File size: 78,925 Bytes
038becc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
Issue Title,Description,Created At,Comments
[xla:gpu] Extend collective-permute decomposer to also make decision for,"[xla:gpu] Extend collective-permute decomposer to also make decision for
Send-Recv pipeling and record the decision with frontend attributes.

We first use a simple heuristics to decide on the decomposition of which
CollectivePermute operations will be pipelined. We will only pipeline
CollectivePermute that sends loop input data, and pick the first
pipelineable CollectivePermute for pipelining. Then, if there is another
pipelineable CollectivePermute that forms a cycle with the to-be-pipelined
CollectivePermute, we will pipeline both CollectivePermute. Otherwise, we will
only pipeline one CollectivePermute.

Then, when we decompose CollectivePermute operations, we add a frontend
attribute to the Send/Recv operation to represent the pipelining decision.

Add tests.
",2024-03-11T05:16:45Z,0
Microoptmize the conditions in IsArrayType.,"Microoptmize the conditions in IsArrayType.
",2024-03-11T04:30:26Z,0
Do not call Shape::is_static when unnecessary.,"Do not call Shape::is_static when unnecessary.
",2024-03-11T04:26:26Z,0
Eliminate unnecessary copies for HloSharding.,"Eliminate unnecessary copies for HloSharding.
",2024-03-11T04:25:26Z,0
Add Dynamic Range Quantized op support for `op_stat_pass.cc`.,"Add Dynamic Range Quantized op support for `op_stat_pass.cc`.

- Cleanup header imports as well.
",2024-03-11T03:12:47Z,0
Add check conditions in `quantization_driver_test.cc`.,"Add check conditions in `quantization_driver_test.cc`.

- Adds more rigorous checks for desired states in intermediate testing stages.
- Renames and rewrites `IsEmpty` and `HasQuantParams` for clarity.
",2024-03-11T02:17:30Z,0
2.16.1 libtensorflow binary,"### Issue type

Support

### Have you reproduced the bug with TensorFlow Nightly?

Yes

### Source

binary

### TensorFlow version

2.16.1

### Custom code

No

### OS platform and distribution

Linux

### Mobile device

_No response_

### Python version

_No response_

### Bazel version

_No response_

### GCC/compiler version

_No response_

### CUDA/cuDNN version

_No response_

### GPU model and memory

Yes

### Current behavior?

Hi! 

Tensorflow 2.16.1 has been [released](https://github.com/tensorflow/tensorflow/releases/tag/v2.16.1) recently. However, the latest archive with the `libtensorflow` on the official website [is still 2.15](https://www.tensorflow.org/install/lang_c). Where can I get the latest 2.16.1 `libtensorflow` with GPU support for Linux?

### Standalone code to reproduce the issue

```shell
-
```


### Relevant log output

_No response_",2024-03-10T20:56:00Z,0
Make function loading more concurrent with `TF_ENABLE_EAGER_CLIENT_STREAMING_ENQUEUE` set to `false`,"Make function loading more concurrent with `TF_ENABLE_EAGER_CLIENT_STREAMING_ENQUEUE` set to `false`
",2024-03-10T19:12:58Z,0
Testing a temporary code change.,"Testing a temporary code change.
",2024-03-10T18:13:15Z,0
[XLA:Python] Port py_values to nanobind.,"[XLA:Python] Port py_values to nanobind.
",2024-03-10T15:11:31Z,0
tf.tensor_scatter_nd_add: Aborted (core dumped),"### Issue type

Bug

### Have you reproduced the bug with TensorFlow Nightly?

Yes

### Source

binary

### TensorFlow version

tf 2.15

### Custom code

Yes

### OS platform and distribution

Ubuntu 20.04

### Mobile device

_No response_

### Python version

3.9

### Bazel version

_No response_

### GCC/compiler version

_No response_

### CUDA/cuDNN version

_No response_

### GPU model and memory

_No response_

### Current behavior?

Under specific input, `tf.tensor_scatter_nd_add` encounters ""Aborted (core dumped)"".

### Standalone code to reproduce the issue

```shell
import tensorflow as tf

# Generate input data
input_tensor = tf.zeros([15, 15, 15])
indices = tf.constant([[[0, 0, 0], [1, 1, 1]], [[2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5]], [[6, 6, 6], [7, 7, 7]], [[8, 8, 8], [9, 9, 9]], [[10, 10, 10], [11, 11, 11]], [[12, 12, 12], [13, 13, 13]], [[14, 14, 14], [0, 0, 0]], [[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]], [[7, 7, 7], [8, 8, 8]], [[9, 9, 9], [10, 10, 10]], [[11, 11, 11], [12, 12, 12]], [[13, 13, 13], [14, 14, 14]]])
updates = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0])  # Cast updates to float

# Invoke tf.tensor_scatter_nd_add
result = tf.tensor_scatter_nd_add(input_tensor, indices, updates)

# Print the result
print(result)
```


### Relevant log output

```shell
2024-03-10 14:59:51.853766: F tensorflow/core/framework/tensor_shape.cc:357] Check failed: d < dims() (1 vs. 1)
Aborted (core dumped)
```
",2024-03-10T15:00:49Z,0
tf.raw_ops.UnicodeEncode: Segmentation fault (core dumped),"### Issue type

Bug

### Have you reproduced the bug with TensorFlow Nightly?

Yes

### Source

binary

### TensorFlow version

tf 2.15

### Custom code

Yes

### OS platform and distribution

Ubuntu 20.04

### Mobile device

_No response_

### Python version

3.9

### Bazel version

_No response_

### GCC/compiler version

_No response_

### CUDA/cuDNN version

_No response_

### GPU model and memory

_No response_

### Current behavior?

Under specific input, `tf.raw_ops.UnicodeEncode` encounters ""Segmentation fault (core dumped)"".

### Standalone code to reproduce the issue

```shell
import tensorflow as tf

# Generate input data
input_values = tf.constant([72, 101, 108, 108, 111, 32, 87, 111, 114, 108, 100])  # Unicode codepoints for ""Hello World""
input_splits = tf.constant([[0, 5, 11]])  # Split indices for the input_values with two dimensions
output_encoding = ""UTF-8""

# Invoke tf.raw_ops.unicode_encode
output = tf.raw_ops.UnicodeEncode(input_values=input_values, input_splits=input_splits, output_encoding=output_encoding)

# Print the output
print(output)
```


### Relevant log output

```shell
Segmentation fault (core dumped)
```
",2024-03-10T14:59:08Z,0
tf.raw_ops.TensorScatterSub: Aborted (core dumped),"### Issue type

Bug

### Have you reproduced the bug with TensorFlow Nightly?

Yes

### Source

binary

### TensorFlow version

tf 2.15

### Custom code

Yes

### OS platform and distribution

Ubuntu 20.04

### Mobile device

_No response_

### Python version

3.9

### Bazel version

_No response_

### GCC/compiler version

_No response_

### CUDA/cuDNN version

_No response_

### GPU model and memory

_No response_

### Current behavior?

Under specific input, `tf.raw_ops.TensorScatterSub` encounters ""Aborted (core dumped)"".

