
+
return transcription[0]
|
48 |
+
|
49 |
+
def translate_text(self, text, source_lang, target_lang):
|
50 |
+
"""Translate text using Google Translate"""
|
51 |
+
translation = self.translator.translate(text, src=source_lang, dest=target_lang)
|
52 |
+
return translation.text
|
53 |
+
|
54 |
+
def text_to_speech(self, text, target_lang):
|
55 |
+
"""Convert text to speech using gTTS"""
|
56 |
+
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as fp:
|
57 |
+
tts = gTTS(text=text, lang=target_lang)
|
58 |
+
tts.save(fp.name)
|
59 |
+
return fp.name
|
60 |
+
|
61 |
+
def process_audio(self, audio, source_lang, target_lang):
|
62 |
+
"""Complete pipeline: Speech → Text → Translation → Speech"""
|
63 |
+
try:
|
64 |
+
if audio is None:
|
65 |
+
return None, "No audio input received", "Please provide audio input"
|
66 |
+
|
67 |
+
# Save input audio temporarily
|
68 |
+
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as fp:
|
69 |
+
sf.write(fp.name, audio[1], audio[0])
|
70 |
+
audio_path = fp.name
|
71 |
+
|
72 |
+
# Speech to text
|
73 |
+
text = self.speech_to_text(audio_path, source_lang)
|
74 |
+
|
75 |
+
# Translate text
|
76 |
+
translated_text = self.translate_text(text, source_lang, target_lang)
|
77 |
+
|
78 |
+
# Text to speech
|
79 |
+
output_audio_path = self.text_to_speech(translated_text, target_lang)
|
80 |
+
|
81 |
+
# Load the generated audio
|
82 |
+
output_audio, sr = librosa.load(output_audio_path)
|
83 |
+
|
84 |
+
# Clean up temporary files
|
85 |
+
os.unlink(audio_path)
|
86 |
+
os.unlink(output_audio_path)
|
87 |
+
|
88 |
+
return (sr, output_audio), text, translated_text
|
89 |
+
|
90 |
+
except Exception as e:
|
91 |
+
return None, f"Error: {str(e)}", f"Error: {str(e)}"
|
92 |
+
|
93 |
+
def create_gradio_interface():
|
94 |
+
translator = RealTimeTranslator()
|
95 |
+
|
96 |
+
# Create the Gradio interface with updated Audio component syntax
|
97 |
+
demo = gr.Interface(
|
98 |
+
fn=translator.process_audio,
|
99 |
+
inputs=[
|
100 |
+
gr.Audio(sources=["microphone"], type="numpy", label="Input Audio"), # Updated syntax
|
101 |
+
gr.Dropdown(choices=list(translator.languages.keys()), value="en", label="Source Language"),
|
102 |
+
gr.Dropdown(choices=list(translator.languages.keys()), value="fr", label="Target Language")
|
103 |
+
],
|
104 |
+
outputs=[
|
105 |
+
gr.Audio(label="Translated Audio"),
|
106 |
+
gr.Textbox(label="Original Text"),
|
107 |
+
gr.Textbox(label="Translated Text")
|
108 |
+
],
|
109 |
+
title="Real-time Language Translator",
|
110 |
+
description="Speak in your language and get instant translation in the target language",
|
111 |
+
examples=[
|
112 |
+
[None, "en", "fr"],
|
113 |
+
[None, "hi", "en"],
|
114 |
+
[None, "es", "ja"]
|
115 |
+
]
|
116 |
+
)
|
117 |
+
return demo
|
118 |
+
|
119 |
+
if __name__ == "__main__":
|
120 |
+
demo = create_gradio_interface()
|
121 |
+
demo.launch(share=True, debug=True)
|