File size: 8,448 Bytes
3b18a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import numpy as np
import pandas as pd
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
from typing import Dict, List, Tuple

class HealthStandards:
    """Simplified health standards with error handling"""
    
    @staticmethod
    def get_bmi_status(bmi: float) -> Dict:
        try:
            if bmi < 18.5:
                return {"status": "Underweight", "risk": "High", 
                       "recommendation": "Consult nutritionist for weight gain plan"}
            elif bmi < 24.9:
                return {"status": "Normal", "risk": "Low", 
                       "recommendation": "Maintain healthy lifestyle"}
            elif bmi < 29.9:
                return {"status": "Overweight", "risk": "Moderate", 
                       "recommendation": "Consider diet and exercise plan"}
            else:
                return {"status": "Obese", "risk": "High", 
                       "recommendation": "Seek medical guidance"}
        except Exception as e:
            return {"status": "Error", "risk": "Unknown", 
                   "recommendation": f"Error processing BMI: {str(e)}"}

    @staticmethod
    def get_bp_status(bp: float) -> Dict:
        try:
            if bp < 120:
                return {"status": "Normal", "risk": "Low", 
                       "recommendation": "Maintain healthy lifestyle"}
            elif bp < 130:
                return {"status": "Elevated", "risk": "Moderate", 
                       "recommendation": "Monitor regularly"}
            elif bp < 140:
                return {"status": "Stage 1 Hypertension", "risk": "High", 
                       "recommendation": "Consult healthcare provider"}
            else:
                return {"status": "Stage 2 Hypertension", "risk": "Very High", 
                       "recommendation": "Immediate medical attention needed"}
        except Exception as e:
            return {"status": "Error", "risk": "Unknown", 
                   "recommendation": f"Error processing blood pressure: {str(e)}"}

    @staticmethod
    def get_glucose_status(glucose: float) -> Dict:
        try:
            if glucose < 100:
                return {"status": "Normal", "risk": "Low", 
                       "recommendation": "Maintain healthy diet"}
            elif glucose < 125:
                return {"status": "Prediabetes", "risk": "Moderate", 
                       "recommendation": "Lifestyle modifications needed"}
            else:
                return {"status": "Diabetes Range", "risk": "High", 
                       "recommendation": "Consult healthcare provider"}
        except Exception as e:
            return {"status": "Error", "risk": "Unknown", 
                   "recommendation": f"Error processing glucose: {str(e)}"}

class HealthAnalyzer:
    """Analyzes health metrics with error handling"""
    
    def __init__(self):
        self.standards = HealthStandards()
    
    def analyze_metrics(self, age: float, bmi: float, bp: float, 
                       glucose: float) -> Tuple[Dict, str]:
        try:
            # Get individual assessments
            bmi_assessment = self.standards.get_bmi_status(bmi)
            bp_assessment = self.standards.get_bp_status(bp)
            glucose_assessment = self.standards.get_glucose_status(glucose)
            
            # Calculate risk score
            risk_factors = 0
            if bmi_assessment["risk"] in ["High", "Very High"]: risk_factors += 1
            if bp_assessment["risk"] in ["High", "Very High"]: risk_factors += 1
            if glucose_assessment["risk"] in ["High", "Very High"]: risk_factors += 1
            if age > 60: risk_factors += 1
            
            risk_score = (risk_factors / 4) * 100
            
            analysis = {
                "metrics": {
                    "BMI": bmi_assessment,
                    "Blood Pressure": bp_assessment,
                    "Glucose": glucose_assessment
                },
                "risk_score": risk_score
            }
            