### Standalone code to reproduce the issue

```shell
import tensorflow as tf

# Generate input data
tensor = tf.constant([1, 2, 3, 4, 5])
indices = tf.constant([[[1], [3]], [[0], [2]]])  # Nested structure for indices
updates = tf.constant([10, 20])

# Invoke tf.raw_ops.TensorScatterSub
result = tf.raw_ops.TensorScatterSub(tensor=tensor, indices=indices, updates=updates)

# Print the result
print(result)
```


### Relevant log output

```shell
2024-03-10 14:55:41.958738: F tensorflow/core/framework/tensor_shape.cc:357] Check failed: d < dims() (1 vs. 1)
Aborted (core dumped)
```
",2024-03-10T14:57:36Z,0
tf.raw_ops.SparseConcat: Overflow bug ,"### Issue type

Bug

### Have you reproduced the bug with TensorFlow Nightly?

Yes

### Source

binary

### TensorFlow version

tf 2.15

### Custom code

Yes

### OS platform and distribution

Ubuntu 20.04

### Mobile device

_No response_

### Python version

3.9

### Bazel version

_No response_

### GCC/compiler version

_No response_

### CUDA/cuDNN version

_No response_

### GPU model and memory

_No response_

### Current behavior?

Under specific input, `tf.raw_ops.SparseConcat` encounters overflow bug.

### Standalone code to reproduce the issue

```shell
import tensorflow as tf

# Generate input data
indices1 = tf.constant([[0, 0], [1, 2]], dtype=tf.int64)
values1 = tf.constant([1, 2], dtype=tf.float32)
shape1 = tf.constant([3, 4], dtype=tf.int64)

indices2 = tf.constant([[0, 1], [2, 3]], dtype=tf.int64)
values2 = tf.constant([3, 4], dtype=tf.float32)
shape2 = tf.constant([-1, 4], dtype=tf.int64)  # Mutated shape with the negative bit set

# Invoke tf.raw_ops.SparseConcat
concatenated_sparse = tf.raw_ops.SparseConcat(
    indices=[indices1, indices2],
    values=[values1, values2],
    shapes=[shape1, shape2],
    concat_dim=0
)

print(concatenated_sparse)
```


### Relevant log output

```shell
tensorflow.python.framework.errors_impl.InternalError: {{function_node __wrapped__SparseConcat_N_2_device_/job:localhost/replica:0/task:0/device:CPU:0}} Encountered overflow from large input shape. [Op:SparseConcat] name:
```
",2024-03-10T14:55:13Z,0
tf.raw_ops.FusedPadConv2D: Aborted (core dumped),"### Issue type

Bug

### Have you reproduced the bug with TensorFlow Nightly?

Yes

### Source

binary

### TensorFlow version

tf 2.15

### Custom code

Yes

### OS platform and distribution

Ubuntu 20.04

### Mobile device

_No response_

### Python version

3.9

### Bazel version

_No response_

### GCC/compiler version

_No response_

### CUDA/cuDNN version

_No response_

### GPU model and memory

_No response_

### Current behavior?

Under specific input, `tf.raw_ops.FusedPadConv2D` encounters ""Aborted (core dumped)"".

### Standalone code to reproduce the issue

```shell
import tensorflow as tf

# Generate input data
input_data = tf.random.normal([3, 10, 10])

# Define paddings
paddings = tf.constant([[0, 0], [1, 1], [1, 1]])

# Define filter
filter = tf.random.normal([3, 3, 3, 16])

# Define mode
mode = ""REFLECT""  # Change mode to ""REFLECT"" or ""SYMMETRIC""

# Define strides
strides = [1, 1, 1, 1]

# Define padding
padding = ""VALID""

# Invoke tf.raw_ops.FusedPadConv2D
output = tf.raw_ops.FusedPadConv2D(input=input_data, paddings=paddings, filter=filter, mode=mode, strides=strides, padding=padding)

print(output)
```


### Relevant log output

```shell
2024-03-10 14:49:28.555826: F tensorflow/core/framework/tensor_shape.cc:357] Check failed: d < dims() (3 vs. 3)
Aborted (core dumped)
```
",2024-03-10T14:51:07Z,0
tf.tensor_scatter_nd_update: Aborted (core dumped),"### Issue type

Bug

### Have you reproduced the bug with TensorFlow Nightly?

Yes

### Source

binary

### TensorFlow version

tf 2.15

### Custom code

Yes

### OS platform and distribution

Ubuntu 20.04

### Mobile device

_No response_

### Python version

3.9

### Bazel version

_No response_

### GCC/compiler version

_No response_

### CUDA/cuDNN version

_No response_

### GPU model and memory

_No response_

### Current behavior?

Under specific input, `tf.tensor_scatter_nd_update` encounters ""Aborted (core dumped)"".

### Standalone code to reproduce the issue

```shell
import tensorflow as tf

# Generate input data
input_tensor = tf.zeros([2, 2, 2])  # A tensor that contains other tensors, creating a nested structure
indices = tf.constant([[[0, 0, 0], [1, 1, 1]], [[1, 0, 1], [0, 1, 0]]])
updates = tf.constant([1, 2], dtype=tf.float32)  # Cast updates to float

# Invoke tf.tensor_scatter_nd_update
result = tf.tensor_scatter_nd_update(input_tensor, indices, updates)

# Print the result
print(result)
```


### Relevant log output

```shell
2024-03-10 14:36:43.315650: F tensorflow/core/framework/tensor_shape.cc:357] Check failed: d < dims() (1 vs. 1)
Aborted (core dumped)
```
",2024-03-10T14:48:19Z,0
failed to compile a tensorflow C++ example. # Error incompatible with your Protocol Buffer headers ,"### Issue type

Bug

### Have you reproduced the bug with TensorFlow Nightly?

No

### Source

source

### TensorFlow version

tf 2.15.0

### Custom code

No

### OS platform and distribution

Linux Ubuntu 22.04

### Mobile device

_No response_

### Python version

3.10.12

### Bazel version

6.1.0

### GCC/compiler version

11.4.0

### CUDA/cuDNN version

12.2/8.9.7

### GPU model and memory

GTX 3090/24G

### Current behavior?

I first compiled TensorFlow using Bazel according to the official documentation, these are my operations:
`git clone https://github.com/tensorflow/tensorflow`
`cd tensorflow`
`git checkout r2.15`
`./configure `
and information is:

