Spaces:
Paused
Paused
File size: 17,670 Bytes
72277b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import asyncio
import numpy as np
import ffmpeg
from time import time, sleep
import math
import logging
import traceback
from datetime import timedelta
from typing import List, Dict, Any
from timed_objects import ASRToken
from whisper_streaming_custom.whisper_online import online_factory
from core import WhisperLiveKit
# Set up logging once
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
def format_time(seconds: float) -> str:
"""Format seconds as HH:MM:SS."""
return str(timedelta(seconds=int(seconds)))
class AudioProcessor:
"""
Processes audio streams for transcription and diarization.
Handles audio processing, state management, and result formatting.
"""
def __init__(self):
"""Initialize the audio processor with configuration, models, and state."""
models = WhisperLiveKit()
# Audio processing settings
self.args = models.args
self.sample_rate = 16000
self.channels = 1
self.samples_per_sec = int(self.sample_rate * self.args.min_chunk_size)
self.bytes_per_sample = 2
self.bytes_per_sec = self.samples_per_sec * self.bytes_per_sample
self.max_bytes_per_sec = 32000 * 5 # 5 seconds of audio at 32 kHz
# State management
self.tokens = []
self.buffer_transcription = ""
self.buffer_diarization = ""
self.full_transcription = ""
self.end_buffer = 0
self.end_attributed_speaker = 0
self.lock = asyncio.Lock()
self.beg_loop = time()
self.sep = " " # Default separator
self.last_response_content = ""
# Models and processing
self.asr = models.asr
self.tokenizer = models.tokenizer
self.diarization = models.diarization
self.ffmpeg_process = self.start_ffmpeg_decoder()
self.transcription_queue = asyncio.Queue() if self.args.transcription else None
self.diarization_queue = asyncio.Queue() if self.args.diarization else None
self.pcm_buffer = bytearray()
# Initialize transcription engine if enabled
if self.args.transcription:
self.online = online_factory(self.args, models.asr, models.tokenizer)
def convert_pcm_to_float(self, pcm_buffer):
"""Convert PCM buffer in s16le format to normalized NumPy array."""
return np.frombuffer(pcm_buffer, dtype=np.int16).astype(np.float32) / 32768.0
def start_ffmpeg_decoder(self):
"""Start FFmpeg process for WebM to PCM conversion."""
return (ffmpeg.input("pipe:0", format="webm")
.output("pipe:1", format="s16le", acodec="pcm_s16le",
ac=self.channels, ar=str(self.sample_rate))
.run_async(pipe_stdin=True, pipe_stdout=True, pipe_stderr=True))
async def restart_ffmpeg(self):
"""Restart the FFmpeg process after failure."""
if self.ffmpeg_process:
try:
self.ffmpeg_process.kill()
await asyncio.get_event_loop().run_in_executor(None, self.ffmpeg_process.wait)
except Exception as e:
logger.warning(f"Error killing FFmpeg process: {e}")
self.ffmpeg_process = self.start_ffmpeg_decoder()
self.pcm_buffer = bytearray()
async def update_transcription(self, new_tokens, buffer, end_buffer, full_transcription, sep):
"""Thread-safe update of transcription with new data."""
async with self.lock:
self.tokens.extend(new_tokens)
self.buffer_transcription = buffer
self.end_buffer = end_buffer
self.full_transcription = full_transcription
self.sep = sep
async def update_diarization(self, end_attributed_speaker, buffer_diarization=""):
"""Thread-safe update of diarization with new data."""
async with self.lock:
self.end_attributed_speaker = end_attributed_speaker
if buffer_diarization:
self.buffer_diarization = buffer_diarization
async def add_dummy_token(self):
"""Placeholder token when no transcription is available."""
async with self.lock:
current_time = time() - self.beg_loop
self.tokens.append(ASRToken(
start=current_time, end=current_time + 1,
text=".", speaker=-1, is_dummy=True
))
async def get_current_state(self):
"""Get current state."""
