Spaces:
Sleeping
Sleeping
File size: 78,925 Bytes
038becc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 |
Issue Title,Description,Created At,Comments
[xla:gpu] Extend collective-permute decomposer to also make decision for,"[xla:gpu] Extend collective-permute decomposer to also make decision for
Send-Recv pipeling and record the decision with frontend attributes.
We first use a simple heuristics to decide on the decomposition of which
CollectivePermute operations will be pipelined. We will only pipeline
CollectivePermute that sends loop input data, and pick the first
pipelineable CollectivePermute for pipelining. Then, if there is another
pipelineable CollectivePermute that forms a cycle with the to-be-pipelined
CollectivePermute, we will pipeline both CollectivePermute. Otherwise, we will
only pipeline one CollectivePermute.
Then, when we decompose CollectivePermute operations, we add a frontend
attribute to the Send/Recv operation to represent the pipelining decision.
Add tests.
",2024-03-11T05:16:45Z,0
Microoptmize the conditions in IsArrayType.,"Microoptmize the conditions in IsArrayType.
",2024-03-11T04:30:26Z,0
Do not call Shape::is_static when unnecessary.,"Do not call Shape::is_static when unnecessary.
",2024-03-11T04:26:26Z,0
Eliminate unnecessary copies for HloSharding.,"Eliminate unnecessary copies for HloSharding.
",2024-03-11T04:25:26Z,0
Add Dynamic Range Quantized op support for `op_stat_pass.cc`.,"Add Dynamic Range Quantized op support for `op_stat_pass.cc`.
- Cleanup header imports as well.
",2024-03-11T03:12:47Z,0
Add check conditions in `quantization_driver_test.cc`.,"Add check conditions in `quantization_driver_test.cc`.
- Adds more rigorous checks for desired states in intermediate testing stages.
- Renames and rewrites `IsEmpty` and `HasQuantParams` for clarity.
",2024-03-11T02:17:30Z,0
2.16.1 libtensorflow binary,"### Issue type
Support
### Have you reproduced the bug with TensorFlow Nightly?
Yes
### Source
binary
### TensorFlow version
2.16.1
### Custom code
No
### OS platform and distribution
Linux
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
Yes
### Current behavior?
Hi!
Tensorflow 2.16.1 has been [released](https://github.com/tensorflow/tensorflow/releases/tag/v2.16.1) recently. However, the latest archive with the `libtensorflow` on the official website [is still 2.15](https://www.tensorflow.org/install/lang_c). Where can I get the latest 2.16.1 `libtensorflow` with GPU support for Linux?
### Standalone code to reproduce the issue
```shell
-
```
### Relevant log output
_No response_",2024-03-10T20:56:00Z,0
Make function loading more concurrent with `TF_ENABLE_EAGER_CLIENT_STREAMING_ENQUEUE` set to `false`,"Make function loading more concurrent with `TF_ENABLE_EAGER_CLIENT_STREAMING_ENQUEUE` set to `false`
",2024-03-10T19:12:58Z,0
Testing a temporary code change.,"Testing a temporary code change.
",2024-03-10T18:13:15Z,0
[XLA:Python] Port py_values to nanobind.,"[XLA:Python] Port py_values to nanobind.
",2024-03-10T15:11:31Z,0
tf.tensor_scatter_nd_add: Aborted (core dumped),"### Issue type
Bug
### Have you reproduced the bug with TensorFlow Nightly?
Yes
### Source
binary
### TensorFlow version
tf 2.15
### Custom code
Yes
### OS platform and distribution
Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.9
### Bazel version
_No response_
### GCC/compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current behavior?
Under specific input, `tf.tensor_scatter_nd_add` encounters ""Aborted (core dumped)"".
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
# Generate input data
input_tensor = tf.zeros([15, 15, 15])
indices = tf.constant([[[0, 0, 0], [1, 1, 1]], [[2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5]], [[6, 6, 6], [7, 7, 7]], [[8, 8, 8], [9, 9, 9]], [[10, 10, 10], [11, 11, 11]], [[12, 12, 12], [13, 13, 13]], [[14, 14, 14], [0, 0, 0]], [[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]], [[7, 7, 7], [8, 8, 8]], [[9, 9, 9], [10, 10, 10]], [[11, 11, 11], [12, 12, 12]], [[13, 13, 13], [14, 14, 14]]])
updates = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0]) # Cast updates to float
# Invoke tf.tensor_scatter_nd_add
result = tf.tensor_scatter_nd_add(input_tensor, indices, updates)
# Print the result
print(result)
```
### Relevant log output
```shell
2024-03-10 14:59:51.853766: F tensorflow/core/framework/tensor_shape.cc:357] Check failed: d < dims() (1 vs. 1)
Aborted (core dumped)
```
",2024-03-10T15:00:49Z,0
tf.raw_ops.UnicodeEncode: Segmentation fault (core dumped),"### Issue type
Bug
### Have you reproduced the bug with TensorFlow Nightly?
Yes
### Source
binary
### TensorFlow version
tf 2.15
### Custom code
Yes
### OS platform and distribution
Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.9
### Bazel version
_No response_
### GCC/compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current behavior?
Under specific input, `tf.raw_ops.UnicodeEncode` encounters ""Segmentation fault (core dumped)"".
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
# Generate input data
input_values = tf.constant([72, 101, 108, 108, 111, 32, 87, 111, 114, 108, 100]) # Unicode codepoints for ""Hello World""
input_splits = tf.constant([[0, 5, 11]]) # Split indices for the input_values with two dimensions
output_encoding = ""UTF-8""
# Invoke tf.raw_ops.unicode_encode
output = tf.raw_ops.UnicodeEncode(input_values=input_values, input_splits=input_splits, output_encoding=output_encoding)
# Print the output
print(output)
```
### Relevant log output
```shell
Segmentation fault (core dumped)
```
",2024-03-10T14:59:08Z,0
tf.raw_ops.TensorScatterSub: Aborted (core dumped),"### Issue type
Bug
### Have you reproduced the bug with TensorFlow Nightly?
Yes
### Source
binary
### TensorFlow version
tf 2.15
### Custom code
Yes
### OS platform and distribution
Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.9
### Bazel version
_No response_
### GCC/compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current behavior?
Under specific input, `tf.raw_ops.TensorScatterSub` encounters ""Aborted (core dumped)"".