> 
> You have bazel 6.1.0 installed.
> Please specify the location of python. [Default is /usr/bin/python3]: 
> 
> 
> Found possible Python library paths:
>   /usr/lib/python3/dist-packages
>   /usr/local/lib/python3.10/dist-packages
> Please input the desired Python library path to use.  Default is [/usr/lib/python3/dist-packages]
> 
> Do you wish to build TensorFlow with ROCm support? [y/N]: n
> No ROCm support will be enabled for TensorFlow.
> 
> Do you wish to build TensorFlow with CUDA support? [y/N]: y
> CUDA support will be enabled for TensorFlow.
> 
> Do you wish to build TensorFlow with TensorRT support? [y/N]: n
> No TensorRT support will be enabled for TensorFlow.
> 
> Found CUDA 12.2 in:
>     /usr/local/cuda-12.2/targets/x86_64-linux/lib
>     /usr/local/cuda-12.2/targets/x86_64-linux/include
> Found cuDNN 8 in:
>     /usr/lib/x86_64-linux-gnu
>     /usr/include
> 
> 
> Please specify a list of comma-separated CUDA compute capabilities you want to build with.
> You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus. Each capability can be specified as ""x.y"" or ""compute_xy"" to include both virtual and binary GPU code, or as ""sm_xy"" to only include the binary code.
> Please note that each additional compute capability significantly increases your build time and binary size, and that TensorFlow only supports compute capabilities >= 3.5 [Default is: 8.6]: 
> 
> 
> Do you want to use clang as CUDA compiler? [Y/n]: n
> nvcc will be used as CUDA compiler.
> 
> Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: 
> 
> 
> Please specify optimization flags to use during compilation when bazel option ""--config=opt"" is specified [Default is -Wno-sign-compare]: 
> 
> 
> Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: n
> Not configuring the WORKSPACE for Android builds.
> 
> Preconfigured Bazel build configs. You can use any of the below by adding ""--config=<>"" to your build command. See .bazelrc for more details.
> 	--config=mkl         	# Build with MKL support.
> 	--config=mkl_aarch64 	# Build with oneDNN and Compute Library for the Arm Architecture (ACL).
> 	--config=monolithic  	# Config for mostly static monolithic build.
> 	--config=numa        	# Build with NUMA support.
> 	--config=dynamic_kernels	# (Experimental) Build kernels into separate shared objects.
> 	--config=v1          	# Build with TensorFlow 1 API instead of TF 2 API.
> Preconfigured Bazel build configs to DISABLE default on features:
> 	--config=nogcp       	# Disable GCP support.
> 	--config=nonccl      	# Disable NVIDIA NCCL support.
> Configuration finished

and I then compile with bazel:
`bazel build --config=cuda tensorflow:tensorflow_cc`
`bazel build tensorflow:install_headers`

There were no issues, I successfully compiled the header files and link libraries I wanted in the `bazel-bin` folder.
But when I try to compile a C++ sample:
```
#include <tensorflow/core/platform/env.h>
#include <tensorflow/core/public/session.h>

#include <iostream>

using namespace std;
using namespace tensorflow;

int main()
{
    Session* session;
    Status status = NewSession(SessionOptions(), &session);
    if (!status.ok()) {
        cout << status.ToString() << ""\n"";
        return 1;
    }
    cout << ""Session successfully created.\n"";
}

```

command is 
`g++ -std=c++14 -o tf_example -I/home/wangchen/tensorflow/bazel-bin/tensorflow/include -L/home/wangchen/tensorflow/bazel-bin/tensorflow/libtensorflow_cc -L/home/wangchen/tensorflow/bazel-bin/tensorflow/libtensorflow_framework -ltensorflow_framework -ltensorflow_cc tf_example.cpp `

I got an error #error This file was generated by an older version of protoc which is incompatible with your Protocol Buffer headers. Please regenerate this file with a newer version of protoc.

My protobuf is compiled from official repo, the versions are:
```
{
    ""23.x"": {
        ""protoc_version"": ""23.4"",
        ""lts"": false,
        ""date"": ""2023-07-05"",
        ""languages"": {
            ""cpp"": ""4.23.4"",
            ""csharp"": ""3.23.4"",
            ""java"": ""3.23.4"",
            ""javascript"": ""3.23.4"",
            ""objectivec"": ""3.23.4"",
            ""php"": ""3.23.4"",
            ""python"": ""4.23.4"",
            ""ruby"": ""3.23.4""
        }
    }
}
```
I suspect there might be some protobuf versions that are incompatible with my TensorFlow. 
What methods should I use to obtain the correct version? 
I would greatly appreciate any proposed solutions.


### Standalone code to reproduce the issue

```shell
#include <tensorflow/core/platform/env.h>
#include <tensorflow/core/public/session.h>

#include <iostream>

using namespace std;
using namespace tensorflow;

int main()
{
    Session* session;
    Status status = NewSession(SessionOptions(), &session);
    if (!status.ok()) {
        cout << status.ToString() << ""\n"";
        return 1;
    }
    cout << ""Session successfully created.\n"";
}

```
```


### Relevant log output

```shell
wangchen@wc:~/tfc++test$ g++ -std=c++14 -o tf_example -I/home/wangchen/tensorflow/bazel-bin/tensorflow/include -L/home/wangchen/tensorflow/bazel-bin/tensorflow/libtensorflow_cc -L/home/wangchen/tensorflow/bazel-bin/tensorflow/libtensorflow_framework -ltensorflow_framework -ltensorflow_cc tf_example.cpp 
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tsl/platform/status.h:39,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/platform/status.h:23,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/platform/errors.h:27,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/platform/env.h:27,
                 from tf_example.cpp:1:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tsl/protobuf/error_codes.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tsl/protobuf/error_codes.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tsl/protobuf/error_codes.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:24,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/device_attributes.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/device_attributes.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/device_attributes.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:33,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:36,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:33,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/attr_value.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/attr_value.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/attr_value.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/attr_value.pb.h:36,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:36,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:33,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor.pb.h:33,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/attr_value.pb.h:36,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:36,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:33,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/resource_handle.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/resource_handle.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/resource_handle.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/resource_handle.pb.h:33,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor.pb.h:33,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/attr_value.pb.h:36,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:36,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:33,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor_shape.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor_shape.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor_shape.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/resource_handle.pb.h:34,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor.pb.h:33,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/attr_value.pb.h:36,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:36,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:33,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/types.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/types.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/types.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:37,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:33,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/node_def.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/node_def.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/node_def.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/node_def.pb.h:37,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:37,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:33,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/full_type.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/full_type.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/full_type.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/function.pb.h:38,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:33,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/op_def.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/op_def.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/op_def.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:34,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph_debug_info.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph_debug_info.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph_debug_info.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/graph.pb.h:36,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:25,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/versions.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/versions.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/versions.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:30,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/config.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/config.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/config.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/config.pb.h:37,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:30,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/cost_graph.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/cost_graph.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/cost_graph.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/config.pb.h:39,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:30,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/step_stats.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/step_stats.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/step_stats.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/step_stats.pb.h:36,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/config.pb.h:39,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:30,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/allocation_description.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/allocation_description.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/allocation_description.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/step_stats.pb.h:37,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/config.pb.h:39,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:30,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor_description.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor_description.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/framework/tensor_description.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/config.pb.h:40,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:30,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/cluster.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/cluster.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/cluster.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
In file included from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/config.pb.h:41,
                 from /home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/public/session.h:30,
                 from tf_example.cpp:2:
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/debug.pb.h:17:2: error: #error This file was generated by an older version of protoc which is
   17 | #error This file was generated by an older version of protoc which is
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/debug.pb.h:18:2: error: #error incompatible with your Protocol Buffer headers. Please
   18 | #error incompatible with your Protocol Buffer headers. Please
      |  ^~~~~
/home/wangchen/tensorflow/bazel-bin/tensorflow/include/tensorflow/core/protobuf/debug.pb.h:19:2: error: #error regenerate this file with a newer version of protoc.
   19 | #error regenerate this file with a newer version of protoc.
      |  ^~~~~
```
",2024-03-10T04:22:46Z,0
Saved model won't load: Unable to synchronously open object (bad local heap signature),"### Issue type

Bug

### Have you reproduced the bug with TensorFlow Nightly?

Yes

### Source

binary

### TensorFlow version

2.16.1

### Custom code

Yes

### OS platform and distribution

windows 10

### Mobile device

_No response_

### Python version

3.12

### Bazel version

_No response_

### GCC/compiler version

_No response_

### CUDA/cuDNN version

_No response_

### GPU model and memory

_No response_

### Current behavior?

Model saved from Python 3.12 tensorflow 2.16.1
model.save('my_model.keras', overwrite=True)

After this the model does not load

### Standalone code to reproduce the issue

