Spaces:
Anush008
/
Runtime error

File size: 6,612 Bytes
f75daf5
 
 
 
 
 
be527a9
f75daf5
 
 
 
 
 
 
7804c1f
f75daf5
 
 
 
7567dc4
 
f75daf5
 
 
 
 
 
 
 
 
7804c1f
f75daf5
be527a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508744a
 
 
 
36e2d86
3166d00
 
 
 
 
 
 
 
be527a9
f75daf5
 
7804c1f
f75daf5
 
 
 
7567dc4
 
7804c1f
 
 
 
 
 
f75daf5
 
 
 
 
 
 
 
 
 
 
 
 
be527a9
 
7567dc4
 
 
 
 
 
 
 
 
 
be527a9
 
 
 
7567dc4
be527a9
 
f75daf5
 
7804c1f
f75daf5
 
 
 
 
 
 
 
 
 
 
be527a9
f75daf5
 
 
 
be527a9
f75daf5
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from optimum.exporters.tasks import TasksManager

from optimum.exporters.onnx import OnnxConfigWithPast, export, validate_model_outputs

from tempfile import TemporaryDirectory

from transformers import AutoConfig, AutoTokenizer, is_torch_available

from pathlib import Path

import os
import shutil
import argparse

from typing import Optional, Tuple, List

from huggingface_hub import CommitOperationAdd, HfApi, hf_hub_download, get_repo_discussions
from huggingface_hub.file_download import repo_folder_name

SPACES_URL = "https://huggingface.co/spaces/optimum/exporters"

def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]:
    try:
        discussions = api.get_repo_discussions(repo_id=model_id)
    except Exception:
        return None
    for discussion in discussions:
        if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title:
            return discussion

def convert_onnx(model_id: str, task: str, folder: str) -> List:

    # Allocate the model
    model = TasksManager.get_model_from_task(task, model_id, framework="pt")
    model_type = model.config.model_type.replace("_", "-")
    model_name = getattr(model, "name", None)

    onnx_config_constructor = TasksManager.get_exporter_config_constructor(
        model_type, "onnx", task=task, model_name=model_name
    )
    onnx_config = onnx_config_constructor(model.config)

    needs_pad_token_id = (
        isinstance(onnx_config, OnnxConfigWithPast)
        and getattr(model.config, "pad_token_id", None) is None
        and task in ["sequence_classification"]
    )
    if needs_pad_token_id:
        #if args.pad_token_id is not None:
        #    model.config.pad_token_id = args.pad_token_id
        try:
            tok = AutoTokenizer.from_pretrained(model_id)
            model.config.pad_token_id = tok.pad_token_id
        except Exception:
            raise ValueError(
                "Could not infer the pad token id, which is needed in this case, please provide it with the --pad_token_id argument"
            )

    # Ensure the requested opset is sufficient
    opset = onnx_config.DEFAULT_ONNX_OPSET

    output = Path(folder).joinpath("model.onnx")
    onnx_inputs, onnx_outputs = export(
        model,
        onnx_config,
        opset,
        output,
    )

    atol = onnx_config.ATOL_FOR_VALIDATION
    if isinstance(atol, dict):
        atol = atol[task.replace("-with-past", "")]

    try:
        validate_model_outputs(onnx_config, model, output, onnx_outputs, atol)
        print(f"All good, model saved at: {output}")
    except ValueError:
        print(f"An error occured, but the model was saved at: {output.as_posix()}")
    
    n_files = len([name for name in os.listdir(folder) if os.path.isfile(os.path.join(folder, name)) and not name.startswith(".")])
    
    if n_files == 1:
        operations = [CommitOperationAdd(path_in_repo=file_name, path_or_fileobj=os.path.join(folder, file_name)) for file_name in os.listdir(folder)]
    else:
        operations = [CommitOperationAdd(path_in_repo=os.path.join("onnx", file_name), path_or_fileobj=os.path.join(folder, file_name)) for file_name in os.listdir(folder)]
    
    return operations


def convert(api: "HfApi", model_id: str, task: str, force: bool = False) -> Tuple[int, "CommitInfo"]:
    pr_title = "Adding ONNX file of this model"
    info = api.model_info(model_id)
    filenames = set(s.rfilename for s in info.siblings)

    requesting_user = api.whoami()["name"]

    if task == "auto":
        try:
            task = TasksManager.infer_task_from_model(model_id)
        except Exception as e:
            return f"### Error: {e}. Please pass explicitely the task as it could not be infered.", None

    with TemporaryDirectory() as d:
        folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
        os.makedirs(folder)
        new_pr = None
        try:
            pr = previous_pr(api, model_id, pr_title)
            if "model.onnx" in filenames and not force:
                raise Exception(f"Model {model_id} is already converted, skipping..")
            elif pr is not None and not force:
                url = f"https://huggingface.co/{model_id}/discussions/{pr.num}"
                new_pr = pr
                raise Exception(f"Model {model_id} already has an open PR check out {url}")
            else:
                operations = convert_onnx(model_id, task, folder)

                commit_description = f"""
                Beep boop I am the [ONNX export bot 🤖🏎️]({SPACES_URL}). On behalf of [{requesting_user}](https://huggingface.co/{requesting_user}), I would like to
                add to this repository the model converted to ONNX.

                What is ONNX? It stands for "Open Neural Network Exchange", and is the most commonly used open standard for machine learning interoperability.
                You can find out more at [onnx.ai](https://onnx.ai/)!

                The exported ONNX model can be then be consumed by various backends as TensorRT or TVM, or simply be used in a few lines
                with 🤗 Optimum through ONNX Runtime, check out how [here](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/models)!
                """
                new_pr = api.create_commit(
                    repo_id=model_id,
                    operations=operations,
                    commit_message=pr_title,
                    commit_description=commit_description,  # TODO
                    create_pr=True,
                )
        finally:
            shutil.rmtree(folder)
        return "0", new_pr


if __name__ == "__main__":
    DESCRIPTION = """
    Simple utility tool to convert automatically a model on the hub to onnx format.
    It is PyTorch exclusive for now.
    It works by downloading the weights (PT), converting them locally, and uploading them back
    as a PR on the hub.
    """
    parser = argparse.ArgumentParser(description=DESCRIPTION)
    parser.add_argument(
        "--model_id",
        type=str,
        help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`",
    )
    parser.add_argument(
        "--task",
        type=str,
        help="The task the model is performing",
    )
    parser.add_argument(
        "--force",
        action="store_true",
        help="Create the PR even if it already exists of if the model was already converted.",
    )
    args = parser.parse_args()
    api = HfApi()
    convert(api, args.model_id, task=args.task, force=args.force)