AnyaSchen's picture
fix: which model is used?
763a8af
raw
history blame
6.39 kB
from contextlib import asynccontextmanager
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, UploadFile, File
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
import asyncio
import logging
import os
import traceback
import argparse
import uvicorn
import numpy as np
import tempfile
from core import WhisperLiveKit
from audio_processor import AudioProcessor
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logging.getLogger().setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
audio_processor = None
@asynccontextmanager
async def lifespan(app: FastAPI):
global audio_processor
kit = WhisperLiveKit()
audio_processor = AudioProcessor()
yield
app = FastAPI(lifespan=lifespan)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allows all origins
allow_credentials=True,
allow_methods=["*"], # Allows all methods
allow_headers=["*"], # Allows all headers
)
# Mount static files
app.mount("/static", StaticFiles(directory="static"), name="static")
@app.get("/")
async def read_root():
return FileResponse("static/index.html")
@app.get("/health")
async def health_check():
return JSONResponse({"status": "healthy"})
@app.post("/detect-language")
async def detect_language(file: UploadFile = File(...)):
try:
# Use a temporary directory for saving the uploaded file
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
file_path = temp_file.name
contents = await file.read()
temp_file.write(contents)
# Use the audio processor for language detection
if audio_processor:
# Detect language using the audio processor
detected_lang, confidence, probs = await audio_processor.detect_language(file_path)
# Clean up - remove the temporary file
os.remove(file_path)
return JSONResponse({
"language": detected_lang,
"confidence": float(confidence),
"probabilities": {lang: float(prob) for lang, prob in probs.items()}
})
else:
return JSONResponse(
{"error": "Audio processor not initialized"},
status_code=500
)
except Exception as e:
logger.error(f"Error in language detection: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
# Clean up in case of error
if 'file_path' in locals() and os.path.exists(file_path):
os.remove(file_path)
return JSONResponse(
{"error": str(e)},
status_code=500
)
async def handle_websocket_results(websocket, results_generator):
"""Consumes results from the audio processor and sends them via WebSocket."""
try:
async for response in results_generator:
try:
logger.debug(f"Sending response: {response}")
if isinstance(response, dict):
# Ensure the response has a consistent format
if 'buffer_transcription' in response:
await websocket.send_json({
'buffer_transcription': response['buffer_transcription']
})
elif 'full_transcription' in response:
await websocket.send_json({
'full_transcription': response['full_transcription']
})
else:
await websocket.send_json(response)
else:
# If response is not a dict, wrap it in a text field
await websocket.send_json({"text": str(response)})
except Exception as e:
logger.error(f"Error sending message: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
raise
except Exception as e:
logger.warning(f"Error in WebSocket results handler: {e}")
logger.warning(f"Traceback: {traceback.format_exc()}")
@app.websocket("/asr")
async def websocket_endpoint(websocket: WebSocket):
logger.info("New WebSocket connection request")
websocket_task = None
try:
await websocket.accept()
logger.info("WebSocket connection accepted")
if not audio_processor:
raise RuntimeError("Audio processor not initialized")
results_generator = await audio_processor.create_tasks()
websocket_task = asyncio.create_task(handle_websocket_results(websocket, results_generator))
while True:
try:
message = await websocket.receive_bytes()
logger.debug(f"Received audio chunk of size: {len(message)}")
await audio_processor.process_audio(message)
except WebSocketDisconnect:
logger.info("WebSocket connection closed")
break
except Exception as e:
logger.error(f"Error processing WebSocket message: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
break
except Exception as e:
logger.error(f"Error in WebSocket endpoint: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
finally:
if websocket_task:
websocket_task.cancel()
try:
await websocket_task
except asyncio.CancelledError:
pass
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to run the server on")
parser.add_argument("--port", type=int, default=8000, help="Port to run the server on")
parser.add_argument("--model", type=str, default="base", help="Whisper model to use")
parser.add_argument("--backend", type=str, default="faster-whisper", help="Backend to use")
parser.add_argument("--task", type=str, default="transcribe", help="Task to perform")
args = parser.parse_args()
print(args)
uvicorn.run(app, host=args.host, port=args.port)