```shell
model=tf.keras.models.load_model('my_model.keras', custom_objects=None, compile=True, safe_mode=True)
```


### Relevant log output

```shell
Traceback (most recent call last):
  File ""D:\Project\main.py"", line 391, in <module>
    model=tf.keras.models.load_model('my_model.keras', custom_objects=None, compile=True, safe_mode=True)
          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File ""D:\Project\venv\Lib\site-packages\keras\src\saving\saving_api.py"", line 176, in load_model
    return saving_lib.load_model(
           ^^^^^^^^^^^^^^^^^^^^^^
  File ""D:\Project\venv\Lib\site-packages\keras\src\saving\saving_lib.py"", line 192, in load_model
    _raise_loading_failure(error_msgs)
  File ""D:\Project\venv\Lib\site-packages\keras\src\saving\saving_lib.py"", line 273, in _raise_loading_failure
    raise ValueError(msg)
ValueError: A total of 13 objects could not be loaded. Example error message for object <Sequential name=sequential, built=True>:

'Unable to synchronously open object (bad local heap signature)'

List of objects that could not be loaded:
[<Sequential name=sequential, built=True>, <TextVectorization name=text_vectorization, built=True>, <StringLookup name=string_lookup_1, built=False>, <Embedding name=embedding, built=True>, <Conv1D name=conv1d, built=True>, <Dropout name=dropout, built=True>, <Conv1D name=conv1d_1, built=True>, <Dropout name=dropout_1, built=True>, <GlobalMaxPooling1D name=global_max_pooling1d, built=True>, <Dense name=dense, built=True>, <Dropout name=dropout_2, built=True>, <Dense name=dense_1, built=True>, <keras.src.optimizers.adam.Adam object at 0x000001C5026B24E0>]
```
",2024-03-10T04:07:46Z,1
Tensorflow import error,"### Issue type

Build/Install

### Have you reproduced the bug with TensorFlow Nightly?

Yes

### Source

source

### TensorFlow version

tf 2.13.0

### Custom code

Yes

### OS platform and distribution

Win 11

### Mobile device

_No response_

### Python version

3.9.7

### Bazel version

_No response_

### GCC/compiler version

_No response_

### CUDA/cuDNN version

_No response_

### GPU model and memory

_No response_

### Current behavior?

I intalled tensorflow, but it gives an error when I try to import it.

### Standalone code to reproduce the issue

```shell
import tensorflow as tf
```


### Relevant log output

```shell
runfile('X:/Nano-Photonics and Quantum Optics Lab!/ML Project/Tkinter learning/Tkinter Git - GitLab/Inverse_Design_Periodic_GUI_CustomModern.py', wdir='X:/Nano-Photonics and Quantum Optics Lab!/ML Project/Tkinter learning/Tkinter Git - GitLab')
Traceback (most recent call last):

  File ""X:\Nano-Photonics and Quantum Optics Lab!\ML Project\Tkinter learning\Tkinter Git - GitLab\Inverse_Design_Periodic_GUI_CustomModern.py"", line 20, in <module>
    import tensorflow as tf  #print(tf.__version__)

  File ""C:\Users\athen\anaconda3\lib\site-packages\tensorflow\__init__.py"", line 469, in <module>
    _keras._load()

  File ""C:\Users\athen\anaconda3\lib\site-packages\tensorflow\python\util\lazy_loader.py"", line 41, in _load
    module = importlib.import_module(self.__name__)

  File ""C:\Users\athen\anaconda3\lib\importlib\__init__.py"", line 127, in import_module
    return _bootstrap._gcd_import(name[level:], package, level)

  File ""C:\Users\athen\anaconda3\lib\site-packages\keras\__init__.py"", line 20, in <module>
    from keras import distribute

  File ""C:\Users\athen\anaconda3\lib\site-packages\keras\distribute\__init__.py"", line 18, in <module>
    from keras.distribute import sidecar_evaluator

  File ""C:\Users\athen\anaconda3\lib\site-packages\keras\distribute\sidecar_evaluator.py"", line 22, in <module>
    from keras.optimizers.optimizer_experimental import (

  File ""C:\Users\athen\anaconda3\lib\site-packages\keras\optimizers\__init__.py"", line 25, in <module>
    from keras import backend

  File ""C:\Users\athen\anaconda3\lib\site-packages\keras\backend\__init__.py"", line 3, in <module>
    from keras.backend import experimental

  File ""C:\Users\athen\anaconda3\lib\site-packages\keras\backend\experimental\__init__.py"", line 3, in <module>
    from keras.src.backend import disable_tf_random_generator

  File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\__init__.py"", line 21, in <module>
    from keras.src import applications

  File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\applications\__init__.py"", line 18, in <module>
    from keras.src.applications.convnext import ConvNeXtBase

  File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\applications\convnext.py"", line 28, in <module>
    from keras.src import backend

  File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\backend.py"", line 35, in <module>
    from keras.src.engine import keras_tensor

  File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\engine\keras_tensor.py"", line 19, in <module>
    from keras.src.utils import object_identity

  File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\utils\__init__.py"", line 20, in <module>
    from keras.src.saving.serialization_lib import deserialize_keras_object

  File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\saving\serialization_lib.py"", line 28, in <module>
    from keras.src.saving.legacy.saved_model.utils import in_tf_saved_model_scope

  File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\saving\legacy\saved_model\utils.py"", line 30, in <module>
    from keras.src.utils.layer_utils import CallFunctionSpec

  File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\utils\layer_utils.py"", line 26, in <module>
    from keras.src import initializers

  File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\initializers\__init__.py"", line 23, in <module>
    from keras.src.initializers import initializers_v1

  File ""C:\Users\athen\anaconda3\lib\site-packages\keras\src\initializers\initializers_v1.py"", line 32, in <module>
    keras_export(v1=[""keras.initializers.Zeros"", ""keras.initializers.zeros""])(

  File ""C:\Users\athen\anaconda3\lib\site-packages\tensorflow\python\util\tf_export.py"", line 348, in __call__
    self.set_attr(undecorated_func, api_names_attr, self._names)

  File ""C:\Users\athen\anaconda3\lib\site-packages\tensorflow\python\util\tf_export.py"", line 363, in set_attr
    raise SymbolAlreadyExposedError(