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
# Generate input data
tensor = tf.constant([1, 2, 3, 4, 5])
indices = tf.constant([[[1], [3]], [[0], [2]]]) # Nested structure for indices
updates = tf.constant([10, 20])
# Invoke tf.raw_ops.TensorScatterSub
result = tf.raw_ops.TensorScatterSub(tensor=tensor, indices=indices, updates=updates)
# Print the result
print(result)
```
### Relevant log output
```shell
2024-03-10 14:55:41.958738: F tensorflow/core/framework/tensor_shape.cc:357] Check failed: d < dims() (1 vs. 1)
Aborted (core dumped)
```
",2024-03-10T14:57:36Z,0
tf.raw_ops.SparseConcat: Overflow bug ,"### Issue type
Bug
### Have you reproduced the bug with TensorFlow Nightly?
Yes
### Source
binary
### TensorFlow version
tf 2.15
### Custom code
Yes
### OS platform and distribution
Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.9
### Bazel version
_No response_
### GCC/compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current behavior?
Under specific input, `tf.raw_ops.SparseConcat` encounters overflow bug.
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
# Generate input data
indices1 = tf.constant([[0, 0], [1, 2]], dtype=tf.int64)
values1 = tf.constant([1, 2], dtype=tf.float32)
shape1 = tf.constant([3, 4], dtype=tf.int64)
indices2 = tf.constant([[0, 1], [2, 3]], dtype=tf.int64)
values2 = tf.constant([3, 4], dtype=tf.float32)
shape2 = tf.constant([-1, 4], dtype=tf.int64) # Mutated shape with the negative bit set
# Invoke tf.raw_ops.SparseConcat
concatenated_sparse = tf.raw_ops.SparseConcat(
indices=[indices1, indices2],
values=[values1, values2],
shapes=[shape1, shape2],
concat_dim=0
)
print(concatenated_sparse)
```
### Relevant log output
```shell
tensorflow.python.framework.errors_impl.InternalError: {{function_node __wrapped__SparseConcat_N_2_device_/job:localhost/replica:0/task:0/device:CPU:0}} Encountered overflow from large input shape. [Op:SparseConcat] name:
```
",2024-03-10T14:55:13Z,0
tf.raw_ops.FusedPadConv2D: Aborted (core dumped),"### Issue type
Bug
### Have you reproduced the bug with TensorFlow Nightly?
Yes
### Source
binary
### TensorFlow version
tf 2.15
### Custom code
Yes
### OS platform and distribution
Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.9
### Bazel version
_No response_
### GCC/compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current behavior?
Under specific input, `tf.raw_ops.FusedPadConv2D` encounters ""Aborted (core dumped)"".
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
# Generate input data
input_data = tf.random.normal([3, 10, 10])
# Define paddings
paddings = tf.constant([[0, 0], [1, 1], [1, 1]])
# Define filter
filter = tf.random.normal([3, 3, 3, 16])
# Define mode
mode = ""REFLECT"" # Change mode to ""REFLECT"" or ""SYMMETRIC""
# Define strides
strides = [1, 1, 1, 1]
# Define padding
padding = ""VALID""
# Invoke tf.raw_ops.FusedPadConv2D
output = tf.raw_ops.FusedPadConv2D(input=input_data, paddings=paddings, filter=filter, mode=mode, strides=strides, padding=padding)
print(output)
```
### Relevant log output
```shell
2024-03-10 14:49:28.555826: F tensorflow/core/framework/tensor_shape.cc:357] Check failed: d < dims() (3 vs. 3)
Aborted (core dumped)
```
",2024-03-10T14:51:07Z,0
tf.tensor_scatter_nd_update: Aborted (core dumped),"### Issue type
Bug
### Have you reproduced the bug with TensorFlow Nightly?
Yes
### Source
binary
### TensorFlow version
tf 2.15
### Custom code
Yes
### OS platform and distribution
Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.9
### Bazel version
_No response_
### GCC/compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current behavior?
Under specific input, `tf.tensor_scatter_nd_update` encounters ""Aborted (core dumped)"".
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
# Generate input data
input_tensor = tf.zeros([2, 2, 2]) # A tensor that contains other tensors, creating a nested structure
indices = tf.constant([[[0, 0, 0], [1, 1, 1]], [[1, 0, 1], [0, 1, 0]]])
updates = tf.constant([1, 2], dtype=tf.float32) # Cast updates to float
# Invoke tf.tensor_scatter_nd_update
result = tf.tensor_scatter_nd_update(input_tensor, indices, updates)
# Print the result
print(result)
```
### Relevant log output
```shell
2024-03-10 14:36:43.315650: F tensorflow/core/framework/tensor_shape.cc:357] Check failed: d < dims() (1 vs. 1)
Aborted (core dumped)
```
",2024-03-10T14:48:19Z,0
failed to compile a tensorflow C++ example. # Error incompatible with your Protocol Buffer headers ,"### Issue type
Bug
### Have you reproduced the bug with TensorFlow Nightly?
No
### Source
source
### TensorFlow version
tf 2.15.0
### Custom code
No
### OS platform and distribution
Linux Ubuntu 22.04
### Mobile device
_No response_
### Python version
3.10.12
### Bazel version
6.1.0
### GCC/compiler version
11.4.0
### CUDA/cuDNN version
12.2/8.9.7
### GPU model and memory
GTX 3090/24G
### Current behavior?
I first compiled TensorFlow using Bazel according to the official documentation, these are my operations:
`git clone https://github.com/tensorflow/tensorflow`
`cd tensorflow`
`git checkout r2.15`
`./configure `
and information is:
>
> You have bazel 6.1.0 installed.
> Please specify the location of python. [Default is /usr/bin/python3]:
>
>
> Found possible Python library paths:
> /usr/lib/python3/dist-packages
> /usr/local/lib/python3.10/dist-packages
> Please input the desired Python library path to use. Default is [/usr/lib/python3/dist-packages]
>
> Do you wish to build TensorFlow with ROCm support? [y/N]: n
> No ROCm support will be enabled for TensorFlow.
>
> Do you wish to build TensorFlow with CUDA support? [y/N]: y
> CUDA support will be enabled for TensorFlow.
>
> Do you wish to build TensorFlow with TensorRT support? [y/N]: n
> No TensorRT support will be enabled for TensorFlow.
>
> Found CUDA 12.2 in:
> /usr/local/cuda-12.2/targets/x86_64-linux/lib
> /usr/local/cuda-12.2/targets/x86_64-linux/include
> Found cuDNN 8 in:
> /usr/lib/x86_64-linux-gnu
> /usr/include
>
>
> Please specify a list of comma-separated CUDA compute capabilities you want to build with.
> You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus. Each capability can be specified as ""x.y"" or ""compute_xy"" to include both virtual and binary GPU code, or as ""sm_xy"" to only include the binary code.