async with self.lock:
current_time = time()
# Calculate remaining times
remaining_transcription = 0
if self.end_buffer > 0:
remaining_transcription = max(0, round(current_time - self.beg_loop - self.end_buffer, 2))
remaining_diarization = 0
if self.tokens:
latest_end = max(self.end_buffer, self.tokens[-1].end if self.tokens else 0)
remaining_diarization = max(0, round(latest_end - self.end_attributed_speaker, 2))
return {
"tokens": self.tokens.copy(),
"buffer_transcription": self.buffer_transcription,
"buffer_diarization": self.buffer_diarization,
"end_buffer": self.end_buffer,
"end_attributed_speaker": self.end_attributed_speaker,
"sep": self.sep,
"remaining_time_transcription": remaining_transcription,
"remaining_time_diarization": remaining_diarization
}
async def reset(self):
"""Reset all state variables to initial values."""
async with self.lock:
self.tokens = []
self.buffer_transcription = self.buffer_diarization = ""
self.end_buffer = self.end_attributed_speaker = 0
self.full_transcription = self.last_response_content = ""
self.beg_loop = time()
async def ffmpeg_stdout_reader(self):
"""Read audio data from FFmpeg stdout and process it."""
loop = asyncio.get_event_loop()
beg = time()
while True:
try:
# Calculate buffer size based on elapsed time
elapsed_time = math.floor((time() - beg) * 10) / 10 # Round to 0.1 sec
buffer_size = max(int(32000 * elapsed_time), 4096)
beg = time()
# Read chunk with timeout
try:
chunk = await asyncio.wait_for(
loop.run_in_executor(None, self.ffmpeg_process.stdout.read, buffer_size),
timeout=15.0
)
except asyncio.TimeoutError:
logger.warning("FFmpeg read timeout. Restarting...")
await self.restart_ffmpeg()
beg = time()
continue
if not chunk:
logger.info("FFmpeg stdout closed.")
break
self.pcm_buffer.extend(chunk)
# Send to diarization if enabled
if self.args.diarization and self.diarization_queue:
await self.diarization_queue.put(
self.convert_pcm_to_float(self.pcm_buffer).copy()
)
# Process when we have enough data
if len(self.pcm_buffer) >= self.bytes_per_sec:
if len(self.pcm_buffer) > self.max_bytes_per_sec:
logger.warning(
f"Audio buffer too large: {len(self.pcm_buffer) / self.bytes_per_sec:.2f}s. "
f"Consider using a smaller model."
)
# Process audio chunk
pcm_array = self.convert_pcm_to_float(self.pcm_buffer[:self.max_bytes_per_sec])
self.pcm_buffer = self.pcm_buffer[self.max_bytes_per_sec:]
# Send to transcription if enabled
if self.args.transcription and self.transcription_queue:
await self.transcription_queue.put(pcm_array.copy())
# Sleep if no processing is happening
if not self.args.transcription and not self.args.diarization:
await asyncio.sleep(0.1)
except Exception as e:
logger.warning(f"Exception in ffmpeg_stdout_reader: {e}")
logger.warning(f"Traceback: {traceback.format_exc()}")
break
async def transcription_processor(self):
"""Process audio chunks for transcription."""
self.full_transcription = ""
self.sep = self.online.asr.sep
while True:
try:
pcm_array = await self.transcription_queue.get()
logger.info(f"{len(self.online.audio_buffer) / self.online.SAMPLING_RATE} seconds of audio to process.")
# Process transcription
self.online.insert_audio_chunk(pcm_array)
new_tokens = self.online.process_iter()
if new_tokens:
self.full_transcription += self.sep.join([t.text for t in new_tokens])
# Get buffer information
_buffer = self.online.get_buffer()
buffer = _buffer.text
end_buffer = _buffer.end if _buffer.end else (
new_tokens[-1].end if new_tokens else 0
)
# Avoid duplicating content
if buffer in self.full_transcription:
buffer = ""
await self.update_transcription(
new_tokens, buffer, end_buffer, self.full_transcription, self.sep
)
except Exception as e:
logger.warning(f"Exception in transcription_processor: {e}")
logger.warning(f"Traceback: {traceback.format_exc()}")
finally:
self.transcription_queue.task_done()
async def diarization_processor(self, diarization_obj):
"""Process audio chunks for speaker diarization."""
buffer_diarization = ""
while True:
try:
pcm_array = await self.diarization_queue.get()
# Process diarization
await diarization_obj.diarize(pcm_array)
# Get current state and update speakers
state = await self.get_current_state()
new_end = diarization_obj.assign_speakers_to_tokens(
state["end_attributed_speaker"], state["tokens"]
)
await self.update_diarization(new_end, buffer_diarization)
except Exception as e:
logger.warning(f"Exception in diarization_processor: {e}")
logger.warning(f"Traceback: {traceback.format_exc()}")
finally:
self.diarization_queue.task_done()
async def results_formatter(self):
"""Format processing results for output."""