SymbolAlreadyExposedError: Symbol Zeros is already exposed as ().
```
",2024-03-10T01:09:44Z,2
TF 2.16.1 Fails to work with GPUs,"### Issue type

Bug

### Have you reproduced the bug with TensorFlow Nightly?

No

### Source

binary

### TensorFlow version

TF 2.16.1

### Custom code

No

### OS platform and distribution

Linux Ubuntu 22.04.4 LTS

### Mobile device

_No response_

### Python version

3.10.12

### Bazel version

_No response_

### GCC/compiler version

_No response_

### CUDA/cuDNN version

12.4

### GPU model and memory

_No response_

### Current behavior?

I created a python venv in which I installed TF 2.16.1 following your instructions: pip install tensorflow
When I run python, import tf,  and issue tf.config.list_physical_devices('GPU') 
I get an empty list  [ ]

I created another python venv, installed TF 2.16.1, only this time with the instructions: 

 python3 -m pip install tensorflow[and-cuda]
 
When I run that version, import tensorflow as tf, and  issue

 tf.config.list_physical_devices('GPU') 

I also get an empty list. 

BTW, I have no problems running  on my box TF 2.15.1 with GPUs. Julia also works just fine with GPUs and so does PyTorch.
the 
 


### Standalone code to reproduce the issue

```shell
Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on linux
Type ""help"", ""copyright"", ""credits"" or ""license"" for more information.
>>> import tensorflow as tf
2024-03-09 19:15:45.018171: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-03-09 19:15:50.412646: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
>>> tf.__version__
'2.16.1'

tf.config.list_physical_devices('GPU') 
2024-03-09 19:16:28.923792: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
2024-03-09 19:16:29.078379: W tensorflow/core/common_runtime/gpu/gpu_device.cc:2251] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...
[]
>>>
```


### Relevant log output

_No response_",2024-03-10T00:17:36Z,6
Replace `RemoteTensorHandle` with `TensorProto` for scalars in an `EnqueueRequest` except for `DT_RESOURCE`,"Replace `RemoteTensorHandle` with `TensorProto` for scalars in an `EnqueueRequest` except for `DT_RESOURCE`
",2024-03-09T20:18:30Z,0
tensorflow 2.16.1 build error: Compiling xla/service/cpu/onednn_matmul.cc failed,"### Issue type

Bug

### Have you reproduced the bug with TensorFlow Nightly?

No

### Source

source

### TensorFlow version

2.16.1

### Custom code

No

### OS platform and distribution

Linux Ubuntu 22.04

### Mobile device

_No response_

### Python version

3.11.8

### Bazel version

6.5.0

### GCC/compiler version

11.4.0

### CUDA/cuDNN version

12.4/9.0.0.312

### GPU model and memory

NVIDIA GeForce 940MX

### Current behavior?

INFO: Reading 'startup' options from ~/Documents/dev/git/tensorflow/.bazelrc: --windows_enable_symlinks
INFO: Options provided by the client:
  Inherited 'common' options: --isatty=1 --terminal_columns=211
INFO: Reading rc options for 'build' from ~/Documents/dev/git/tensorflow/.bazelrc:
  Inherited 'common' options: --experimental_repo_remote_exec
INFO: Reading rc options for 'build' from ~/Documents/dev/git/tensorflow/.bazelrc:
  'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --features=-force_no_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility
INFO: Reading rc options for 'build' from ~/Documents/dev/git/tensorflow/.tf_configure.bazelrc:
  'build' options: --action_env PYTHON_BIN_PATH=~/Documents/dev/programs/miniconda3/envs/tf/bin/python3 --action_env PYTHON_LIB_PATH=~/Documents/dev/programs/miniconda3/envs/tf/lib/python3.11/site-packages --python_path=~/Documents/dev/programs/miniconda3/envs/tf/bin/python3 --action_env CUDA_TOOLKIT_PATH=/usr/local/cuda-12.3 --action_env TF_CUDA_COMPUTE_CAPABILITIES=5.0 --action_env LD_LIBRARY_PATH=/usr/lib/libreoffice/program:/usr/local/cuda/targets/x86_64-linux/lib:/usr/lib/x86_64-linux-gnu --action_env GCC_HOST_COMPILER_PATH=/usr/bin/x86_64-linux-gnu-gcc-11 --config=cuda
INFO: Found applicable config definition build:short_logs in file ~/Documents/dev/git/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING
INFO: Found applicable config definition build:v2 in file ~/Documents/dev/git/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1
INFO: Found applicable config definition build:cuda in file ~/Documents/dev/git/tensorflow/.bazelrc: --repo_env TF_NEED_CUDA=1 --crosstool_top=@local_config_cuda//crosstool:toolchain --@local_config_cuda//:enable_cuda
INFO: Found applicable config definition build:mkl in file ~/Documents/dev/git/tensorflow/.bazelrc: --define=build_with_mkl=true --define=enable_mkl=true --define=tensorflow_mkldnn_contraction_kernel=0 --define=build_with_openmp=true -c opt
INFO: Found applicable config definition build:opt in file ~/Documents/dev/git/tensorflow/.tf_configure.bazelrc: --copt=-Wno-sign-compare --host_copt=-Wno-sign-compare
INFO: Found applicable config definition build:linux in file ~/Documents/dev/git/tensorflow/.bazelrc: --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --copt=-Wno-error=unused-but-set-variable --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --experimental_guard_against_concurrent_changes
INFO: Found applicable config definition build:dynamic_kernels in file ~/Documents/dev/git/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS
INFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (711 packages loaded, 51601 targets configured).
INFO: Found 1 target...
ERROR: ~/.cache/bazel/_bazel_vyepishov/cf67b2b2e967476eb2b1ee98e33ab5bd/external/local_xla/xla/service/cpu/BUILD:1638:11: Compiling xla/service/cpu/onednn_matmul.cc failed: (Exit 1): crosstool_wrapper_driver_is_not_gcc failed: error executing command (from target @local_xla//xla/service/cpu:onednn_matmul) external/local_config_cuda/crosstool/clang/bin/crosstool_wrapper_driver_is_not_gcc -MD -MF bazel-out/k8-opt/bin/external/local_xla/xla/service/cpu/_objs/onednn_matmul/onednn_matmul.pic.d ... (remaining 229 arguments skipped)
In file included from external/local_xla/xla/shape.h:28,
                 from external/local_xla/xla/service/cpu/onednn_matmul.h:21,
                 from external/local_xla/xla/service/cpu/onednn_matmul.cc:18:
external/local_xla/xla/layout.h:377:18: warning: ‘xla::Layout::DimInfo::dim_level_type’ is too small to hold all values of ‘enum xla::DimLevelType’
  377 |     DimLevelType dim_level_type : 6;
      |                  ^~~~~~~~~~~~~~
external/local_xla/xla/layout.h:389:17: warning: ‘xla::Layout::index_primitive_type_’ is too small to hold all values of ‘enum xla::PrimitiveType’
  389 |   PrimitiveType index_primitive_type_ : 8;
      |                 ^~~~~~~~~~~~~~~~~~~~~
external/local_xla/xla/layout.h:390:17: warning: ‘xla::Layout::pointer_primitive_type_’ is too small to hold all values of ‘enum xla::PrimitiveType’
  390 |   PrimitiveType pointer_primitive_type_ : 8;
      |                 ^~~~~~~~~~~~~~~~~~~~~~~
external/local_xla/xla/service/cpu/onednn_matmul.cc: In function ‘void xla::cpu::__xla_cpu_runtime_OneDnnMatMul(void*, void**)’:
external/local_xla/xla/service/cpu/onednn_matmul.cc:186:68: error: cannot convert ‘std::unique_ptr<tsl::OneDnnThreadPool>::pointer’ {aka ‘tsl::OneDnnThreadPool*’} to ‘dnnl::threadpool_interop::threadpool_iface*’
  186 |   auto onednn_stream = MakeOneDnnStream(cpu_engine, thread_pool.get());
      |                                                     ~~~~~~~~~~~~~~~^~
      |                                                                    |
      |                                                                    std::unique_ptr<tsl::OneDnnThreadPool>::pointer {aka tsl::OneDnnThreadPool*}
external/local_xla/xla/service/cpu/onednn_matmul.cc:148:49: note:   initializing argument 2 of ‘dnnl::stream xla::cpu::{anonymous}::MakeOneDnnStream(const dnnl::engine&, dnnl::threadpool_interop::threadpool_iface*)’
  148 |     dnnl::threadpool_interop::threadpool_iface* thread_pool) {
      |     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~
external/local_xla/xla/service/cpu/onednn_matmul.cc: In function ‘void xla::cpu::__xla_cpu_runtime_OneDnnMatMulReorder(void*, void**)’:
external/local_xla/xla/service/cpu/onednn_matmul.cc:322:68: error: cannot convert ‘std::unique_ptr<tsl::OneDnnThreadPool>::pointer’ {aka ‘tsl::OneDnnThreadPool*’} to ‘dnnl::threadpool_interop::threadpool_iface*’
  322 |   auto onednn_stream = MakeOneDnnStream(cpu_engine, thread_pool.get());
      |                                                     ~~~~~~~~~~~~~~~^~
      |                                                                    |
      |                                                                    std::unique_ptr<tsl::OneDnnThreadPool>::pointer {aka tsl::OneDnnThreadPool*}
external/local_xla/xla/service/cpu/onednn_matmul.cc:148:49: note:   initializing argument 2 of ‘dnnl::stream xla::cpu::{anonymous}::MakeOneDnnStream(const dnnl::engine&, dnnl::threadpool_interop::threadpool_iface*)’
  148 |     dnnl::threadpool_interop::threadpool_iface* thread_pool) {
      |     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~
Target //tensorflow/tools/pip_package:build_pip_package failed to build
Use --verbose_failures to see the command lines of failed build steps.
INFO: Elapsed time: 16142.186s, Critical Path: 328.40s
INFO: 25824 processes: 8831 internal, 16993 local.
FAILED: Build did NOT complete successfully

### Standalone code to reproduce the issue