> Please note that each additional compute capability significantly increases your build time and binary size, and that TensorFlow only supports compute capabilities >= 3.5 [Default is: 8.6]:
>
>
> Do you want to use clang as CUDA compiler? [Y/n]: n
> nvcc will be used as CUDA compiler.
>
> Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]:
>
>
> Please specify optimization flags to use during compilation when bazel option ""--config=opt"" is specified [Default is -Wno-sign-compare]:
>
>
> Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: n
> Not configuring the WORKSPACE for Android builds.
>
> Preconfigured Bazel build configs. You can use any of the below by adding ""--config=<>"" to your build command. See .bazelrc for more details.
> --config=mkl # Build with MKL support.
> --config=mkl_aarch64 # Build with oneDNN and Compute Library for the Arm Architecture (ACL).
> --config=monolithic # Config for mostly static monolithic build.
> --config=numa # Build with NUMA support.
> --config=dynamic_kernels # (Experimental) Build kernels into separate shared objects.
> --config=v1 # Build with TensorFlow 1 API instead of TF 2 API.
> Preconfigured Bazel build configs to DISABLE default on features:
> --config=nogcp # Disable GCP support.
> --config=nonccl # Disable NVIDIA NCCL support.
> Configuration finished
and I then compile with bazel:
`bazel build --config=cuda tensorflow:tensorflow_cc`
`bazel build tensorflow:install_headers`
There were no issues, I successfully compiled the header files and link libraries I wanted in the `bazel-bin` folder.
But when I try to compile a C++ sample:
```
#include <tensorflow/core/platform/env.h>
#include <tensorflow/core/public/session.h>
#include <iostream>
using namespace std;
using namespace tensorflow;
int main()
{
Session* session;
Status status = NewSession(SessionOptions(), &session);
if (!status.ok()) {
cout << status.ToString() << ""\n"";
return 1;
}
cout << ""Session successfully created.\n"";
}
```
command is
`g++ -std=c++14 -o tf_example -I/home/wangchen/tensorflow/bazel-bin/tensorflow/include -L/home/wangchen/tensorflow/bazel-bin/tensorflow/libtensorflow_cc -L/home/wangchen/tensorflow/bazel-bin/tensorflow/libtensorflow_framework -ltensorflow_framework -ltensorflow_cc tf_example.cpp `
I got an error #error This file was generated by an older version of protoc which is incompatible with your Protocol Buffer headers. Please regenerate this file with a newer version of protoc.
My protobuf is compiled from official repo, the versions are:
```
{
""23.x"": {
""protoc_version"": ""23.4"",
""lts"": false,
""date"": ""2023-07-05"",
""languages"": {
""cpp"": ""4.23.4"",
""csharp"": ""3.23.4"",
""java"": ""3.23.4"",
""javascript"": ""3.23.4"",
""objectivec"": ""3.23.4"",
""php"": ""3.23.4"",
""python"": ""4.23.4"",
""ruby"": ""3.23.4""
}
}
}
```
I suspect there might be some protobuf versions that are incompatible with my TensorFlow.
What methods should I use to obtain the correct version?
I would greatly appreciate any proposed solutions.
### Standalone code to reproduce the issue
```shell
#include <tensorflow/core/platform/env.h>
#include <tensorflow/core/public/session.h>
#include <iostream>
using namespace std;
using namespace tensorflow;
int main()
{
Session* session;
Status status = NewSession(SessionOptions(), &session);
if (!status.ok()) {
cout << status.ToString() << ""\n"";
return 1;
}
cout << ""Session successfully created.\n"";
}
```
```
### Relevant log output
```shell
wangchen@wc:~/tfc++test$ g++ -std=c++14 -o tf_example -I/home/wangchen/tensorflow/bazel-bin/tensorflow/include -L/home/wangchen/tensorflow/bazel-bin/tensorflow/libtensorflow_cc -L/home/wangchen/tensorflow/bazel-bin/tensorflow/libtensorflow_framework -ltensorflow_framework -ltensorflow_cc tf_example.cpp
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tsl/platform/status.h:39,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/platform/status.h:23,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/platform/errors.h:27,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/platform/env.h:27,
from tf_example.cpp:1:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tsl/protobuf/error_codes.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tsl/protobuf/error_codes.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tsl/protobuf/error_codes.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:24,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/device_attributes.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/device_attributes.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/device_attributes.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:33,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:36,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:33,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/attr_value.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/attr_value.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/attr_value.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/attr_value.pb.h:36,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:36,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:33,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor.pb.h:33,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/attr_value.pb.h:36,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:36,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:33,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/resource_handle.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/resource_handle.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/resource_handle.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/resource_handle.pb.h:33,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor.pb.h:33,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/attr_value.pb.h:36,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:36,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:33,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor_shape.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor_shape.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor_shape.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/resource_handle.pb.h:34,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor.pb.h:33,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/attr_value.pb.h:36,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:36,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:33,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/types.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/types.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/types.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:37,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:33,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/node_def.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/node_def.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/node_def.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/node_def.pb.h:37,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:37,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:33,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/full_type.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/full_type.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/full_type.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:38,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:33,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/op_def.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/op_def.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/op_def.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:34,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph_debug_info.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph_debug_info.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph_debug_info.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:36,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/versions.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/versions.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/versions.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:30,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/config.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/config.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/config.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/config.pb.h:37,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:30,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/cost_graph.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/cost_graph.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/cost_graph.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/config.pb.h:39,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:30,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/step_stats.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/step_stats.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/step_stats.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/step_stats.pb.h:36,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/config.pb.h:39,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:30,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/allocation_description.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/allocation_description.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/allocation_description.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/step_stats.pb.h:37,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/config.pb.h:39,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:30,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor_description.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor_description.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor_description.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/config.pb.h:40,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:30,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/cluster.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/cluster.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/cluster.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/config.pb.h:41,
from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:30,
from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/debug.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
17 | #error This file was generated by an older version of protoc which is
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/debug.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
18 | #error incompatible with your Protocol Buffer headers. Please
| ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/debug.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
19 | #error regenerate this file with a newer version of protoc.