while True:
try:
# Get current state
state = await self.get_current_state()
tokens = state["tokens"]
buffer_transcription = state["buffer_transcription"]
buffer_diarization = state["buffer_diarization"]
end_attributed_speaker = state["end_attributed_speaker"]
sep = state["sep"]
# Add dummy tokens if needed
if (not tokens or tokens[-1].is_dummy) and not self.args.transcription and self.args.diarization:
await self.add_dummy_token()
sleep(0.5)
state = await self.get_current_state()
tokens = state["tokens"]
# Format output
previous_speaker = -1
lines = []
last_end_diarized = 0
undiarized_text = []
# Process each token
for token in tokens:
speaker = token.speaker
# Handle diarization
if self.args.diarization:
if (speaker in [-1, 0]) and token.end >= end_attributed_speaker:
undiarized_text.append(token.text)
continue
elif (speaker in [-1, 0]) and token.end < end_attributed_speaker:
speaker = previous_speaker
if speaker not in [-1, 0]:
last_end_diarized = max(token.end, last_end_diarized)
# Group by speaker
if speaker != previous_speaker or not lines:
lines.append({
"speaker": speaker,
"text": token.text,
"beg": format_time(token.start),
"end": format_time(token.end),
"diff": round(token.end - last_end_diarized, 2)
})
previous_speaker = speaker
elif token.text: # Only append if text isn't empty
lines[-1]["text"] += sep + token.text
lines[-1]["end"] = format_time(token.end)
lines[-1]["diff"] = round(token.end - last_end_diarized, 2)
# Handle undiarized text
if undiarized_text:
combined = sep.join(undiarized_text)
if buffer_transcription:
combined += sep
await self.update_diarization(end_attributed_speaker, combined)
buffer_diarization = combined
# Create response object
if not lines:
lines = [{
"speaker": 1,
"text": "",
"beg": format_time(0),
"end": format_time(tokens[-1].end if tokens else 0),
"diff": 0
}]
response = {
"lines": lines,
"buffer_transcription": buffer_transcription,
"buffer_diarization": buffer_diarization,
"remaining_time_transcription": state["remaining_time_transcription"],
"remaining_time_diarization": state["remaining_time_diarization"]
}
# Only yield if content has changed
response_content = ' '.join([f"{line['speaker']} {line['text']}" for line in lines]) + \
f" | {buffer_transcription} | {buffer_diarization}"
if response_content != self.last_response_content and (lines or buffer_transcription or buffer_diarization):
yield response
self.last_response_content = response_content
await asyncio.sleep(0.1) # Avoid overwhelming the client
except Exception as e:
logger.warning(f"Exception in results_formatter: {e}")
logger.warning(f"Traceback: {traceback.format_exc()}")
await asyncio.sleep(0.5) # Back off on error
async def create_tasks(self):
"""Create and start processing tasks."""
tasks = []
if self.args.transcription and self.online:
tasks.append(asyncio.create_task(self.transcription_processor()))
if self.args.diarization and self.diarization:
tasks.append(asyncio.create_task(self.diarization_processor(self.diarization)))
tasks.append(asyncio.create_task(self.ffmpeg_stdout_reader()))
self.tasks = tasks
return self.results_formatter()
async def cleanup(self):
"""Clean up resources when processing is complete."""
for task in self.tasks:
task.cancel()
try:
await asyncio.gather(*self.tasks, return_exceptions=True)
self.ffmpeg_process.stdin.close()
self.ffmpeg_process.wait()
except Exception as e:
logger.warning(f"Error during cleanup: {e}")
if self.args.diarization and hasattr(self, 'diarization'):
self.diarization.close()
async def process_audio(self, message):
"""Process incoming audio data."""
try:
self.ffmpeg_process.stdin.write(message)
self.ffmpeg_process.stdin.flush()
except (BrokenPipeError, AttributeError) as e:
logger.warning(f"Error writing to FFmpeg: {e}. Restarting...")
await self.restart_ffmpeg()
self.ffmpeg_process.stdin.write(message)
self.ffmpeg_process.stdin.flush() |