Spaces:
Sleeping
Sleeping
File size: 8,448 Bytes
3b18a14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import numpy as np
import pandas as pd
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
from typing import Dict, List, Tuple
class HealthStandards:
"""Simplified health standards with error handling"""
@staticmethod
def get_bmi_status(bmi: float) -> Dict:
try:
if bmi < 18.5:
return {"status": "Underweight", "risk": "High",
"recommendation": "Consult nutritionist for weight gain plan"}
elif bmi < 24.9:
return {"status": "Normal", "risk": "Low",
"recommendation": "Maintain healthy lifestyle"}
elif bmi < 29.9:
return {"status": "Overweight", "risk": "Moderate",
"recommendation": "Consider diet and exercise plan"}
else:
return {"status": "Obese", "risk": "High",
"recommendation": "Seek medical guidance"}
except Exception as e:
return {"status": "Error", "risk": "Unknown",
"recommendation": f"Error processing BMI: {str(e)}"}
@staticmethod
def get_bp_status(bp: float) -> Dict:
try:
if bp < 120:
return {"status": "Normal", "risk": "Low",
"recommendation": "Maintain healthy lifestyle"}
elif bp < 130:
return {"status": "Elevated", "risk": "Moderate",
"recommendation": "Monitor regularly"}
elif bp < 140:
return {"status": "Stage 1 Hypertension", "risk": "High",
"recommendation": "Consult healthcare provider"}
else:
return {"status": "Stage 2 Hypertension", "risk": "Very High",
"recommendation": "Immediate medical attention needed"}
except Exception as e:
return {"status": "Error", "risk": "Unknown",
"recommendation": f"Error processing blood pressure: {str(e)}"}
@staticmethod
def get_glucose_status(glucose: float) -> Dict:
try:
if glucose < 100:
return {"status": "Normal", "risk": "Low",
"recommendation": "Maintain healthy diet"}
elif glucose < 125:
return {"status": "Prediabetes", "risk": "Moderate",
"recommendation": "Lifestyle modifications needed"}
else:
return {"status": "Diabetes Range", "risk": "High",
"recommendation": "Consult healthcare provider"}
except Exception as e:
return {"status": "Error", "risk": "Unknown",
"recommendation": f"Error processing glucose: {str(e)}"}
class HealthAnalyzer:
"""Analyzes health metrics with error handling"""
def __init__(self):
self.standards = HealthStandards()
def analyze_metrics(self, age: float, bmi: float, bp: float,
glucose: float) -> Tuple[Dict, str]:
try:
# Get individual assessments
bmi_assessment = self.standards.get_bmi_status(bmi)
bp_assessment = self.standards.get_bp_status(bp)
glucose_assessment = self.standards.get_glucose_status(glucose)
# Calculate risk score
risk_factors = 0
if bmi_assessment["risk"] in ["High", "Very High"]: risk_factors += 1
if bp_assessment["risk"] in ["High", "Very High"]: risk_factors += 1
if glucose_assessment["risk"] in ["High", "Very High"]: risk_factors += 1
if age > 60: risk_factors += 1
risk_score = (risk_factors / 4) * 100
analysis = {
"metrics": {
"BMI": bmi_assessment,
"Blood Pressure": bp_assessment,
"Glucose": glucose_assessment
},
"risk_score": risk_score
}
# Generate report
report = self.generate_report(analysis, age)
return analysis, report
except Exception as e:
return {"error": str(e)}, "Error occurred during analysis"
def generate_report(self, analysis: Dict, age: float) -> str:
try:
report = [
"=== HEALTH ANALYSIS REPORT ===\n",
f"Overall Risk Score: {analysis['risk_score']:.1f}%\n",
f"Risk Level: {self.get_risk_level(analysis['risk_score'])}\n",
"\nDetailed Analysis:"
]
for metric, assessment in analysis["metrics"].items():
report.extend([
f"\n{metric}:",
f"Status: {assessment['status']}",
f"Risk Level: {assessment['risk']}",
f"Recommendation: {assessment['recommendation']}"
])
return "\n".join(report)
except Exception as e:
return f"Error generating report: {str(e)}"
@staticmethod
def get_risk_level(risk_score: float) -> str:
if risk_score < 33:
return "Low"
elif risk_score < 66:
return "Moderate"
else:
return "High"
def create_visualization(analysis: Dict) -> plt.Figure:
"""Create visualization with error handling"""
try:
sns.set_style("whitegrid") # Use seaborn style directly
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
# Metrics comparison
metrics = list(analysis["metrics"].keys())
risk_levels = [assessment["risk"] for assessment in analysis["metrics"].values()]
risk_values = [{"Low": 1, "Moderate": 2, "High": 3, "Very High": 4}.get(r, 0)
for r in risk_levels]
colors = ['green' if r == "Low" else 'yellow' if r == "Moderate"
else 'red' for r in risk_levels]
ax1.bar(metrics, risk_values, color=colors)
ax1.set_title("Health Metrics Risk Levels")
ax1.set_ylim(0, 4)
ax1.set_yticks([1, 2, 3, 4])
ax1.set_yticklabels(['Low', 'Moderate', 'High', 'Very High'])
# Risk gauge
risk_score = analysis["risk_score"]
colors = ['green', 'yellow', 'red']
ax2.pie([risk_score, 100-risk_score],
colors=[colors[int(risk_score/33.34)], 'lightgray'],
startangle=90, counterclock=False)
ax2.set_title(f"Overall Risk Score: {risk_score:.1f}%")
plt.tight_layout()
return fig
except Exception as e:
# Create error figure
fig, ax = plt.subplots(figsize=(8, 4))
ax.text(0.5, 0.5, f"Error creating visualization: {str(e)}",
ha='center', va='center')
ax.axis('off')
return fig
def analyze_health(age: float, bmi: float, bp: float, glucose: float) -> Tuple[plt.Figure, str]:
"""Main analysis function with error handling"""
try:
analyzer = HealthAnalyzer()
analysis, report = analyzer.analyze_metrics(age, bmi, bp, glucose)
if "error" in analysis:
raise Exception(analysis["error"])
fig = create_visualization(analysis)
return fig, report
except Exception as e:
error_fig, ax = plt.subplots(figsize=(8, 4))
ax.text(0.5, 0.5, f"Error: {str(e)}", ha='center', va='center')
ax.axis('off')
return error_fig, f"An error occurred: {str(e)}"
# Create Gradio interface
def create_gradio_interface():
interface = gr.Interface(
fn=analyze_health,
inputs=[
gr.Slider(20, 90, value=50, label="Age"),
gr.Slider(15, 45, value=25, label="BMI"),
gr.Slider(80, 200, value=120, label="Blood Pressure"),
gr.Slider(70, 200, value=100, label="Glucose")
],
outputs=[
gr.Plot(label="Health Analysis Dashboard"),
gr.Textbox(label="Health Report", lines=10)
],
title="Health Analysis System",
description="Enter patient metrics for health analysis."
)
return interface
if __name__ == "__main__":
# Launch the Gradio interface
interface = create_gradio_interface()
interface.launch() |