| ^~~~~
```
",2024-03-10T04:22:46Z,0
Saved model won't load: Unable to synchronously open object (bad local heap signature),"### Issue type
Bug
### Have you reproduced the bug with TensorFlow Nightly?
Yes
### Source
binary
### TensorFlow version
2.16.1
### Custom code
Yes
### OS platform and distribution
windows 10
### Mobile device
_No response_
### Python version
3.12
### Bazel version
_No response_
### GCC/compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current behavior?
Model saved from Python 3.12 tensorflow 2.16.1
model.save('my_model.keras', overwrite=True)
After this the model does not load
### Standalone code to reproduce the issue
```shell
model=tf.keras.models.load_model('my_model.keras', custom_objects=None, compile=True, safe_mode=True)
```
### Relevant log output
```shell
Traceback (most recent call last):
File ""D:\Project\main.py"", line 391, in <module>
model=tf.keras.models.load_model('my_model.keras', custom_objects=None, compile=True, safe_mode=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File ""D:\Project\venv\Lib\site-packages\keras\src\saving\saving_api.py"", line 176, in load_model
return saving_lib.load_model(
^^^^^^^^^^^^^^^^^^^^^^
File ""D:\Project\venv\Lib\site-packages\keras\src\saving\saving_lib.py"", line 192, in load_model
_raise_loading_failure(error_msgs)
File ""D:\Project\venv\Lib\site-packages\keras\src\saving\saving_lib.py"", line 273, in _raise_loading_failure
raise ValueError(msg)
ValueError: A total of 13 objects could not be loaded. Example error message for object <Sequential name=sequential, built=True>:
'Unable to synchronously open object (bad local heap signature)'
List of objects that could not be loaded:
[<Sequential name=sequential, built=True>, <TextVectorization name=text_vectorization, built=True>, <StringLookup name=string_lookup_1, built=False>, <Embedding name=embedding, built=True>, <Conv1D name=conv1d, built=True>, <Dropout name=dropout, built=True>, <Conv1D name=conv1d_1, built=True>, <Dropout name=dropout_1, built=True>, <GlobalMaxPooling1D name=global_max_pooling1d, built=True>, <Dense name=dense, built=True>, <Dropout name=dropout_2, built=True>, <Dense name=dense_1, built=True>, <keras.src.optimizers.adam.Adam object at 0x000001C5026B24E0>]
```
",2024-03-10T04:07:46Z,1
Tensorflow import error,"### Issue type
Build/Install
### Have you reproduced the bug with TensorFlow Nightly?
Yes
### Source
source
### TensorFlow version
tf 2.13.0
### Custom code
Yes
### OS platform and distribution
Win 11
### Mobile device
_No response_
### Python version
3.9.7
### Bazel version
_No response_
### GCC/compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current behavior?
I intalled tensorflow, but it gives an error when I try to import it.
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
```
### Relevant log output
```shell
runfile('X:/Nano-Photonics and Quantum Optics Lab!/ML Project/Tkinter learning/Tkinter Git - GitLab/Inverse_Design_Periodic_GUI_CustomModern.py', wdir='X:/Nano-Photonics and Quantum Optics Lab!/ML Project/Tkinter learning/Tkinter Git - GitLab')
Traceback (most recent call last):
File ""X:\Nano-Photonics and Quantum Optics Lab!\ML Project\Tkinter learning\Tkinter Git - GitLab\Inverse_Design_Periodic_GUI_CustomModern.py"", line 20, in <module>
import tensorflow as tf #print(tf.__version__)
File ""C:\Users\athen\anaconda3\lib\site-packages\tensorflow\__init__.py"", line 469, in <module>
_keras._load()
File ""C:\Users\athen\anaconda3\lib\site-packages\tensorflow\python\util\lazy_loader.py"", line 41, in _load
module = importlib.import_module(self.__name__)
File ""C:\Users\athen\anaconda3\lib\importlib\__init__.py"", line 127, in import_module
return _bootstrap._gcd_import(name[level:], package, level)
File ""C:\Users\athen\anaconda3\lib\site-packages\keras\__init__.py"", line 20, in <module>
from keras import distribute
File ""C:\Users\athen\anaconda3\lib\site-packages\keras\distribute\__init__.py"", line 18, in <module>
from keras.distribute import sidecar_evaluator
File ""C:\Users\athen\anaconda3\lib\site-packages\keras\distribute\sidecar_evaluator.py"", line 22, in <module>
from keras.optimizers.optimizer_experimental import (
File ""C:\Users\athen\anaconda3\lib\site-packages\keras\optimizers\__init__.py"", line 25, in <module>
from keras import backend
File ""C:\Users\athen\anaconda3\lib\site-packages\keras\backend\__init__.py"", line 3, in <module>
from keras.backend import experimental
File ""C:\Users\athen\anaconda3\lib\site-packages\keras\backend\experimental\__init__.py"", line 3, in <module>
from keras.src.backend import disable_tf_random_generator
File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\__init__.py"", line 21, in <module>
from keras.src import applications
File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\applications\__init__.py"", line 18, in <module>
from keras.src.applications.convnext import ConvNeXtBase
File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\applications\convnext.py"", line 28, in <module>
from keras.src import backend
File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\backend.py"", line 35, in <module>
from keras.src.engine import keras_tensor
File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\engine\keras_tensor.py"", line 19, in <module>
from keras.src.utils import object_identity
File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\utils\__init__.py"", line 20, in <module>
from keras.src.saving.serialization_lib import deserialize_keras_object
File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\saving\serialization_lib.py"", line 28, in <module>
from keras.src.saving.legacy.saved_model.utils import in_tf_saved_model_scope
File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\saving\legacy\saved_model\utils.py"", line 30, in <module>
from keras.src.utils.layer_utils import CallFunctionSpec
File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\utils\layer_utils.py"", line 26, in <module>
from keras.src import initializers
File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\initializers\__init__.py"", line 23, in <module>
from keras.src.initializers import initializers_v1
File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\initializers\initializers_v1.py"", line 32, in <module>
keras_export(v1=[""keras.initializers.Zeros"", ""keras.initializers.zeros""])(
File ""C:\Users\athen\anaconda3\lib\site-packages\tensorflow\python\util\tf_export.py"", line 348, in __call__
self.set_attr(undecorated_func, api_names_attr, self._names)
File ""C:\Users\athen\anaconda3\lib\site-packages\tensorflow\python\util\tf_export.py"", line 363, in set_attr
raise SymbolAlreadyExposedError(
SymbolAlreadyExposedError: Symbol Zeros is already exposed as ().
```
",2024-03-10T01:09:44Z,2
TF 2.16.1 Fails to work with GPUs,"### Issue type
Bug
### Have you reproduced the bug with TensorFlow Nightly?
No
### Source
binary
### TensorFlow version
TF 2.16.1
### Custom code
No
### OS platform and distribution
Linux Ubuntu 22.04.4 LTS
### Mobile device
_No response_
### Python version
3.10.12
### Bazel version
_No response_
### GCC/compiler version
_No response_
### CUDA/cuDNN version
12.4
### GPU model and memory
_No response_
### Current behavior?
I created a python venv in which I installed TF 2.16.1 following your instructions: pip install tensorflow
When I run python, import tf, and issue tf.config.list_physical_devices('GPU')
I get an empty list [ ]
I created another python venv, installed TF 2.16.1, only this time with the instructions:
python3 -m pip install tensorflow[and-cuda]
When I run that version, import tensorflow as tf, and issue
tf.config.list_physical_devices('GPU')
I also get an empty list.
