import streamlit as st from sentence_transformers import CrossEncoder model_name = "./" model = CrossEncoder(model_name) st.title("Typosquatting Detection App") st.write("Enter two domains to check if one is a typosquatted variant of the other.") domain = st.text_input("Enter the legitimate domain name:") typosquat = st.text_input("Enter the potentially typosquatted domain name:") st.write("Recommended threshold for detection is 0.3.") threshold = st.slider("Set detection threshold", 0.0, 1.0, 0.3) if st.button("Check Typosquatting"): inputs = [(typosquat,domain)] prediction = model.predict(inputs)[0] print(prediction) if prediction > threshold: st.success(f"The model predicts that '{typosquat}' is likely a typosquatted version of '{domain}' with a score of {prediction}.") else: st.warning(f"The model predicts that '{typosquat}' is NOT likely a typosquatted version of '{domain}' with a score of {prediction}.")