            # Generate report
            report = self.generate_report(analysis, age)
            
            return analysis, report
            
        except Exception as e:
            return {"error": str(e)}, "Error occurred during analysis"

    def generate_report(self, analysis: Dict, age: float) -> str:
        try:
            report = [
                "=== HEALTH ANALYSIS REPORT ===\n",
                f"Overall Risk Score: {analysis['risk_score']:.1f}%\n",
                f"Risk Level: {self.get_risk_level(analysis['risk_score'])}\n",
                "\nDetailed Analysis:"
            ]
            
            for metric, assessment in analysis["metrics"].items():
                report.extend([
                    f"\n{metric}:",
                    f"Status: {assessment['status']}",
                    f"Risk Level: {assessment['risk']}",
                    f"Recommendation: {assessment['recommendation']}"
                ])
            
            return "\n".join(report)
            
        except Exception as e:
            return f"Error generating report: {str(e)}"

    @staticmethod
    def get_risk_level(risk_score: float) -> str:
        if risk_score < 33:
            return "Low"
        elif risk_score < 66:
            return "Moderate"
        else:
            return "High"

def create_visualization(analysis: Dict) -> plt.Figure:
    """Create visualization with error handling"""
    try:
        sns.set_style("whitegrid")  # Use seaborn style directly
        fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
        
        # Metrics comparison
        metrics = list(analysis["metrics"].keys())
        risk_levels = [assessment["risk"] for assessment in analysis["metrics"].values()]
        risk_values = [{"Low": 1, "Moderate": 2, "High": 3, "Very High": 4}.get(r, 0) 
                      for r in risk_levels]
        
        colors = ['green' if r == "Low" else 'yellow' if r == "Moderate" 
                 else 'red' for r in risk_levels]
        
        ax1.bar(metrics, risk_values, color=colors)
        ax1.set_title("Health Metrics Risk Levels")
        ax1.set_ylim(0, 4)
        ax1.set_yticks([1, 2, 3, 4])
        ax1.set_yticklabels(['Low', 'Moderate', 'High', 'Very High'])
        
        # Risk gauge
        risk_score = analysis["risk_score"]
        colors = ['green', 'yellow', 'red']
        ax2.pie([risk_score, 100-risk_score], 
                colors=[colors[int(risk_score/33.34)], 'lightgray'],
                startangle=90, counterclock=False)
        ax2.set_title(f"Overall Risk Score: {risk_score:.1f}%")
        
        plt.tight_layout()
        return fig
        
    except Exception as e:
        # Create error figure
        fig, ax = plt.subplots(figsize=(8, 4))
        ax.text(0.5, 0.5, f"Error creating visualization: {str(e)}", 
                ha='center', va='center')
        ax.axis('off')
        return fig

def analyze_health(age: float, bmi: float, bp: float, glucose: float) -> Tuple[plt.Figure, str]:
    """Main analysis function with error handling"""
    try:
        analyzer = HealthAnalyzer()
        analysis, report = analyzer.analyze_metrics(age, bmi, bp, glucose)
        
        if "error" in analysis:
            raise Exception(analysis["error"])
            
        fig = create_visualization(analysis)
        return fig, report
        
    except Exception as e:
        error_fig, ax = plt.subplots(figsize=(8, 4))
        ax.text(0.5, 0.5, f"Error: {str(e)}", ha='center', va='center')
        ax.axis('off')
        return error_fig, f"An error occurred: {str(e)}"

# Create Gradio interface
def create_gradio_interface():
    interface = gr.Interface(
        fn=analyze_health,
        inputs=[
            gr.Slider(20, 90, value=50, label="Age"),
            gr.Slider(15, 45, value=25, label="BMI"),
            gr.Slider(80, 200, value=120, label="Blood Pressure"),
            gr.Slider(70, 200, value=100, label="Glucose")
        ],
        outputs=[
            gr.Plot(label="Health Analysis Dashboard"),
            gr.Textbox(label="Health Report", lines=10)
        ],
        title="Health Analysis System",
        description="Enter patient metrics for health analysis."
    )
    return interface

if __name__ == "__main__":
    # Launch the Gradio interface
    interface = create_gradio_interface()
    interface.launch()