Spaces:
Running
Running
Upload 9 files
Browse files- URLGuardian/README.md +114 -0
- URLGuardian/config.json +26 -0
- URLGuardian/gitattributes +35 -0
- URLGuardian/model.safetensors +3 -0
- URLGuardian/special_tokens_map.json +7 -0
- URLGuardian/tokenizer.json +0 -0
- URLGuardian/tokenizer_config.json +55 -0
- URLGuardian/training_args.bin +3 -0
- URLGuardian/vocab.txt +0 -0
URLGuardian/README.md
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- distilbert/distilbert-base-multilingual-cased
|
7 |
+
pipeline_tag: text-classification
|
8 |
+
library_name: transformers
|
9 |
+
tags:
|
10 |
+
- code
|
11 |
+
- cyber
|
12 |
+
---
|
13 |
+
|
14 |
+
|
15 |
+
# Transformer
|
16 |
+
|
17 |
+
This is a transformers model fine tuned for malicious URL detection. Given a FQDN URL it outputs probability of it to be malicious identifying common suspicious pattern.
|
18 |
+
|
19 |
+
## Model Details
|
20 |
+
|
21 |
+
### Model Description
|
22 |
+
|
23 |
+
- **Developed by:** Anvilogic
|
24 |
+
- **Model Type:** Transformer
|
25 |
+
- **Maximum Sequence Length:** 512 tokens
|
26 |
+
- **Output Dimensionality:** 768 tokens
|
27 |
+
- **Finetuned from model:** [distilbert](https://huggingface.co/distilbert/distilbert-base-cased)
|
28 |
+
- **Language(s) (NLP):** Multilingual
|
29 |
+
- **License:** MIT
|
30 |
+
|
31 |
+
### Full Model Architecture
|
32 |
+
|
33 |
+
```
|
34 |
+
DistilBERT:
|
35 |
+
name: "distilbert-base-cased"
|
36 |
+
params:
|
37 |
+
layers: 6
|
38 |
+
hidden_size: 768
|
39 |
+
attention_heads: 12
|
40 |
+
ff_dim: 3072
|
41 |
+
max_seq_len: 512
|
42 |
+
vocab_size: 28996
|
43 |
+
total_params: 66M
|
44 |
+
activation: "gelu"
|
45 |
+
```
|
46 |
+
|
47 |
+
## Usage
|
48 |
+
|
49 |
+
### Direct Usage
|
50 |
+
|
51 |
+
First install the Transformers library:
|
52 |
+
|
53 |
+
```bash
|
54 |
+
pip install -U transformers
|
55 |
+
```
|
56 |
+
Then you can load this model and run inference.
|
57 |
+
```python
|
58 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
59 |
+
import torch
|
60 |
+
# Load pre-trained model and tokenizer
|
61 |
+
model_name = "Anvilogic/URLGuardian"
|
62 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
63 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2) # Adjust `num_labels` based on your task
|
64 |
+
# Example sentences
|
65 |
+
sentences = ["paypal.com.secure-login.xyz","bit.ly/fake-login"]
|
66 |
+
# Tokenize inputs
|
67 |
+
inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
|
68 |
+
# Run inference
|
69 |
+
with torch.no_grad():
|
70 |
+
outputs = model(**inputs)
|
71 |
+
logits = outputs.logits # Raw predictions
|
72 |
+
predictions = torch.argmax(logits, dim=-1) # Convert to class labels
|
73 |
+
# Print results
|
74 |
+
print(predictions.tolist()) # Example output: [1, 0] (Assuming 1 = Positive, 0 = Negative)
|
75 |
+
```
|
76 |
+
### Downstream Usage
|
77 |
+
This dataset enables real-time malicious URL detection with lightweight models, supporting large-scale inference for phishing prevention and cybersecurity monitoring.
|
78 |
+
## Training Details
|
79 |
+
|
80 |
+
### Framework Versions
|
81 |
+
- Python: 3.10.14
|
82 |
+
- Transformers: 4.49.0
|
83 |
+
- PyTorch: 2.2.2
|
84 |
+
- Tokenizers: 0.20.3
|
85 |
+
|
86 |
+
### Training Data
|
87 |
+
|
88 |
+
The model was fine-tuned using [Anvilogic/URL-Guardian-Dataset](https://huggingface.co/datasets/Anvilogic/URL-Guardian-Dataset), which contains URL as well as their labels.
|
89 |
+
The dataset was filtered and converted to the parquet format for efficient processing.
|
90 |
+
|
91 |
+
### Training Procedure
|
92 |
+
The model was optimized using [BCELoss](https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html)
|
93 |
+
|
94 |
+
#### Training Hyperparameters
|
95 |
+
- **Model Architecture**: encoder fine-tuned from [distilbert](https://huggingface.co/distilbert/distilbert-base-cased)
|
96 |
+
- **Batch Size**: 32
|
97 |
+
- **Epochs**: 3
|
98 |
+
- **Learning Rate**: 2e-5
|
99 |
+
- **Warmup Steps**: 100
|
100 |
+
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
In the final evaluation after training, the model achieved the following metrics on the test set:
|
105 |
+
|
106 |
+
**Binary Classification Evaluator**
|
107 |
+
```json
|
108 |
+
Accuracy : 0.9744
|
109 |
+
F1 Score : 0.9742
|
110 |
+
Precision : 0.9771
|
111 |
+
Recall : 0.9712
|
112 |
+
Average Precision : 0.9962
|
113 |
+
```
|
114 |
+
These results indicate the model's high performance in identifying maliciosu URLs, with strong precision and recall scores that make it well-suited for cybersecurity applications.
|
URLGuardian/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "distilbert-base-cased",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertForSequenceClassification"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"output_past": true,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"problem_type": "single_label_classification",
|
19 |
+
"qa_dropout": 0.1,
|
20 |
+
"seq_classif_dropout": 0.2,
|
21 |
+
"sinusoidal_pos_embds": false,
|
22 |
+
"tie_weights_": true,
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.46.0",
|
25 |
+
"vocab_size": 28996
|
26 |
+
}
|
URLGuardian/gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
URLGuardian/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ecf4221da48f739893107179765b83e379e77f52b96f27c1dde1419404943cf
|
3 |
+
size 263144680
|
URLGuardian/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
URLGuardian/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
URLGuardian/tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": false,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"model_max_length": 512,
|
49 |
+
"pad_token": "[PAD]",
|
50 |
+
"sep_token": "[SEP]",
|
51 |
+
"strip_accents": null,
|
52 |
+
"tokenize_chinese_chars": true,
|
53 |
+
"tokenizer_class": "DistilBertTokenizer",
|
54 |
+
"unk_token": "[UNK]"
|
55 |
+
}
|
URLGuardian/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:861efa3a0c559688eebcfd4bfad6184cc0671abca0afaee84a39bdb6e69b3c8d
|
3 |
+
size 5240
|
URLGuardian/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|