import streamlit as st from sentence_transformers import CrossEncoder # Title and instructions st.title("Typosquatting Detection App") st.write("Enter two domains to check if one is a typosquatted variant of the other.") # Model selection model_choice = st.selectbox("Choose a model for detection:", ["CE-typosquat-detect-Canine", "CE-typosquat-detect"]) # Load model after selection if model_choice: model_path = f"./{model_choice}" model = CrossEncoder(model_path) # User inputs for domains and threshold domain = st.text_input("Enter the legitimate domain name:") typosquat = st.text_input("Enter the potentially typosquatted domain name:") threshold = st.slider("Set detection threshold", 0.0, 1.0, 0.5) # Typosquatting detection on button click if st.button("Check Typosquatting"): if domain and typosquat: inputs = [(typosquat, domain)] prediction = model.predict(inputs)[0] # Display result if prediction > threshold: st.success(f"The model predicts that '{typosquat}' is likely a typosquatted version of '{domain}' with a score of {prediction:.4f}.") else: st.warning(f"The model predicts that '{typosquat}' is NOT likely a typosquatted version of '{domain}' with a score of {prediction:.4f}.") else: st.error("Please enter both a legitimate domain and a potentially typosquatted domain.")