File size: 5,295 Bytes
f75daf5 04c8db1 f75daf5 89d7a1e 04c8db1 f75daf5 89d7a1e 04c8db1 f75daf5 bdeb572 f75daf5 ff649d1 fc102c7 f75daf5 fc102c7 f75daf5 04c8db1 f75daf5 fc102c7 f75daf5 7804c1f 5fc4052 7804c1f 04c8db1 f75daf5 bdeb572 f75daf5 fc102c7 f75daf5 6629271 bdeb572 8513f15 f75daf5 04c8db1 96227a0 d784f01 c20abfa d784f01 96227a0 d784f01 96227a0 d181dd0 96227a0 d181dd0 f1c3988 d181dd0 476a5d5 03f6f0b bf7786d 595bd49 03f6f0b 476a5d5 93aa084 bdeb572 f75daf5 595bd49 f75daf5 93aa084 f75daf5 bf7786d 3c5a0a8 04c8db1 bf7786d f75daf5 bf7786d f75daf5 bf7786d f75daf5 7804c1f bdeb572 f75daf5 bf7786d f75daf5 04c8db1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import csv
import os
from datetime import datetime
from typing import Optional
import gradio as gr
from huggingface_hub import HfApi, Repository
from onnx_export import convert
DATASET_REPO_URL = "https://huggingface.co/datasets/optimum/exporters"
DATA_FILENAME = "data.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)
HF_TOKEN = os.environ.get("HF_WRITE_TOKEN")
DATADIR = "exporters_data"
repo: Optional[Repository] = None
if HF_TOKEN:
repo = Repository(local_dir=DATADIR, clone_from=DATASET_REPO_URL, token=HF_TOKEN)
def onnx_export(token: str, model_id: str, task: str) -> str:
if token == "" or model_id == "":
return """
### Invalid input ๐
Please fill a token and model name.
"""
try:
api = HfApi(token=token)
error, commit_info = convert(api=api, model_id=model_id, task=task)
if error != "0":
return error
print("[commit_info]", commit_info)
# save in a private dataset
if repo is not None:
repo.git_pull(rebase=True)
with open(os.path.join(DATADIR, DATA_FILE), "a") as csvfile:
writer = csv.DictWriter(
csvfile, fieldnames=["model_id", "pr_url", "time"]
)
writer.writerow(
{
"model_id": model_id,
"pr_url": commit_info.pr_url,
"time": str(datetime.now()),
}
)
commit_url = repo.push_to_hub()
print("[dataset]", commit_url)
return f"#### Success ๐ฅ Yay! This model was successfully converted and a PR was open using your token, here: [{commit_info.pr_url}]({commit_info.pr_url})"
except Exception as e:
return f"#### Error: {e}"
TTILE_IMAGE = """
<div
style="
display: block;
margin-left: auto;
margin-right: auto;
width: 50%;
"
>
<img src="https://huggingface.co/spaces/optimum/exporters/resolve/main/clean_hf_onnx.png"/>
</div>
"""
TITLE = """
<div
style="
display: inline-flex;
align-items: center;
text-align: center;
max-width: 1400px;
gap: 0.8rem;
font-size: 2.2rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 10px; margin-top: 10px;">
Convert transformers model to ONNX with ๐ค Optimum exporters ๐๏ธ (Beta)
</h1>
</div>
"""
# for some reason https://huggingface.co/settings/tokens is not showing as a link by default?
DESCRIPTION = """
This Space allows to automatically convert to ONNX ๐ค transformers PyTorch models hosted on the Hugging Face Hub. It opens a PR on the target model, and it is up to the owner of the original model
to merge the PR to allow people to leverage the ONNX standard to share and use the model on a wide range of devices!
Once converted, the model can for example be used in the [๐ค Optimum](https://huggingface.co/docs/optimum/) library following closely the transormers API.
Check out [this guide](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/models) to see how!
The steps are the following:
- Paste a read-access token from [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens). Read access is enough given that we will open a PR against the source repo.
- Input a model id from the Hub (for example: [textattack/distilbert-base-cased-CoLA](https://huggingface.co/textattack/distilbert-base-cased-CoLA))
- Click "Convert to ONNX"
- That's it! You'll get feedback if it works or not, and if it worked, you'll get the URL of the opened PR!
Note: in case the model to convert is larger than 2 GB, it will be saved in a subfolder called `onnx/`. To load it from Optimum, the argument `subfolder="onnx"` should be provided.
"""
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=50):
gr.HTML(TTILE_IMAGE)
gr.HTML(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Column(scale=50):
input_token = gr.Textbox(max_lines=1, label="Hugging Face token")
input_model = gr.Textbox(
max_lines=1,
label="Model name",
placeholder="textattack/distilbert-base-cased-CoLA",
)
input_task = gr.Textbox(
value="auto",
max_lines=1,
label='Task (can be left to "auto", will be automatically inferred)',
)
btn = gr.Button("Convert to ONNX")
output = gr.Markdown(label="Output")
btn.click(
fn=onnx_export, inputs=[input_token, input_model, input_task], outputs=output
)
"""
demo = gr.Interface(
title="",
description=DESCRIPTION,
allow_flagging="never",
article="Check out the [๐ค Optimum repoository on GitHub](https://github.com/huggingface/optimum) as well!",
inputs=[
gr.Text(max_lines=1, label="Hugging Face token"),
gr.Text(max_lines=1, label="Model name", placeholder="textattack/distilbert-base-cased-CoLA"),
gr.Text(value="auto", max_lines=1, label="Task (can be left blank, will be automatically inferred)")
],
outputs=[gr.Markdown(label="output")],
fn=onnx_export,
)
"""
demo.launch()
|