```shell
bazel build --config=mkl --config=opt //tensorflow/tools/pip_package:build_pip_package
```


### Relevant log output

```shell
INFO: Reading 'startup' options from ~/Documents/dev/git/tensorflow/.bazelrc: --windows_enable_symlinks
INFO: Options provided by the client:
  Inherited 'common' options: --isatty=1 --terminal_columns=211
INFO: Reading rc options for 'build' from ~/Documents/dev/git/tensorflow/.bazelrc:
  Inherited 'common' options: --experimental_repo_remote_exec
INFO: Reading rc options for 'build' from ~/Documents/dev/git/tensorflow/.bazelrc:
  'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --features=-force_no_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility
INFO: Reading rc options for 'build' from ~/Documents/dev/git/tensorflow/.tf_configure.bazelrc:
  'build' options: --action_env PYTHON_BIN_PATH=~/Documents/dev/programs/miniconda3/envs/tf/bin/python3 --action_env PYTHON_LIB_PATH=~/Documents/dev/programs/miniconda3/envs/tf/lib/python3.11/site-packages --python_path=~/Documents/dev/programs/miniconda3/envs/tf/bin/python3 --action_env CUDA_TOOLKIT_PATH=/usr/local/cuda-12.3 --action_env TF_CUDA_COMPUTE_CAPABILITIES=5.0 --action_env LD_LIBRARY_PATH=/usr/lib/libreoffice/program:/usr/local/cuda/targets/x86_64-linux/lib:/usr/lib/x86_64-linux-gnu --action_env GCC_HOST_COMPILER_PATH=/usr/bin/x86_64-linux-gnu-gcc-11 --config=cuda
INFO: Found applicable config definition build:short_logs in file ~/Documents/dev/git/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING
INFO: Found applicable config definition build:v2 in file ~/Documents/dev/git/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1
INFO: Found applicable config definition build:cuda in file ~/Documents/dev/git/tensorflow/.bazelrc: --repo_env TF_NEED_CUDA=1 --crosstool_top=@local_config_cuda//crosstool:toolchain --@local_config_cuda//:enable_cuda
INFO: Found applicable config definition build:mkl in file ~/Documents/dev/git/tensorflow/.bazelrc: --define=build_with_mkl=true --define=enable_mkl=true --define=tensorflow_mkldnn_contraction_kernel=0 --define=build_with_openmp=true -c opt
INFO: Found applicable config definition build:opt in file ~/Documents/dev/git/tensorflow/.tf_configure.bazelrc: --copt=-Wno-sign-compare --host_copt=-Wno-sign-compare
INFO: Found applicable config definition build:linux in file ~/Documents/dev/git/tensorflow/.bazelrc: --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --copt=-Wno-error=unused-but-set-variable --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --experimental_guard_against_concurrent_changes
INFO: Found applicable config definition build:dynamic_kernels in file ~/Documents/dev/git/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS
INFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (711 packages loaded, 51601 targets configured).
INFO: Found 1 target...
ERROR: ~/.cache/bazel/_bazel_vyepishov/cf67b2b2e967476eb2b1ee98e33ab5bd/external/local_xla/xla/service/cpu/BUILD:1638:11: Compiling xla/service/cpu/onednn_matmul.cc failed: (Exit 1): crosstool_wrapper_driver_is_not_gcc failed: error executing command (from target @local_xla//xla/service/cpu:onednn_matmul) external/local_config_cuda/crosstool/clang/bin/crosstool_wrapper_driver_is_not_gcc -MD -MF bazel-out/k8-opt/bin/external/local_xla/xla/service/cpu/_objs/onednn_matmul/onednn_matmul.pic.d ... (remaining 229 arguments skipped)
In file included from external/local_xla/xla/shape.h:28,
                 from external/local_xla/xla/service/cpu/onednn_matmul.h:21,
                 from external/local_xla/xla/service/cpu/onednn_matmul.cc:18:
external/local_xla/xla/layout.h:377:18: warning: ‘xla::Layout::DimInfo::dim_level_type’ is too small to hold all values of ‘enum xla::DimLevelType’
  377 |     DimLevelType dim_level_type : 6;
      |                  ^~~~~~~~~~~~~~
external/local_xla/xla/layout.h:389:17: warning: ‘xla::Layout::index_primitive_type_’ is too small to hold all values of ‘enum xla::PrimitiveType’
  389 |   PrimitiveType index_primitive_type_ : 8;
      |                 ^~~~~~~~~~~~~~~~~~~~~
external/local_xla/xla/layout.h:390:17: warning: ‘xla::Layout::pointer_primitive_type_’ is too small to hold all values of ‘enum xla::PrimitiveType’
  390 |   PrimitiveType pointer_primitive_type_ : 8;
      |                 ^~~~~~~~~~~~~~~~~~~~~~~
external/local_xla/xla/service/cpu/onednn_matmul.cc: In function ‘void xla::cpu::__xla_cpu_runtime_OneDnnMatMul(void*, void**)’:
external/local_xla/xla/service/cpu/onednn_matmul.cc:186:68: error: cannot convert ‘std::unique_ptr<tsl::OneDnnThreadPool>::pointer’ {aka ‘tsl::OneDnnThreadPool*’} to ‘dnnl::threadpool_interop::threadpool_iface*’
  186 |   auto onednn_stream = MakeOneDnnStream(cpu_engine, thread_pool.get());
      |                                                     ~~~~~~~~~~~~~~~^~
      |                                                                    |
      |                                                                    std::unique_ptr<tsl::OneDnnThreadPool>::pointer {aka tsl::OneDnnThreadPool*}
external/local_xla/xla/service/cpu/onednn_matmul.cc:148:49: note:   initializing argument 2 of ‘dnnl::stream xla::cpu::{anonymous}::MakeOneDnnStream(const dnnl::engine&, dnnl::threadpool_interop::threadpool_iface*)’
  148 |     dnnl::threadpool_interop::threadpool_iface* thread_pool) {
      |     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~
external/local_xla/xla/service/cpu/onednn_matmul.cc: In function ‘void xla::cpu::__xla_cpu_runtime_OneDnnMatMulReorder(void*, void**)’:
external/local_xla/xla/service/cpu/onednn_matmul.cc:322:68: error: cannot convert ‘std::unique_ptr<tsl::OneDnnThreadPool>::pointer’ {aka ‘tsl::OneDnnThreadPool*’} to ‘dnnl::threadpool_interop::threadpool_iface*’
