Spaces:
Runtime error
Runtime error
Update texture_transfer.py
Browse files- texture_transfer.py +11 -11
texture_transfer.py
CHANGED
@@ -36,15 +36,15 @@ def create_image_tile(input_patch, x_dim, y_dim):
|
|
36 |
|
37 |
|
38 |
def create_image_cutout(texture_transfer_image, actual_mask):
|
39 |
-
image = Image.open(texture_transfer_image)
|
40 |
mask = Image.open(actual_mask).convert('L')
|
41 |
if mask.size != image.size:
|
42 |
image = image.resize(mask.size, Image.Resampling.NEAREST)
|
43 |
image_np = np.array(image)
|
44 |
mask_np = np.array(mask)
|
45 |
-
binary_mask = (mask_np > 127).astype(np.uint8)
|
46 |
-
masked_image_np = image_np * np.expand_dims(binary_mask, axis=-1)
|
47 |
-
masked_image = Image.fromarray(masked_image_np)
|
48 |
masked_image.save('cut_out_image.png')
|
49 |
|
50 |
|
@@ -56,16 +56,16 @@ def paste_image(base_image_path, cutout_image_path, mask_path):
|
|
56 |
cutout_rgb = cutout.convert("RGB")
|
57 |
cutout_alpha = cutout.split()[-1]
|
58 |
else:
|
59 |
-
cutout_rgb = cutout
|
60 |
cutout_alpha = mask
|
61 |
cutout_rgb = cutout_rgb.resize(background.size, Image.Resampling.NEAREST)
|
62 |
cutout_alpha = cutout_alpha.resize(background.size, Image.Resampling.NEAREST)
|
63 |
-
cutout_alpha_np = np.array(cutout_alpha)
|
64 |
-
binary_mask = (cutout_alpha_np > 128).astype(np.uint8) * 255
|
65 |
cutout_rgb_np = np.array(cutout_rgb)
|
66 |
background_np = np.array(background)
|
67 |
-
|
68 |
-
|
|
|
|
|
69 |
result_np = cutout_masked + background_masked
|
70 |
-
result = Image.fromarray(result_np
|
71 |
-
result.save('result.png')
|
|
|
36 |
|
37 |
|
38 |
def create_image_cutout(texture_transfer_image, actual_mask):
|
39 |
+
image = Image.open(texture_transfer_image).convert('RGB')
|
40 |
mask = Image.open(actual_mask).convert('L')
|
41 |
if mask.size != image.size:
|
42 |
image = image.resize(mask.size, Image.Resampling.NEAREST)
|
43 |
image_np = np.array(image)
|
44 |
mask_np = np.array(mask)
|
45 |
+
binary_mask = (mask_np > 127).astype(np.uint8)
|
46 |
+
masked_image_np = image_np * np.expand_dims(binary_mask, axis=-1)
|
47 |
+
masked_image = Image.fromarray(masked_image_np.astype(np.uint8))
|
48 |
masked_image.save('cut_out_image.png')
|
49 |
|
50 |
|
|
|
56 |
cutout_rgb = cutout.convert("RGB")
|
57 |
cutout_alpha = cutout.split()[-1]
|
58 |
else:
|
59 |
+
cutout_rgb = cutout.convert("RGB")
|
60 |
cutout_alpha = mask
|
61 |
cutout_rgb = cutout_rgb.resize(background.size, Image.Resampling.NEAREST)
|
62 |
cutout_alpha = cutout_alpha.resize(background.size, Image.Resampling.NEAREST)
|
|
|
|
|
63 |
cutout_rgb_np = np.array(cutout_rgb)
|
64 |
background_np = np.array(background)
|
65 |
+
cutout_alpha_np = np.array(cutout_alpha)
|
66 |
+
cutout_alpha_np = cutout_alpha_np / 255.0
|
67 |
+
cutout_masked = (cutout_rgb_np * cutout_alpha_np[..., np.newaxis]).astype(np.uint8)
|
68 |
+
background_masked = (background_np * (1 - cutout_alpha_np[..., np.newaxis])).astype(np.uint8)
|
69 |
result_np = cutout_masked + background_masked
|
70 |
+
result = Image.fromarray(result_np)
|
71 |
+
result.save('result.png')
|