BTW, I have no problems running on my box TF 2.15.1 with GPUs. Julia also works just fine with GPUs and so does PyTorch.
the
### Standalone code to reproduce the issue
```shell
Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on linux
Type ""help"", ""copyright"", ""credits"" or ""license"" for more information.
>>> import tensorflow as tf
2024-03-09 19:15:45.018171: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-03-09 19:15:50.412646: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
>>> tf.__version__
'2.16.1'
tf.config.list_physical_devices('GPU')
2024-03-09 19:16:28.923792: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
2024-03-09 19:16:29.078379: W tensorflow/core/common_runtime/gpu/gpu_device.cc:2251] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...
[]
>>>
```
### Relevant log output
_No response_",2024-03-10T00:17:36Z,6
Replace `RemoteTensorHandle` with `TensorProto` for scalars in an `EnqueueRequest` except for `DT_RESOURCE`,"Replace `RemoteTensorHandle` with `TensorProto` for scalars in an `EnqueueRequest` except for `DT_RESOURCE`
",2024-03-09T20:18:30Z,0
tensorflow 2.16.1 build error: Compiling xla/service/cpu/onednn_matmul.cc failed,"### Issue type
Bug
### Have you reproduced the bug with TensorFlow Nightly?
No
### Source
source
### TensorFlow version
2.16.1
### Custom code
No
### OS platform and distribution
Linux Ubuntu 22.04
### Mobile device
_No response_
### Python version
3.11.8
### Bazel version
6.5.0
### GCC/compiler version
11.4.0
### CUDA/cuDNN version
12.4/9.0.0.312
### GPU model and memory
NVIDIA GeForce 940MX
### Current behavior?
INFO: Reading 'startup' options from ~/Documents/dev/git/tensorflow/.bazelrc: --windows_enable_symlinks
INFO: Options provided by the client:
Inherited 'common' options: --isatty=1 --terminal_columns=211
INFO: Reading rc options for 'build' from ~/Documents/dev/git/tensorflow/.bazelrc:
Inherited 'common' options: --experimental_repo_remote_exec
INFO: Reading rc options for 'build' from ~/Documents/dev/git/tensorflow/.bazelrc:
'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --features=-force_no_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility
INFO: Reading rc options for 'build' from ~/Documents/dev/git/tensorflow/.tf_configure.bazelrc:
'build' options: --action_env PYTHON_BIN_PATH=~/Documents/dev/programs/miniconda3/envs/tf/bin/python3 --action_env PYTHON_LIB_PATH=~/Documents/dev/programs/miniconda3/envs/tf/lib/python3.11/site-packages --python_path=~/Documents/dev/programs/miniconda3/envs/tf/bin/python3 --action_env CUDA_TOOLKIT_PATH=/usr/local/cuda-12.3 --action_env TF_CUDA_COMPUTE_CAPABILITIES=5.0 --action_env LD_LIBRARY_PATH=/usr/lib/libreoffice/program:/usr/local/cuda/targets/x86_64-linux/lib:/usr/lib/x86_64-linux-gnu --action_env GCC_HOST_COMPILER_PATH=/usr/bin/x86_64-linux-gnu-gcc-11 --config=cuda
INFO: Found applicable config definition build:short_logs in file ~/Documents/dev/git/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING
INFO: Found applicable config definition build:v2 in file ~/Documents/dev/git/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1
INFO: Found applicable config definition build:cuda in file ~/Documents/dev/git/tensorflow/.bazelrc: --repo_env TF_NEED_CUDA=1 --crosstool_top=@local_config_cuda//crosstool:toolchain --@local_config_cuda//:enable_cuda
INFO: Found applicable config definition build:mkl in file ~/Documents/dev/git/tensorflow/.bazelrc: --define=build_with_mkl=true --define=enable_mkl=true --define=tensorflow_mkldnn_contraction_kernel=0 --define=build_with_openmp=true -c opt
INFO: Found applicable config definition build:opt in file ~/Documents/dev/git/tensorflow/.tf_configure.bazelrc: --copt=-Wno-sign-compare --host_copt=-Wno-sign-compare
INFO: Found applicable config definition build:linux in file ~/Documents/dev/git/tensorflow/.bazelrc: --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --copt=-Wno-error=unused-but-set-variable --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --experimental_guard_against_concurrent_changes
INFO: Found applicable config definition build:dynamic_kernels in file ~/Documents/dev/git/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS
INFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (711 packages loaded, 51601 targets configured).
INFO: Found 1 target...