  322 |   auto onednn_stream = MakeOneDnnStream(cpu_engine, thread_pool.get());
      |                                                     ~~~~~~~~~~~~~~~^~
      |                                                                    |
      |                                                                    std::unique_ptr<tsl::OneDnnThreadPool>::pointer {aka tsl::OneDnnThreadPool*}
external/local_xla/xla/service/cpu/onednn_matmul.cc:148:49: note:   initializing argument 2 of ‘dnnl::stream xla::cpu::{anonymous}::MakeOneDnnStream(const dnnl::engine&, dnnl::threadpool_interop::threadpool_iface*)’
  148 |     dnnl::threadpool_interop::threadpool_iface* thread_pool) {
      |     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~
Target //tensorflow/tools/pip_package:build_pip_package failed to build
Use --verbose_failures to see the command lines of failed build steps.
INFO: Elapsed time: 16142.186s, Critical Path: 328.40s
INFO: 25824 processes: 8831 internal, 16993 local.
FAILED: Build did NOT complete successfully
```
",2024-03-09T20:04:58Z,0
Fix SegFault in Python InterpreterWrapper,"If `InterpreterWrapper::TensorSparsityParameters` encounters Tensors which do not have a `block_map`, a `nullptr` is dereferenced causing AccViol/SegFault.

Add a check for `nullptr`.

Attempts to fix #62058",2024-03-09T19:57:47Z,0
Force an extra step from pred to u32 before then converting to f32 as that can fail on TGP,"Force an extra step from pred to u32 before then converting to f32 as that can fail on TGP
",2024-03-09T19:43:15Z,0
Build error related to XLA and absl,"### Issue type

Build/Install

### Have you reproduced the bug with TensorFlow Nightly?

No

### Source

source

### TensorFlow version

2.16.1

### Custom code

No

### OS platform and distribution

Linux Ubuntu 22.04

### Mobile device

_No response_

### Python version

3.11.7

### Bazel version

6.5.0

### GCC/compiler version

11.4.0

### CUDA/cuDNN version

11.8.0/8.9.7.29

### GPU model and memory

_No response_

### Current behavior?

When building TF from source using the Spack package manager, I see the following build failure:
```
ERROR: /tmp/spackkiy_sjk0/dfa266778fb055fec5b77ad2acb73759/external/local_xla/xla/service/gpu/kernels/BUILD:157:13: Compiling xla/service/gpu/kernels/topk_kernel_bfloat16.cu.cc failed: (Exit 1): crosstool_wrapper_driver_is_not_gcc failed: error executing command (from target @local_xla//xla/service/gpu/kernels:topk_kernel_cuda)
...
external/com_google_absl/absl/strings/internal/str_format/bind.h: In constructor ‘absl::lts_20230802::str_format_internal::FormatSpecTemplate<Args>::FormatSpecTemplate(const absl::lts_20230802::str_format_internal::ExtendedParsedFormat<absl::lts_20230802::FormatConversionCharSet(C)...>&)’:
external/com_google_absl/absl/strings/internal/str_format/bind.h:172:1: error: parse error in template argument list
  172 |     CheckArity<sizeof...(C), sizeof...(Args)>();
      | ^   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~              
external/com_google_absl/absl/strings/internal/str_format/bind.h:172:63: error: expected ‘;’ before ‘)’ token
  172 |     CheckArity<sizeof...(C), sizeof...(Args)>();
      |                                                               ^
external/com_google_absl/absl/strings/internal/str_format/bind.h:173:147: error: template argument 1 is invalid
  173 |     CheckMatches<C...>(absl::make_index_sequence<sizeof...(C)>{});
      |                                                                                                                                                   ^
external/com_google_absl/absl/strings/internal/str_format/bind.h:173:151: error: expected primary-expression before ‘{’ token
  173 |     CheckMatches<C...>(absl::make_index_sequence<sizeof...(C)>{});
      |                                                                                                                                                       ^
external/com_google_absl/absl/strings/internal/str_format/bind.h:173:151: error: expected ‘;’ before ‘{’ token
external/com_google_absl/absl/strings/internal/str_format/bind.h:173:153: error: expected primary-expression before ‘)’ token
  173 |     CheckMatches<C...>(absl::make_index_sequence<sizeof...(C)>{});
      |                                                                                                                                                         ^
Target //tensorflow/tools/pip_package:build_pip_package failed to build
INFO: Elapsed time: 1238.631s, Critical Path: 57.51s
INFO: 17066 processes: 6004 internal, 11062 local.
FAILED: Build did NOT complete successfully
```

### Standalone code to reproduce the issue

See the below build log for steps to reproduce the issue.

### Relevant log output

* [build log](https://github.com/tensorflow/tensorflow/files/14547197/spack-build-out.txt)
* [build env](https://github.com/tensorflow/tensorflow/files/14547196/spack-build-env-mods.txt)
",2024-03-09T17:20:29Z,1
core dumped with tf.raw_ops.FakeQuantWithMinMaxVarsPerChannel,"### Issue type

Bug

### Have you reproduced the bug with TensorFlow Nightly?

Yes

### Source

binary

### TensorFlow version

tf 2.15

### Custom code

Yes

### OS platform and distribution

Ubuntu 20.04

### Mobile device

_No response_

### Python version

3.9

### Bazel version

_No response_

### GCC/compiler version

_No response_

### CUDA/cuDNN version

_No response_

### GPU model and memory

_No response_

### Current behavior?

core dumped error with specific input parameters.

### Standalone code to reproduce the issue

