import gradio as gr import cv2 import torch import numpy as np import time from threading import Thread import queue # Load the YOLO model on the CPU model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) # Global variables for camera control camera_queue = queue.Queue(maxsize=1) stop_camera = False def move_robot(command): """ Simulate sending a command to the robot to move. Replace this with actual communication code to send commands to the robot. """ commands = { "forward": "Robot moving forward", "backward": "Robot moving backward", "left": "Robot turning left", "right": "Robot turning right", "stop": "Robot stopped" } print(commands.get(command, "Invalid command")) return f"Command sent: {command}" def camera_loop(): """Background thread function to continuously capture frames""" global stop_camera cap = cv2.VideoCapture(0) if not cap.isOpened(): print("Error: Could not open camera") return while not stop_camera: ret, frame = cap.read() if ret: # Run YOLO detection results = model(frame) processed_frame = results.render()[0] # Convert BGR to RGB for display processed_frame = cv2.cvtColor(processed_frame, cv2.COLOR_BGR2RGB) # Update the queue with the latest frame try: if camera_queue.full(): camera_queue.get_nowait() # Remove old frame camera_queue.put_nowait(processed_frame) except queue.Full: pass time.sleep(0.1) # Prevent excessive CPU usage cap.release() def start_camera(): """Start the camera feed""" global stop_camera stop_camera = False Thread(target=camera_loop, daemon=True).start() return "Camera started" def stop_camera_feed(): """Stop the camera feed""" global stop_camera stop_camera = True empty_frame = np.zeros((480, 640, 3), dtype=np.uint8) return "Camera stopped", empty_frame def get_current_frame(): """Get the latest frame from the camera queue""" try: frame = camera_queue.get_nowait() return frame except queue.Empty: return np.zeros((480, 640, 3), dtype=np.uint8) def robot_interface(): with gr.Blocks() as interface: with gr.Row(): # Left column for controls with gr.Column(scale=1): # Control buttons forward_btn = gr.Button("Forward", variant="primary") backward_btn = gr.Button("Backward", variant="primary") left_btn = gr.Button("Left", variant="primary") right_btn = gr.Button("Right", variant="primary") stop_btn = gr.Button("Stop", variant="secondary") status_output = gr.Textbox(label="Robot Status") # Right column for camera feed with gr.Column(scale=2): # Camera feed output camera_output = gr.Image( label="Robot Camera Feed with Object Detection", type="numpy", height=480, streaming=True ) # Start/Stop buttons for camera feed start_camera_btn = gr.Button("Start Camera", variant="primary") stop_camera_btn = gr.Button("Stop Camera", variant="secondary") # Set up button click events for robot movement forward_btn.click(fn=move_robot, inputs=[gr.Textbox(value="forward", visible=False)], outputs=status_output) backward_btn.click(fn=move_robot, inputs=[gr.Textbox(value="backward", visible=False)], outputs=status_output) left_btn.click(fn=move_robot, inputs=[gr.Textbox(value="left", visible=False)], outputs=status_output) right_btn.click(fn=move_robot, inputs=[gr.Textbox(value="right", visible=False)], outputs=status_output) stop_btn.click(fn=move_robot, inputs=[gr.Textbox(value="stop", visible=False)], outputs=status_output) # Set up button click events for camera control start_camera_btn.click(fn=start_camera, inputs=None, outputs=status_output) stop_camera_btn.click(fn=stop_camera_feed, inputs=None, outputs=[status_output, camera_output]) # Stream the camera feed camera_output.stream(fn=get_current_frame) return interface # Launch the Gradio interface if __name__ == "__main__": robot_interface().launch(share=True, debug=True)