Update app.py
Browse files
app.py
CHANGED
@@ -3,23 +3,25 @@ import torch
|
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
6 |
-
from
|
7 |
from gtts import gTTS
|
8 |
import librosa
|
9 |
import tempfile
|
10 |
import soundfile as sf
|
11 |
|
12 |
-
|
13 |
class RealTimeTranslator:
|
14 |
def __init__(self):
|
15 |
-
# Initialize Whisper model for speech recognition
|
16 |
-
self.processor = WhisperProcessor.from_pretrained("openai/whisper-
|
17 |
-
self.model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-
|
18 |
|
19 |
# Use GPU if available
|
20 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
self.model = self.model.to(self.device)
|
22 |
|
|
|
|
|
|
|
23 |
# Supported languages
|
24 |
self.languages = {
|
25 |
'en': 'English',
|
@@ -32,32 +34,38 @@ class RealTimeTranslator:
|
|
32 |
|
33 |
def speech_to_text(self, audio_path, source_lang):
|
34 |
"""Convert speech to text using Whisper"""
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
|
47 |
def translate_text(self, text, source_lang, target_lang):
|
48 |
-
"""Translate text using
|
49 |
try:
|
50 |
-
|
51 |
-
return
|
52 |
except Exception as e:
|
53 |
-
return f"
|
54 |
|
55 |
def text_to_speech(self, text, target_lang):
|
56 |
"""Convert text to speech using gTTS"""
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
61 |
|
62 |
def process_audio(self, audio, source_lang, target_lang):
|
63 |
"""Complete pipeline: Speech β Text β Translation β Speech"""
|
@@ -72,12 +80,18 @@ class RealTimeTranslator:
|
|
72 |
|
73 |
# Speech to text
|
74 |
text = self.speech_to_text(audio_path, source_lang)
|
|
|
|
|
75 |
|
76 |
# Translate text
|
77 |
translated_text = self.translate_text(text, source_lang, target_lang)
|
|
|
|
|
78 |
|
79 |
# Text to speech
|
80 |
output_audio_path = self.text_to_speech(translated_text, target_lang)
|
|
|
|
|
81 |
|
82 |
# Load the generated audio
|
83 |
output_audio, sr = librosa.load(output_audio_path)
|
@@ -91,15 +105,14 @@ class RealTimeTranslator:
|
|
91 |
except Exception as e:
|
92 |
return None, f"Error: {str(e)}", f"Error: {str(e)}"
|
93 |
|
94 |
-
|
95 |
def create_gradio_interface():
|
96 |
translator = RealTimeTranslator()
|
97 |
|
98 |
-
# Create the Gradio interface
|
99 |
demo = gr.Interface(
|
100 |
fn=translator.process_audio,
|
101 |
inputs=[
|
102 |
-
gr.Audio(sources=["microphone"], type="numpy", label="Input Audio"),
|
103 |
gr.Dropdown(choices=list(translator.languages.keys()), value="en", label="Source Language"),
|
104 |
gr.Dropdown(choices=list(translator.languages.keys()), value="fr", label="Target Language")
|
105 |
],
|
@@ -109,7 +122,7 @@ def create_gradio_interface():
|
|
109 |
gr.Textbox(label="Translated Text")
|
110 |
],
|
111 |
title="Real-time Language Translator",
|
112 |
-
description="Speak in your language and get instant translation in the target language",
|
113 |
examples=[
|
114 |
[None, "en", "fr"],
|
115 |
[None, "hi", "en"],
|
@@ -118,7 +131,6 @@ def create_gradio_interface():
|
|
118 |
)
|
119 |
return demo
|
120 |
|
121 |
-
|
122 |
if __name__ == "__main__":
|
123 |
demo = create_gradio_interface()
|
124 |
-
demo.launch(share=True, debug=True)
|
|
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
6 |
+
from googletrans import Translator
|
7 |
from gtts import gTTS
|
8 |
import librosa
|
9 |
import tempfile
|
10 |
import soundfile as sf
|
11 |
|
|
|
12 |
class RealTimeTranslator:
|
13 |
def __init__(self):
|
14 |
+
# Initialize Whisper model for speech recognition (using tiny model for lower resource usage)
|
15 |
+
self.processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
16 |
+
self.model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
