Spaces:
Runtime error
Runtime error
import os | |
from dotenv import load_dotenv | |
import gradio as gr | |
from langchain_huggingface import HuggingFaceEndpoint | |
from datetime import datetime | |
from datasets import load_dataset | |
# Load environment variables | |
load_dotenv() | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
# Check if token exists and handle error gracefully | |
if not HF_TOKEN: | |
raise ValueError("HF_TOKEN environment variable not found. Please set it in your .env file.") | |
# Initialize the HuggingFace inference endpoint | |
llm = HuggingFaceEndpoint( | |
repo_id="mistralai/Mistral-7B-Instruct-v0.3", | |
huggingfacehub_api_token=HF_TOKEN.strip(), | |
temperature=0.7, | |
) | |
# Load the Indian Recipe Dataset | |
try: | |
ds = load_dataset("Anupam007/indian-recipe-dataset") | |
# Extract unique ingredients from the dataset | |
all_ingredients = set() | |
for recipe in ds['train']: | |
if 'ingredients' in recipe: | |
# Split ingredients and clean them | |
ingredients = [ing.strip().lower() for ing in recipe['ingredients'].split(',')] | |
all_ingredients.update(ingredients) | |
# Expand ingredient variants | |
INGREDIENT_VARIANTS = {} | |
for ing in all_ingredients: | |
# Add singular and plural variants | |
singular = ing.rstrip('s') | |
plural = ing + 's' | |
INGREDIENT_VARIANTS[singular] = [singular, plural] | |
INGREDIENT_VARIANTS[plural] = [singular, plural] | |
# Combine with direct mappings for common ingredients | |
INGREDIENT_VARIANTS.update({ | |
'potato': ['potato', 'potatoes'], | |
'tomato': ['tomato', 'tomatoes'], | |
'onion': ['onion', 'onions'], | |
'spinach': ['spinach', 'spinaches'], | |
'chicken': ['chicken'], | |
'turmeric': ['turmeric'], | |
'cumin': ['cumin'] | |
}) | |
except Exception as e: | |
print(f"Error loading dataset: {e}") | |
INGREDIENT_VARIANTS = {} | |
# Input validation function | |
def validate_ingredients(ingredients): | |
if not ingredients or ingredients.strip() == "": | |
return "Invalid" | |
# Split and clean input ingredients | |
input_ingredients = [ing.strip().lower() for ing in ingredients.split(',')] | |
# Check if all input ingredients have a valid variant | |
valid_matches = [] | |
for ing in input_ingredients: | |
matched = False | |
for key, variants in INGREDIENT_VARIANTS.items(): | |
if ing in variants: | |
valid_matches.append(ing) | |
matched = True | |
break | |
if not matched: | |
print(f"No match found for ingredient: {ing}") | |
# If all ingredients have a match, return Valid | |
if len(valid_matches) == len(input_ingredients): | |
return "Valid" | |
else: | |
return "Invalid" | |
# Recipe generation function | |
def generate_recipe(ingredients): | |
# Split and clean input ingredients | |
input_ingredients = [ing.strip().lower() for ing in ingredients.split(',')] | |
# Find matching recipes in the dataset | |
matching_recipes = [] | |
for recipe in ds['train']: | |
if 'ingredients' in recipe and 'instructions' in recipe: | |
recipe_ingredients = [ing.strip().lower() for ing in recipe['ingredients'].split(',')] | |
# Check if input ingredients are in the recipe | |
match_count = sum(1 for ing in input_ingredients | |
for recipe_ing in recipe_ingredients | |
if any(variant in recipe_ing for variant in INGREDIENT_VARIANTS.get(ing, [ing]))) | |
if match_count > 0: | |
matching_recipes.append({ | |
'title': recipe.get('title', 'Untitled Recipe'), | |
'ingredients': recipe.get('ingredients', ''), | |
'instructions': recipe.get('instructions', '') | |
}) | |
# If matching recipes found, select one | |
if matching_recipes: | |
# Choose first matching recipe (could randomize) | |
selected_recipe = matching_recipes[0] | |
# Format the recipe output | |
recipe_output = f"Recipe: {selected_recipe['title']}\n\n" | |
recipe_output += "Ingredients:\n" | |
recipe_output += f"{selected_recipe['ingredients']}\n\n" | |
recipe_output += "Instructions:\n" | |
recipe_output += selected_recipe['instructions'] | |
return recipe_output | |
else: | |
# Fallback to LLM generation if no matching recipes | |
prompt = ( | |
f"You are an expert chef specializing in Indian cuisine. Using the ingredients: {ingredients}, " | |
f"suggest a unique Indian recipe. Provide a title, list of ingredients, and detailed step-by-step instructions. " | |
f"Focus on traditional Indian cooking methods and spices." | |
) | |
return llm(prompt).strip() | |
# Combined function for Gradio | |
def suggest_recipes(ingredients): | |
if not ingredients or ingredients.strip() == "": | |
return "Please enter ingredients before submitting." | |
validation_result = validate_ingredients(ingredients) | |
if "Valid" in validation_result: | |
return generate_recipe(ingredients) | |
else: | |
return "I'm sorry, but I can't process this request due to invalid ingredients. Please provide valid Indian cooking ingredients!" | |
# Minimalist Gradio interface | |
with gr.Blocks() as app: | |
gr.Markdown("# 🍳 Indian Recipe Generator") | |
gr.Markdown("Enter Indian ingredients, and we'll find or create a delightful recipe!") | |
gr.Markdown("💡 Tip: Try ingredients like tomato, onion, potato, spinach, chicken, or spices like turmeric, cumin!") | |
with gr.Row(): | |
ingredients_input = gr.Textbox(label="Ingredients") | |
recipe_output = gr.Textbox(label="Recipe") | |
generate_button = gr.Button("Generate Recipe") | |
generate_button.click(suggest_recipes, inputs=ingredients_input, outputs=recipe_output) | |
# Launch the app | |
if __name__ == "__main__": | |
app.launch() |