import whisper import gradio as gr import time import os '''model = whisper.load_model("base") print(model.device)''' def speechtotext(tmp_filename, uploaded): try: source = uploaded if uploaded is not None else tmp_filename result = os.system("whisper" + source + " --language Hindi " + " --task translate ") return f'Detected language: {Language.make(language=result["language"]).display_name()}\n\n ' \ f'You said: {result["text"]}' except: return "Unable to generate translation" gr.Interface( title="NS-AI-Labs Custom Whisper", thumbnail="https://cdn.openai.com/whisper/asr-summary-of-model-architecture-desktop.svg", css=""" .gr-prose p{text-align: center;} .gr-button {background: black;color: white} """, description="we customised whisper with some additional ASR layers , speak in any language we are here to get it " "recognised !", fn=speechtotext, inputs=[ gr.Audio(label="Record your voice on your mic", source="microphone", type="filepath"), gr.Audio(source="upload", type="filepath", label="Upload Audio")], outputs="text").launch()