Spaces:
Paused
Paused
import sys | |
import numpy as np | |
import logging | |
from typing import List, Tuple, Optional | |
from timed_objects import ASRToken, Sentence, Transcript | |
logger = logging.getLogger(__name__) | |
class HypothesisBuffer: | |
""" | |
Buffer to store and process ASR hypothesis tokens. | |
It holds: | |
- committed_in_buffer: tokens that have been confirmed (committed) | |
- buffer: the last hypothesis that is not yet committed | |
- new: new tokens coming from the recognizer | |
""" | |
def __init__(self, logfile=sys.stderr, confidence_validation=False): | |
self.confidence_validation = confidence_validation | |
self.committed_in_buffer: List[ASRToken] = [] | |
self.buffer: List[ASRToken] = [] | |
self.new: List[ASRToken] = [] | |
self.last_committed_time = 0.0 | |
self.last_committed_word: Optional[str] = None | |
self.logfile = logfile | |
def insert(self, new_tokens: List[ASRToken], offset: float): | |
""" | |
Insert new tokens (after applying a time offset) and compare them with the | |
already committed tokens. Only tokens that extend the committed hypothesis | |
are added. | |
""" | |
# Apply the offset to each token. | |
new_tokens = [token.with_offset(offset) for token in new_tokens] | |
# Only keep tokens that are roughly "new" | |
self.new = [token for token in new_tokens if token.start > self.last_committed_time - 0.1] | |
if self.new: | |
first_token = self.new[0] | |
if abs(first_token.start - self.last_committed_time) < 1: | |
if self.committed_in_buffer: | |
committed_len = len(self.committed_in_buffer) | |
new_len = len(self.new) | |
# Try to match 1 to 5 consecutive tokens | |
max_ngram = min(min(committed_len, new_len), 5) | |
for i in range(1, max_ngram + 1): | |
committed_ngram = " ".join(token.text for token in self.committed_in_buffer[-i:]) | |
new_ngram = " ".join(token.text for token in self.new[:i]) | |
if committed_ngram == new_ngram: | |
removed = [] | |
for _ in range(i): | |
removed_token = self.new.pop(0) | |
removed.append(repr(removed_token)) | |
logger.debug(f"Removing last {i} words: {' '.join(removed)}") | |
break | |
def flush(self) -> List[ASRToken]: | |
""" | |
Returns the committed chunk, defined as the longest common prefix | |
between the previous hypothesis and the new tokens. | |
""" | |
committed: List[ASRToken] = [] | |
while self.new: | |
current_new = self.new[0] | |
if self.confidence_validation and current_new.probability and current_new.probability > 0.95: | |
committed.append(current_new) | |
self.last_committed_word = current_new.text | |
self.last_committed_time = current_new.end | |
self.new.pop(0) | |
self.buffer.pop(0) if self.buffer else None | |
elif not self.buffer: | |
break | |
elif current_new.text == self.buffer[0].text: | |
committed.append(current_new) | |
self.last_committed_word = current_new.text | |
self.last_committed_time = current_new.end | |
self.buffer.pop(0) | |
self.new.pop(0) | |
else: | |
break | |
self.buffer = self.new | |
self.new = [] | |
self.committed_in_buffer.extend(committed) | |
return committed | |
def pop_committed(self, time: float): | |
""" | |
Remove tokens (from the beginning) that have ended before `time`. | |
""" | |
while self.committed_in_buffer and self.committed_in_buffer[0].end <= time: | |
self.committed_in_buffer.pop(0) | |
class OnlineASRProcessor: | |
""" | |
Processes incoming audio in a streaming fashion, calling the ASR system | |
periodically, and uses a hypothesis buffer to commit and trim recognized text. | |
The processor supports two types of buffer trimming: | |
- "sentence": trims at sentence boundaries (using a sentence tokenizer) | |
- "segment": trims at fixed segment durations. | |
""" | |
SAMPLING_RATE = 16000 | |
def __init__( | |
self, | |
asr, | |
tokenize_method: Optional[callable] = None, | |
buffer_trimming: Tuple[str, float] = ("segment", 15), | |
confidence_validation = False, | |
logfile=sys.stderr, | |
): | |
""" | |
asr: An ASR system object (for example, a WhisperASR instance) that | |
provides a `transcribe` method, a `ts_words` method (to extract tokens), | |
a `segments_end_ts` method, and a separator attribute `sep`. | |
tokenize_method: A function that receives text and returns a list of sentence strings. | |
buffer_trimming: A tuple (option, seconds), where option is either "sentence" or "segment". | |
""" | |
self.asr = asr | |
self.tokenize = tokenize_method | |
self.logfile = logfile | |
self.confidence_validation = confidence_validation | |
self.init() | |
self.buffer_trimming_way, self.buffer_trimming_sec = buffer_trimming | |
if self.buffer_trimming_way not in ["sentence", "segment"]: | |
raise ValueError("buffer_trimming must be either 'sentence' or 'segment'") | |
if self.buffer_trimming_sec <= 0: | |
raise ValueError("buffer_trimming_sec must be positive") | |
elif self.buffer_trimming_sec > 30: | |
logger.warning( | |
f"buffer_trimming_sec is set to {self.buffer_trimming_sec}, which is very long. It may cause OOM." | |
) | |
def init(self, offset: Optional[float] = None): | |
"""Initialize or reset the processing buffers.""" | |
self.audio_buffer = np.array([], dtype=np.float32) | |
