Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from peft import PeftModel | |
import torch | |
def load_model(): | |
model_id = "google/flan-t5-large" | |
adapter_path = "./Flan-T5-Typosquat-detect" # Adjust to your saved adapter path | |
# Load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_id) | |
model = PeftModel.from_pretrained(model, adapter_path) | |
model.eval() | |
return model, tokenizer | |
device='cpu' | |
model, tokenizer = load_model() | |
st.title("FLAN-T5 Typosquatting Detection") | |
st.write("Enter a potential typosquatted domain and a target domain to check if one is a variant of the other.") | |
# Non-editable prompt part | |
prompt_prefix = "Is the first domain a typosquat of the second:" | |
# Display the non-editable prompt with input fields for the rest | |
st.markdown("### Prompt") | |
st.text_area("Prompt", prompt_prefix, height=50, disabled=True) | |
# User inputs for dynamic part of the prompt | |
potential_typosquat = st.text_input("Potential Typosquatted Domain", value="lonlonsoft.com") | |
target_domain = st.text_input("Legitimate Domain", value="stiltsoft.net") | |
# Generate prompt by combining fixed and dynamic parts | |
full_prompt = f"{prompt_prefix} {potential_typosquat} {target_domain}" | |
# Perform inference when button is clicked | |
if st.button("Check Typosquatting"): | |
if potential_typosquat and target_domain: | |
# Encode and generate response | |
input_ids = tokenizer(full_prompt, return_tensors="pt").input_ids.to(device) | |
outputs = model.generate(input_ids, max_new_tokens=20) | |
# Decode the response | |
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Display the result | |
st.write("**Prediction:**") | |
st.write(prediction) | |
else: | |
st.warning("Please enter both domains to perform the check.") |