ERROR: ~/.cache/bazel/_bazel_vyepishov/cf67b2b2e967476eb2b1ee98e33ab5bd/external/local_xla/xla/service/cpu/BUILD:1638:11: Compiling xla/service/cpu/onednn_matmul.cc failed: (Exit 1): crosstool_wrapper_driver_is_not_gcc failed: error executing command (from target @local_xla//xla/service/cpu:onednn_matmul) external/local_config_cuda/crosstool/clang/bin/crosstool_wrapper_driver_is_not_gcc -MD -MF bazel-out/k8-opt/bin/external/local_xla/xla/service/cpu/_objs/onednn_matmul/onednn_matmul.pic.d ... (remaining 229 arguments skipped)
In file included from external/local_xla/xla/shape.h:28,
from external/local_xla/xla/service/cpu/onednn_matmul.h:21,
from external/local_xla/xla/service/cpu/onednn_matmul.cc:18:
external/local_xla/xla/layout.h:377:18: warning: ‘xla::Layout::DimInfo::dim_level_type’ is too small to hold all values of ‘enum xla::DimLevelType’
377 | DimLevelType dim_level_type : 6;
| ^~~~~~~~~~~~~~
external/local_xla/xla/layout.h:389:17: warning: ‘xla::Layout::index_primitive_type_’ is too small to hold all values of ‘enum xla::PrimitiveType’
389 | PrimitiveType index_primitive_type_ : 8;
| ^~~~~~~~~~~~~~~~~~~~~
external/local_xla/xla/layout.h:390:17: warning: ‘xla::Layout::pointer_primitive_type_’ is too small to hold all values of ‘enum xla::PrimitiveType’
390 | PrimitiveType pointer_primitive_type_ : 8;
| ^~~~~~~~~~~~~~~~~~~~~~~
external/local_xla/xla/service/cpu/onednn_matmul.cc: In function ‘void xla::cpu::__xla_cpu_runtime_OneDnnMatMul(void*, void**)’:
external/local_xla/xla/service/cpu/onednn_matmul.cc:186:68: error: cannot convert ‘std::unique_ptr<tsl::OneDnnThreadPool>::pointer’ {aka ‘tsl::OneDnnThreadPool*’} to ‘dnnl::threadpool_interop::threadpool_iface*’
186 | auto onednn_stream = MakeOneDnnStream(cpu_engine, thread_pool.get());
| ~~~~~~~~~~~~~~~^~
| |
| std::unique_ptr<tsl::OneDnnThreadPool>::pointer {aka tsl::OneDnnThreadPool*}
external/local_xla/xla/service/cpu/onednn_matmul.cc:148:49: note: initializing argument 2 of ‘dnnl::stream xla::cpu::{anonymous}::MakeOneDnnStream(const dnnl::engine&, dnnl::threadpool_interop::threadpool_iface*)’
148 | dnnl::threadpool_interop::threadpool_iface* thread_pool) {
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~
external/local_xla/xla/service/cpu/onednn_matmul.cc: In function ‘void xla::cpu::__xla_cpu_runtime_OneDnnMatMulReorder(void*, void**)’:
external/local_xla/xla/service/cpu/onednn_matmul.cc:322:68: error: cannot convert ‘std::unique_ptr<tsl::OneDnnThreadPool>::pointer’ {aka ‘tsl::OneDnnThreadPool*’} to ‘dnnl::threadpool_interop::threadpool_iface*’
322 | auto onednn_stream = MakeOneDnnStream(cpu_engine, thread_pool.get());
| ~~~~~~~~~~~~~~~^~
| |
| std::unique_ptr<tsl::OneDnnThreadPool>::pointer {aka tsl::OneDnnThreadPool*}
external/local_xla/xla/service/cpu/onednn_matmul.cc:148:49: note: initializing argument 2 of ‘dnnl::stream xla::cpu::{anonymous}::MakeOneDnnStream(const dnnl::engine&, dnnl::threadpool_interop::threadpool_iface*)’
148 | dnnl::threadpool_interop::threadpool_iface* thread_pool) {
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~
Target //tensorflow/tools/pip_package:build_pip_package failed to build
Use --verbose_failures to see the command lines of failed build steps.
INFO: Elapsed time: 16142.186s, Critical Path: 328.40s
INFO: 25824 processes: 8831 internal, 16993 local.
FAILED: Build did NOT complete successfully
### Standalone code to reproduce the issue
```shell
bazel build --config=mkl --config=opt //tensorflow/tools/pip_package:build_pip_package
```
### Relevant log output
```shell
INFO: Reading 'startup' options from ~/Documents/dev/git/tensorflow/.bazelrc: --windows_enable_symlinks
INFO: Options provided by the client:
Inherited 'common' options: --isatty=1 --terminal_columns=211
INFO: Reading rc options for 'build' from ~/Documents/dev/git/tensorflow/.bazelrc:
Inherited 'common' options: --experimental_repo_remote_exec
INFO: Reading rc options for 'build' from ~/Documents/dev/git/tensorflow/.bazelrc:
'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --features=-force_no_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility
INFO: Reading rc options for 'build' from ~/Documents/dev/git/tensorflow/.tf_configure.bazelrc:
'build' options: --action_env PYTHON_BIN_PATH=~/Documents/dev/programs/miniconda3/envs/tf/bin/python3 --action_env PYTHON_LIB_PATH=~/Documents/dev/programs/miniconda3/envs/tf/lib/python3.11/site-packages --python_path=~/Documents/dev/programs/miniconda3/envs/tf/bin/python3 --action_env CUDA_TOOLKIT_PATH=/usr/local/cuda-12.3 --action_env TF_CUDA_COMPUTE_CAPABILITIES=5.0 --action_env LD_LIBRARY_PATH=/usr/lib/libreoffice/program:/usr/local/cuda/targets/x86_64-linux/lib:/usr/lib/x86_64-linux-gnu --action_env GCC_HOST_COMPILER_PATH=/usr/bin/x86_64-linux-gnu-gcc-11 --config=cuda
INFO: Found applicable config definition build:short_logs in file ~/Documents/dev/git/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING
INFO: Found applicable config definition build:v2 in file ~/Documents/dev/git/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1
INFO: Found applicable config definition build:cuda in file ~/Documents/dev/git/tensorflow/.bazelrc: --repo_env TF_NEED_CUDA=1 --crosstool_top=@local_config_cuda//crosstool:toolchain --@local_config_cuda//:enable_cuda
INFO: Found applicable config definition build:mkl in file ~/Documents/dev/git/tensorflow/.bazelrc: --define=build_with_mkl=true --define=enable_mkl=true --define=tensorflow_mkldnn_contraction_kernel=0 --define=build_with_openmp=true -c opt
INFO: Found applicable config definition build:opt in file ~/Documents/dev/git/tensorflow/.tf_configure.bazelrc: --copt=-Wno-sign-compare --host_copt=-Wno-sign-compare
INFO: Found applicable config definition build:linux in file ~/Documents/dev/git/tensorflow/.bazelrc: --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --copt=-Wno-error=unused-but-set-variable --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --experimental_guard_against_concurrent_changes
INFO: Found applicable config definition build:dynamic_kernels in file ~/Documents/dev/git/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS
INFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (711 packages loaded, 51601 targets configured).
INFO: Found 1 target...