```shell
import tensorflow as tf

# Generate input data
input_data = tf.constant([[1.5, 2.5, 3.5], [4.5, 5.5, 6.5]])

# Define min and max values per channel
min_per_channel = tf.constant([1.0, 2.0, 3.0])
max_per_channel = tf.constant([2.0, 3.0, 4.0])

# Invoke tf.raw_ops.FakeQuantWithMinMaxVarsPerChannel with inputs as 0-dimensional tensor and max as a 1x3 tensor
quantized_output = tf.raw_ops.FakeQuantWithMinMaxVarsPerChannel(inputs=tf.constant(0.0), min=min_per_channel, max=max_per_channel, num_bits=8, narrow_range=False)

# Print the quantized output
print(quantized_output)
```


### Relevant log output

```shell
2024-03-09 15:02:07.858055: F tensorflow/core/framework/tensor_shape.cc:356] Check failed: d >= 0 (0 vs. -1)
Aborted (core dumped)
```
",2024-03-09T15:03:18Z,0
core dumped with tf.raw_ops.DrawBoundingBoxes and tf.raw_ops.DrawBoundingBoxesV2,"### Issue type

Bug

### Have you reproduced the bug with TensorFlow Nightly?

Yes

### Source

binary

### TensorFlow version

tf 2.15

### Custom code

Yes

### OS platform and distribution

Ubuntu 20.04

### Mobile device

_No response_

### Python version

3.9

### Bazel version

_No response_

### GCC/compiler version

_No response_

### CUDA/cuDNN version

_No response_

### GPU model and memory

_No response_

### Current behavior?

core dumped error with specific input parameters.

### Standalone code to reproduce the issue

1. The code of `tf.raw_ops.DrawBoundingBoxes`:
```shell
import tensorflow as tf
import numpy as np

# Generate input data
batch_size = 1
image_height = 100
image_width = 100
num_channels = 3
num_boxes = 2

images = np.random.rand(image_height, image_width, num_channels).astype(np.float32)  # Remove the batch dimension
boxes = np.random.rand(batch_size, num_boxes, 4).astype(np.float32)

# Invoke tf.raw_ops.DrawBoundingBoxes with a zero-dimensional tensor for images
drawn_images = tf.raw_ops.DrawBoundingBoxes(images=tf.convert_to_tensor(images),
                                           boxes=tf.convert_to_tensor(boxes))

# Print the result
print(drawn_images)
```

2. The code of `tf.raw_ops.DrawBoundingBoxesV2`:
```
import tensorflow as tf
import numpy as np

# Generate input data
image_height = 100
image_width = 100
num_channels = 3
num_boxes = 2

images = tf.random.uniform((image_height, image_width, num_channels))  # Change the shape to satisfy the requirement of a zero-dimensional tensor
boxes = tf.random.uniform((1, num_boxes, 4))
colors = tf.constant([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]])  # Define colors for each bounding box

# Invoke tf.raw_ops.DrawBoundingBoxesV2
output_images = tf.raw_ops.DrawBoundingBoxesV2(images=images, boxes=boxes, colors=colors)

# Print the output images
print(output_images)
```


### Relevant log output

```shell
2024-03-09 14:55:53.834849: F tensorflow/core/framework/tensor_shape.cc:357] Check failed: d < dims() (3 vs. 3)
Aborted (core dumped)
```
",2024-03-09T14:57:17Z,2
Aborted (core dumped) with tf.raw_ops.AvgPoolGrad,"### Issue type

Bug

### Have you reproduced the bug with TensorFlow Nightly?

Yes

### Source

binary

### TensorFlow version

tf 2.15

### Custom code

Yes

### OS platform and distribution

Ubuntu 20.04

### Mobile device

_No response_

### Python version

3.9

### Bazel version

_No response_

### GCC/compiler version

_No response_

### CUDA/cuDNN version

_No response_

### GPU model and memory

_No response_

### Current behavior?

core dumped error with specific input parameters.

### Standalone code to reproduce the issue

```shell
import tensorflow as tf

# Generate input data
input_data = tf.random.normal([1, 28, 28, 3])
grad = tf.random.normal([1, 14, 14, 6])  # Change the number of channels in grad tensor

# Perform average pooling
result = tf.nn.avg_pool2d(input_data, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID', data_format='NHWC')

# Compute gradient
grad_result = tf.raw_ops.AvgPoolGrad(orig_input_shape=tf.shape(input_data), grad=grad, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID', data_format='NHWC')

print(grad_result)
```


### Relevant log output

```shell
free(): corrupted unsorted chunks
Aborted (core dumped)
```
",2024-03-09T14:54:40Z,0
Segmentation fault with tf.raw_ops.AudioSpectrogram,"### Issue type

Bug

### Have you reproduced the bug with TensorFlow Nightly?

Yes

### Source

binary

### TensorFlow version

tf 2.15

### Custom code

Yes

### OS platform and distribution

Ubuntu 20.04

### Mobile device

_No response_

### Python version

3.9

### Bazel version

_No response_

### GCC/compiler version

_No response_

### CUDA/cuDNN version

_No response_

### GPU model and memory

_No response_

### Current behavior?

Segmentation fault error with specific input parameters.

### Standalone code to reproduce the issue

```shell
import tensorflow as tf

# Generate input data
input_data = tf.random.normal([1, 44100], dtype=tf.float32)

# Invoke tf.raw_ops.AudioSpectrogram with a negative window_size
spectrogram = tf.raw_ops.AudioSpectrogram(input=input_data, window_size=-1024, stride=64, magnitude_squared=False)

# Print the spectrogram
print(spectrogram)
```


### Relevant log output

```shell
Segmentation fault (core dumped)
```
",2024-03-09T14:50:26Z,1
core dumped with tf.quantization.fake_quant_with_min_max_vars_per_channel,"### Issue type

Bug

### Have you reproduced the bug with TensorFlow Nightly?

Yes

### Source

binary

### TensorFlow version

tf 2.15

### Custom code

Yes

### OS platform and distribution

Ubuntu 20.04

### Mobile device

_No response_

### Python version

3.9

### Bazel version

_No response_

### GCC/compiler version

_No response_

### CUDA/cuDNN version

_No response_

### GPU model and memory

_No response_

### Current behavior?

core dumped error with specific input parameters.

### Standalone code to reproduce the issue

```shell
import tensorflow as tf

input_data = tf.constant(3.0)

min_per_channel = tf.constant(2.0)
max_per_channel = tf.constant(4.0)

quantized_data = tf.quantization.fake_quant_with_min_max_vars_per_channel(input_data, min_per_channel, max_per_channel)
print(quantized_data)
```


### Relevant log output

```shell
2024-03-09 14:43:28.826225: F tensorflow/core/framework/tensor_shape.cc:356] Check failed: d >= 0 (0 vs. -1)
Aborted (core dumped)
```
",2024-03-09T14:47:46Z,0