Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,34 @@
|
|
|
|
1 |
import torch
|
2 |
from transformers import pipeline
|
3 |
from datasets import load_dataset
|
4 |
|
5 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
"automatic-speech-recognition",
|
9 |
model="openai/whisper-small",
|
10 |
chunk_length_s=30,
|
11 |
-
|
12 |
-
)
|
13 |
-
|
14 |
-
|
15 |
-
sample = ds[0]["audio"]
|
16 |
|
17 |
-
|
|
|
18 |
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
|
|
|
1 |
+
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import pipeline
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
7 |
|
8 |
+
# ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
9 |
+
# sample = ds[0]["audio"]
|
10 |
+
|
11 |
+
def transcribe_audio(sample):
|
12 |
+
pipe = pipeline(
|
13 |
"automatic-speech-recognition",
|
14 |
model="openai/whisper-small",
|
15 |
chunk_length_s=30,
|
16 |
+
)
|
17 |
+
# prediction = pipe(sample.copy(), batch_size=8)["text"]
|
18 |
+
prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"]
|
19 |
+
return prediction
|
|
|
20 |
|
21 |
+
# we can also return timestamps for the predictions
|
22 |
+
|
23 |
|
24 |
|
25 |
+
interface = gr.Interface(
|
26 |
+
fn=transcribe_audio, # The function to be applied to the audio input
|
27 |
+
inputs=gr.Audio(type="filepath"), # Users can record or upload audio
|
28 |
+
outputs="text", # The output is the transcription (text)
|
29 |
+
title="Whisper Small ASR", # Title of your app
|
30 |
+
description="Transcription using Whisper Small." # Description of your app
|
31 |
+
)
|
32 |
|
33 |
+
# **This line starts the Gradio app**
|
34 |
+
interface.launch()
|