import csv import os from datetime import datetime from typing import Optional, Union import gradio as gr from huggingface_hub import HfApi, Repository from onnx_export import convert DATASET_REPO_URL = "https://huggingface.co/datasets/optimum/exporters" DATA_FILENAME = "data.csv" DATA_FILE = os.path.join("data", DATA_FILENAME) HF_TOKEN = os.environ.get("HF_WRITE_TOKEN") DATADIR = "exporters_data" repo: Optional[Repository] = None if HF_TOKEN: repo = Repository(local_dir=DATADIR, clone_from=DATASET_REPO_URL, token=HF_TOKEN) def onnx_export(token: str, model_id: str, task: str, opset: Union[int, str]) -> str: if token == "" or model_id == "": return """ ### Invalid input 🐞 Please fill a token and model name. """ try: if opset == "": opset = None else: opset = int(opset) api = HfApi(token=token) error, commit_info = convert(api=api, model_id=model_id, task=task, opset=opset) if error != "0": return error print("[commit_info]", commit_info) # save in a private dataset if repo is not None: repo.git_pull(rebase=True) with open(os.path.join(DATADIR, DATA_FILE), "a") as csvfile: writer = csv.DictWriter( csvfile, fieldnames=["model_id", "pr_url", "time"] ) writer.writerow( { "model_id": model_id, "pr_url": commit_info.pr_url, "time": str(datetime.now()), } ) commit_url = repo.push_to_hub() print("[dataset]", commit_url) return f"#### Success 🔥 Yay! This model was successfully converted and a PR was open using your token, here: [{commit_info.pr_url}]({commit_info.pr_url})" except Exception as e: return f"#### Error: {e}" TTILE_IMAGE = """
""" TITLE = """

Convert transformers model to ONNX with 🤗 Optimum exporters 🏎️ (Beta)

""" # for some reason https://huggingface.co/settings/tokens is not showing as a link by default? DESCRIPTION = """ This Space allows you to automatically convert 🤗 transformers PyTorch models hosted on the Hugging Face Hub to [ONNX](https://onnx.ai/). It opens a PR on the target model, and it is up to the owner of the original model to merge the PR to allow people to leverage the ONNX standard to share and use the model on a wide range of devices! Once converted, the model can, for example, be used in the [🤗 Optimum](https://huggingface.co/docs/optimum/) library closely following the transformers API. Check out [this guide](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/models) to see how! The steps are as following: - Paste a read-access token from [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens). Read access is enough given that we will open a PR against the source repo. - Input a model id from the Hub (for example: [textattack/distilbert-base-cased-CoLA](https://huggingface.co/textattack/distilbert-base-cased-CoLA)) - Click "Convert to ONNX" - That's it! You'll get feedback on if the conversion was successful or not, and if it was, you'll get the URL of the opened PR! Note: in case the model to convert is larger than 2 GB, it will be saved in a subfolder called `onnx/`. To load it from Optimum, the argument `subfolder="onnx"` should be provided. """ with gr.Blocks() as demo: gr.HTML(TTILE_IMAGE) gr.HTML(TITLE) with gr.Row(): with gr.Column(scale=50): gr.Markdown(DESCRIPTION) with gr.Column(scale=50): input_token = gr.Textbox( max_lines=1, label="Hugging Face token", ) input_model = gr.Textbox( max_lines=1, label="Model name", placeholder="textattack/distilbert-base-cased-CoLA", ) input_task = gr.Textbox( value="auto", max_lines=1, label='Task (can be left to "auto", will be automatically inferred)', ) onnx_opset = gr.Textbox( placeholder="for example 14, can be left blank", max_lines=1, label="ONNX opset (optional, can be left blank)", ) btn = gr.Button("Convert to ONNX") output = gr.Markdown(label="Output") btn.click( fn=onnx_export, inputs=[input_token, input_model, input_task, onnx_opset], outputs=output, ) """ demo = gr.Interface( title="", description=DESCRIPTION, allow_flagging="never", article="Check out the [🤗 Optimum repoository on GitHub](https://github.com/huggingface/optimum) as well!", inputs=[ gr.Text(max_lines=1, label="Hugging Face token"), gr.Text(max_lines=1, label="Model name", placeholder="textattack/distilbert-base-cased-CoLA"), gr.Text(value="auto", max_lines=1, label="Task (can be left blank, will be automatically inferred)") ], outputs=[gr.Markdown(label="output")], fn=onnx_export, ) """ demo.launch()