ERROR: ~/.cache/bazel/_bazel_vyepishov/cf67b2b2e967476eb2b1ee98e33ab5bd/external/local_xla/xla/service/cpu/BUILD:1638:11: Compiling xla/service/cpu/onednn_matmul.cc failed: (Exit 1): crosstool_wrapper_driver_is_not_gcc failed: error executing command (from target @local_xla//xla/service/cpu:onednn_matmul) external/local_config_cuda/crosstool/clang/bin/crosstool_wrapper_driver_is_not_gcc -MD -MF bazel-out/k8-opt/bin/external/local_xla/xla/service/cpu/_objs/onednn_matmul/onednn_matmul.pic.d ... (remaining 229 arguments skipped)
In file included from external/local_xla/xla/shape.h:28,
from external/local_xla/xla/service/cpu/onednn_matmul.h:21,
from external/local_xla/xla/service/cpu/onednn_matmul.cc:18:
external/local_xla/xla/layout.h:377:18: warning: ‘xla::Layout::DimInfo::dim_level_type’ is too small to hold all values of ‘enum xla::DimLevelType’
377 | DimLevelType dim_level_type : 6;
| ^~~~~~~~~~~~~~
external/local_xla/xla/layout.h:389:17: warning: ‘xla::Layout::index_primitive_type_’ is too small to hold all values of ‘enum xla::PrimitiveType’
389 | PrimitiveType index_primitive_type_ : 8;
| ^~~~~~~~~~~~~~~~~~~~~
external/local_xla/xla/layout.h:390:17: warning: ‘xla::Layout::pointer_primitive_type_’ is too small to hold all values of ‘enum xla::PrimitiveType’
390 | PrimitiveType pointer_primitive_type_ : 8;
| ^~~~~~~~~~~~~~~~~~~~~~~
external/local_xla/xla/service/cpu/onednn_matmul.cc: In function ‘void xla::cpu::__xla_cpu_runtime_OneDnnMatMul(void*, void**)’:
external/local_xla/xla/service/cpu/onednn_matmul.cc:186:68: error: cannot convert ‘std::unique_ptr<tsl::OneDnnThreadPool>::pointer’ {aka ‘tsl::OneDnnThreadPool*’} to ‘dnnl::threadpool_interop::threadpool_iface*’
186 | auto onednn_stream = MakeOneDnnStream(cpu_engine, thread_pool.get());
| ~~~~~~~~~~~~~~~^~
| |
| std::unique_ptr<tsl::OneDnnThreadPool>::pointer {aka tsl::OneDnnThreadPool*}
external/local_xla/xla/service/cpu/onednn_matmul.cc:148:49: note: initializing argument 2 of ‘dnnl::stream xla::cpu::{anonymous}::MakeOneDnnStream(const dnnl::engine&, dnnl::threadpool_interop::threadpool_iface*)’
148 | dnnl::threadpool_interop::threadpool_iface* thread_pool) {
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~
external/local_xla/xla/service/cpu/onednn_matmul.cc: In function ‘void xla::cpu::__xla_cpu_runtime_OneDnnMatMulReorder(void*, void**)’:
external/local_xla/xla/service/cpu/onednn_matmul.cc:322:68: error: cannot convert ‘std::unique_ptr<tsl::OneDnnThreadPool>::pointer’ {aka ‘tsl::OneDnnThreadPool*’} to ‘dnnl::threadpool_interop::threadpool_iface*’
322 | auto onednn_stream = MakeOneDnnStream(cpu_engine, thread_pool.get());
| ~~~~~~~~~~~~~~~^~
| |
| std::unique_ptr<tsl::OneDnnThreadPool>::pointer {aka tsl::OneDnnThreadPool*}
external/local_xla/xla/service/cpu/onednn_matmul.cc:148:49: note: initializing argument 2 of ‘dnnl::stream xla::cpu::{anonymous}::MakeOneDnnStream(const dnnl::engine&, dnnl::threadpool_interop::threadpool_iface*)’
148 | dnnl::threadpool_interop::threadpool_iface* thread_pool) {
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~
Target //tensorflow/tools/pip_package:build_pip_package failed to build
Use --verbose_failures to see the command lines of failed build steps.
INFO: Elapsed time: 16142.186s, Critical Path: 328.40s
INFO: 25824 processes: 8831 internal, 16993 local.
FAILED: Build did NOT complete successfully
```
",2024-03-09T20:04:58Z,0
Fix SegFault in Python InterpreterWrapper,"If `InterpreterWrapper::TensorSparsityParameters` encounters Tensors which do not have a `block_map`, a `nullptr` is dereferenced causing AccViol/SegFault.
Add a check for `nullptr`.
Attempts to fix #62058",2024-03-09T19:57:47Z,0
Force an extra step from pred to u32 before then converting to f32 as that can fail on TGP,"Force an extra step from pred to u32 before then converting to f32 as that can fail on TGP
",2024-03-09T19:43:15Z,0
Build error related to XLA and absl,"### Issue type
Build/Install
### Have you reproduced the bug with TensorFlow Nightly?
No
### Source
source
### TensorFlow version
2.16.1
### Custom code
No
### OS platform and distribution
Linux Ubuntu 22.04
### Mobile device
_No response_
### Python version
3.11.7
### Bazel version
6.5.0
### GCC/compiler version
11.4.0
### CUDA/cuDNN version
11.8.0/8.9.7.29
### GPU model and memory
_No response_
### Current behavior?
When building TF from source using the Spack package manager, I see the following build failure:
```
ERROR: /tmp/spackkiy_sjk0/dfa266778fb055fec5b77ad2acb73759/external/local_xla/xla/service/gpu/kernels/BUILD:157:13: Compiling xla/service/gpu/kernels/topk_kernel_bfloat16.cu.cc failed: (Exit 1): crosstool_wrapper_driver_is_not_gcc failed: error executing command (from target @local_xla//xla/service/gpu/kernels:topk_kernel_cuda)
...
external/com_google_absl/absl/strings/internal/str_format/bind.h: In constructor ‘absl::lts_20230802::str_format_internal::FormatSpecTemplate<Args>::FormatSpecTemplate(const absl::lts_20230802::str_format_internal::ExtendedParsedFormat<absl::lts_20230802::FormatConversionCharSet(C)...>&)’:
external/com_google_absl/absl/strings/internal/str_format/bind.h:172:1: error: parse error in template argument list
172 | CheckArity<sizeof...(C), sizeof...(Args)>();
| ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
external/com_google_absl/absl/strings/internal/str_format/bind.h:172:63: error: expected ‘;’ before ‘)’ token
172 | CheckArity<sizeof...(C), sizeof...(Args)>();
| ^
external/com_google_absl/absl/strings/internal/str_format/bind.h:173:147: error: template argument 1 is invalid
173 | CheckMatches<C...>(absl::make_index_sequence<sizeof...(C)>{});
| ^
external/com_google_absl/absl/strings/internal/str_format/bind.h:173:151: error: expected primary-expression before ‘{’ token
173 | CheckMatches<C...>(absl::make_index_sequence<sizeof...(C)>{});
| ^
external/com_google_absl/absl/strings/internal/str_format/bind.h:173:151: error: expected ‘;’ before ‘{’ token
external/com_google_absl/absl/strings/internal/str_format/bind.h:173:153: error: expected primary-expression before ‘)’ token
173 | CheckMatches<C...>(absl::make_index_sequence<sizeof...(C)>{});
| ^
Target //tensorflow/tools/pip_package:build_pip_package failed to build
INFO: Elapsed time: 1238.631s, Critical Path: 57.51s
INFO: 17066 processes: 6004 internal, 11062 local.
FAILED: Build did NOT complete successfully
```
### Standalone code to reproduce the issue
See the below build log for steps to reproduce the issue.