17 |
|
18 |
# Use GPU if available
|
19 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
self.model = self.model.to(self.device)
|
21 |
|
22 |
+
# Initialize translator
|
23 |
+
self.translator = Translator()
|
24 |
+
|
25 |
# Supported languages
|
26 |
self.languages = {
|
27 |
'en': 'English',
|
|
|
34 |
|
35 |
def speech_to_text(self, audio_path, source_lang):
|
36 |
"""Convert speech to text using Whisper"""
|
37 |
+
try:
|
38 |
+
# Load and preprocess audio
|
39 |
+
audio, _ = librosa.load(audio_path, sr=16000)
|
40 |
+
input_features = self.processor(audio, sampling_rate=16000, return_tensors="pt").input_features
|
41 |
+
input_features = input_features.to(self.device)
|
42 |
|
43 |
+
# Generate token ids
|
44 |
+
predicted_ids = self.model.generate(input_features)
|
45 |
|
46 |
+
# Decode token ids to text
|
47 |
+
transcription = self.processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
48 |
+
return transcription[0]
|
49 |
+
except Exception as e:
|
50 |
+
return f"Error in speech-to-text: {str(e)}"
|
51 |
|
52 |
def translate_text(self, text, source_lang, target_lang):
|
53 |
+
"""Translate text using Google Translate"""
|
54 |
try:
|
55 |
+
translation = self.translator.translate(text, src=source_lang, dest=target_lang)
|
56 |
+
return translation.text
|
57 |
except Exception as e:
|
58 |
+
return f"Error in translation: {str(e)}"
|
59 |
|
60 |
def text_to_speech(self, text, target_lang):
|
61 |
"""Convert text to speech using gTTS"""
|
62 |
+
try:
|
63 |
+
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as fp:
|
64 |
+
tts = gTTS(text=text, lang=target_lang)
|
65 |
+
tts.save(fp.name)
|
66 |
+
return fp.name
|
67 |
+
except Exception as e:
|
68 |
+
return f"Error in text-to-speech: {str(e)}"
|
69 |
|
70 |
def process_audio(self, audio, source_lang, target_lang):
|
71 |
"""Complete pipeline: Speech β Text β Translation β Speech"""
|
|
|
80 |
|
81 |
# Speech to text
|
82 |
text = self.speech_to_text(audio_path, source_lang)
|
83 |
+
if "Error" in text:
|
84 |
+
return None, text, ""
|
85 |
|
86 |
# Translate text
|
87 |
translated_text = self.translate_text(text, source_lang, target_lang)
|
88 |
+
if "Error" in translated_text:
|
89 |
+
return None, text, translated_text
|
90 |
|
91 |
# Text to speech
|
92 |
output_audio_path = self.text_to_speech(translated_text, target_lang)
|
93 |
+
if "Error" in output_audio_path:
|
94 |
+
return None, text, translated_text
|
95 |
|
96 |
# Load the generated audio
|
97 |
output_audio, sr = librosa.load(output_audio_path)
|
|
|
105 |
except Exception as e:
|
106 |
return None, f"Error: {str(e)}", f"Error: {str(e)}"
|
107 |
|
|
|
108 |
def create_gradio_interface():
|
109 |
translator = RealTimeTranslator()
|
110 |
|
111 |
+
# Create the Gradio interface
|
112 |
demo = gr.Interface(
|
113 |
fn=translator.process_audio,
|
114 |
inputs=[
|
115 |
+
gr.Audio(sources=["microphone"], type="numpy", label="Input Audio"),
|
116 |
gr.Dropdown(choices=list(translator.languages.keys()), value="en", label="Source Language"),
|
117 |
gr.Dropdown(choices=list(translator.languages.keys()), value="fr", label="Target Language")
|
118 |
],
|
|
|
122 |
gr.Textbox(label="Translated Text")
|
123 |
],
|
124 |
title="Real-time Language Translator",
|
125 |
+
description="Speak in your language and get instant translation in the target language. Please ensure your device is set to speakerphone mode for best results.",
|
126 |
examples=[
|
127 |
[None, "en", "fr"],
|
128 |
[None, "hi", "en"],
|
|
|
131 |
)
|
132 |
return demo
|
133 |
|
|
|
134 |
if __name__ == "__main__":
|
135 |
demo = create_gradio_interface()
|
136 |
+
demo.launch(share=True, debug=True)
|