Spaces:
Sleeping
Sleeping
File size: 1,400 Bytes
ee64b99 b3240eb ee64b99 b3240eb 1a45114 b3240eb ee64b99 58bcc6b 3aa5b89 804adda b3240eb ee64b99 b3240eb ee64b99 b3240eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import streamlit as st
from sentence_transformers import CrossEncoder
# Title and instructions
st.title("Typosquatting Detection App")
st.write("Enter two domains to check if one is a typosquatted variant of the other.")
# Model selection
model_choice = st.selectbox("Choose a model for detection:", ["CE-typosquat-detect-Canine", "CE-typosquat-detect"])
# Load model after selection
if model_choice:
model_path = f"./{model_choice}"
model = CrossEncoder(model_path)
# User inputs for domains and threshold
domain = st.text_input("Enter the legitimate domain name:")
typosquat = st.text_input("Enter the potentially typosquatted domain name:")
threshold = st.slider("Set detection threshold", 0.0, 1.0, 0.5)
# Typosquatting detection on button click
if st.button("Check Typosquatting"):
if domain and typosquat:
inputs = [(typosquat, domain)]
prediction = model.predict(inputs)[0]
# Display result
if prediction > threshold:
st.success(f"The model predicts that '{typosquat}' is likely a typosquatted version of '{domain}' with a score of {prediction:.4f}.")
else:
st.warning(f"The model predicts that '{typosquat}' is NOT likely a typosquatted version of '{domain}' with a score of {prediction:.4f}.")
else:
st.error("Please enter both a legitimate domain and a potentially typosquatted domain.")
|