### Relevant log output
* [build log](https://github.com/tensorflow/tensorflow/files/14547197/spack-build-out.txt)
* [build env](https://github.com/tensorflow/tensorflow/files/14547196/spack-build-env-mods.txt)
",2024-03-09T17:20:29Z,1
core dumped with tf.raw_ops.FakeQuantWithMinMaxVarsPerChannel,"### Issue type
Bug
### Have you reproduced the bug with TensorFlow Nightly?
Yes
### Source
binary
### TensorFlow version
tf 2.15
### Custom code
Yes
### OS platform and distribution
Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.9
### Bazel version
_No response_
### GCC/compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current behavior?
core dumped error with specific input parameters.
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
# Generate input data
input_data = tf.constant([[1.5, 2.5, 3.5], [4.5, 5.5, 6.5]])
# Define min and max values per channel
min_per_channel = tf.constant([1.0, 2.0, 3.0])
max_per_channel = tf.constant([2.0, 3.0, 4.0])
# Invoke tf.raw_ops.FakeQuantWithMinMaxVarsPerChannel with inputs as 0-dimensional tensor and max as a 1x3 tensor
quantized_output = tf.raw_ops.FakeQuantWithMinMaxVarsPerChannel(inputs=tf.constant(0.0), min=min_per_channel, max=max_per_channel, num_bits=8, narrow_range=False)
# Print the quantized output
print(quantized_output)
```
### Relevant log output
```shell
2024-03-09 15:02:07.858055: F tensorflow/core/framework/tensor_shape.cc:356] Check failed: d >= 0 (0 vs. -1)
Aborted (core dumped)
```
",2024-03-09T15:03:18Z,0
core dumped with tf.raw_ops.DrawBoundingBoxes and tf.raw_ops.DrawBoundingBoxesV2,"### Issue type
Bug
### Have you reproduced the bug with TensorFlow Nightly?
Yes
### Source
binary
### TensorFlow version
tf 2.15
### Custom code
Yes
### OS platform and distribution
Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.9
### Bazel version
_No response_
### GCC/compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current behavior?
core dumped error with specific input parameters.
### Standalone code to reproduce the issue
1. The code of `tf.raw_ops.DrawBoundingBoxes`:
```shell
import tensorflow as tf
import numpy as np
# Generate input data
batch_size = 1
image_height = 100
image_width = 100
num_channels = 3
num_boxes = 2
images = np.random.rand(image_height, image_width, num_channels).astype(np.float32) # Remove the batch dimension
boxes = np.random.rand(batch_size, num_boxes, 4).astype(np.float32)
# Invoke tf.raw_ops.DrawBoundingBoxes with a zero-dimensional tensor for images
drawn_images = tf.raw_ops.DrawBoundingBoxes(images=tf.convert_to_tensor(images),
boxes=tf.convert_to_tensor(boxes))
# Print the result
print(drawn_images)
```
2. The code of `tf.raw_ops.DrawBoundingBoxesV2`:
```
import tensorflow as tf
import numpy as np
# Generate input data
image_height = 100
image_width = 100
num_channels = 3
num_boxes = 2
images = tf.random.uniform((image_height, image_width, num_channels)) # Change the shape to satisfy the requirement of a zero-dimensional tensor
boxes = tf.random.uniform((1, num_boxes, 4))
colors = tf.constant([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]) # Define colors for each bounding box
# Invoke tf.raw_ops.DrawBoundingBoxesV2
output_images = tf.raw_ops.DrawBoundingBoxesV2(images=images, boxes=boxes, colors=colors)
# Print the output images
print(output_images)
```
### Relevant log output
```shell
2024-03-09 14:55:53.834849: F tensorflow/core/framework/tensor_shape.cc:357] Check failed: d < dims() (3 vs. 3)
Aborted (core dumped)
```
",2024-03-09T14:57:17Z,2
Aborted (core dumped) with tf.raw_ops.AvgPoolGrad,"### Issue type
Bug
### Have you reproduced the bug with TensorFlow Nightly?
Yes
### Source
binary
### TensorFlow version
tf 2.15
### Custom code
Yes
### OS platform and distribution
Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.9
### Bazel version
_No response_
### GCC/compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current behavior?
core dumped error with specific input parameters.
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
# Generate input data
input_data = tf.random.normal([1, 28, 28, 3])
grad = tf.random.normal([1, 14, 14, 6]) # Change the number of channels in grad tensor
# Perform average pooling
result = tf.nn.avg_pool2d(input_data, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID', data_format='NHWC')
# Compute gradient
grad_result = tf.raw_ops.AvgPoolGrad(orig_input_shape=tf.shape(input_data), grad=grad, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID', data_format='NHWC')
print(grad_result)
```
### Relevant log output
```shell
free(): corrupted unsorted chunks
Aborted (core dumped)
```
",2024-03-09T14:54:40Z,0
Segmentation fault with tf.raw_ops.AudioSpectrogram,"### Issue type
Bug
### Have you reproduced the bug with TensorFlow Nightly?
Yes
### Source
binary
### TensorFlow version
tf 2.15
### Custom code
Yes
### OS platform and distribution
Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.9
### Bazel version
_No response_
### GCC/compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current behavior?
Segmentation fault error with specific input parameters.
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
# Generate input data
input_data = tf.random.normal([1, 44100], dtype=tf.float32)
# Invoke tf.raw_ops.AudioSpectrogram with a negative window_size
spectrogram = tf.raw_ops.AudioSpectrogram(input=input_data, window_size=-1024, stride=64, magnitude_squared=False)
# Print the spectrogram
print(spectrogram)
```
### Relevant log output
```shell
Segmentation fault (core dumped)
```
",2024-03-09T14:50:26Z,1
core dumped with tf.quantization.fake_quant_with_min_max_vars_per_channel,"### Issue type
Bug
### Have you reproduced the bug with TensorFlow Nightly?
Yes
### Source
binary
### TensorFlow version
tf 2.15
### Custom code
Yes
### OS platform and distribution
Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.9
### Bazel version
_No response_
### GCC/compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current behavior?
core dumped error with specific input parameters.
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
input_data = tf.constant(3.0)
min_per_channel = tf.constant(2.0)
max_per_channel = tf.constant(4.0)
quantized_data = tf.quantization.fake_quant_with_min_max_vars_per_channel(input_data, min_per_channel, max_per_channel)
print(quantized_data)
```
### Relevant log output
```shell
2024-03-09 14:43:28.826225: F tensorflow/core/framework/tensor_shape.cc:356] Check failed: d >= 0 (0 vs. -1)
Aborted (core dumped)
```
",2024-03-09T14:47:46Z,0
|