self.transcript_buffer = HypothesisBuffer(logfile=self.logfile, confidence_validation=self.confidence_validation) | |
self.buffer_time_offset = offset if offset is not None else 0.0 | |
self.transcript_buffer.last_committed_time = self.buffer_time_offset | |
self.committed: List[ASRToken] = [] | |
def insert_audio_chunk(self, audio: np.ndarray): | |
"""Append an audio chunk (a numpy array) to the current audio buffer.""" | |
self.audio_buffer = np.append(self.audio_buffer, audio) | |
def prompt(self) -> Tuple[str, str]: | |
""" | |
Returns a tuple: (prompt, context), where: | |
- prompt is a 200-character suffix of committed text that falls | |
outside the current audio buffer. | |
- context is the committed text within the current audio buffer. | |
""" | |
k = len(self.committed) | |
while k > 0 and self.committed[k - 1].end > self.buffer_time_offset: | |
k -= 1 | |
prompt_tokens = self.committed[:k] | |
prompt_words = [token.text for token in prompt_tokens] | |
prompt_list = [] | |
length_count = 0 | |
# Use the last words until reaching 200 characters. | |
while prompt_words and length_count < 200: | |
word = prompt_words.pop(-1) | |
length_count += len(word) + 1 | |
prompt_list.append(word) | |
non_prompt_tokens = self.committed[k:] | |
context_text = self.asr.sep.join(token.text for token in non_prompt_tokens) | |
return self.asr.sep.join(prompt_list[::-1]), context_text | |
def get_buffer(self): | |
""" | |
Get the unvalidated buffer in string format. | |
""" | |
return self.concatenate_tokens(self.transcript_buffer.buffer) | |
def process_iter(self) -> Transcript: | |
""" | |
Processes the current audio buffer. | |
Returns a Transcript object representing the committed transcript. | |
""" | |
prompt_text, _ = self.prompt() | |
logger.debug( | |
f"Transcribing {len(self.audio_buffer)/self.SAMPLING_RATE:.2f} seconds from {self.buffer_time_offset:.2f}" | |
) | |
res = self.asr.transcribe(self.audio_buffer, init_prompt=prompt_text) | |
tokens = self.asr.ts_words(res) # Expecting List[ASRToken] | |
self.transcript_buffer.insert(tokens, self.buffer_time_offset) | |
committed_tokens = self.transcript_buffer.flush() | |
self.committed.extend(committed_tokens) | |
completed = self.concatenate_tokens(committed_tokens) | |
logger.debug(f">>>> COMPLETE NOW: {completed.text}") | |
incomp = self.concatenate_tokens(self.transcript_buffer.buffer) | |
logger.debug(f"INCOMPLETE: {incomp.text}") | |
if committed_tokens and self.buffer_trimming_way == "sentence": | |
if len(self.audio_buffer) / self.SAMPLING_RATE > self.buffer_trimming_sec: | |
self.chunk_completed_sentence() | |
s = self.buffer_trimming_sec if self.buffer_trimming_way == "segment" else 30 | |
if len(self.audio_buffer) / self.SAMPLING_RATE > s: | |
self.chunk_completed_segment(res) | |
logger.debug("Chunking segment") | |
logger.debug( | |
f"Length of audio buffer now: {len(self.audio_buffer)/self.SAMPLING_RATE:.2f} seconds" | |
) | |
return committed_tokens | |
def chunk_completed_sentence(self): | |
""" | |
If the committed tokens form at least two sentences, chunk the audio | |
buffer at the end time of the penultimate sentence. | |
""" | |
if not self.committed: | |
return | |
logger.debug("COMPLETED SENTENCE: " + " ".join(token.text for token in self.committed)) | |
sentences = self.words_to_sentences(self.committed) | |
for sentence in sentences: | |
logger.debug(f"\tSentence: {sentence.text}") | |
if len(sentences) < 2: | |
return | |
# Keep the last two sentences. | |
while len(sentences) > 2: | |
sentences.pop(0) | |
chunk_time = sentences[-2].end | |
logger.debug(f"--- Sentence chunked at {chunk_time:.2f}") | |
self.chunk_at(chunk_time) | |
def chunk_completed_segment(self, res): | |
""" | |
Chunk the audio buffer based on segment-end timestamps reported by the ASR. | |
""" | |
if not self.committed: | |
return | |
ends = self.asr.segments_end_ts(res) | |
last_committed_time = self.committed[-1].end | |
if len(ends) > 1: | |
e = ends[-2] + self.buffer_time_offset | |
while len(ends) > 2 and e > last_committed_time: | |
ends.pop(-1) | |
e = ends[-2] + self.buffer_time_offset | |
if e <= last_committed_time: | |
logger.debug(f"--- Segment chunked at {e:.2f}") | |
self.chunk_at(e) | |
else: | |
logger.debug("--- Last segment not within committed area") | |
else: | |
logger.debug("--- Not enough segments to chunk") | |
def chunk_at(self, time: float): | |
""" | |
Trim both the hypothesis and audio buffer at the given time. | |
""" | |
logger.debug(f"Chunking at {time:.2f}s") | |
logger.debug( | |
f"Audio buffer length before chunking: {len(self.audio_buffer)/self.SAMPLING_RATE:.2f}s" | |
) | |
self.transcript_buffer.pop_committed(time) | |
cut_seconds = time - self.buffer_time_offset | |
self.audio_buffer = self.audio_buffer[int(cut_seconds * self.SAMPLING_RATE):] | |
self.buffer_time_offset = time | |
logger.debug( | |
f"Audio buffer length after chunking: {len(self.audio_buffer)/self.SAMPLING_RATE:.2f}s" | |
) | |
def words_to_sentences(self, tokens: List[ASRToken]) -> List[Sentence]: | |
""" | |
Converts a list of tokens to a list of Sentence objects using the provided | |
sentence tokenizer. | |
""" | |
if not tokens: | |
return [] | |
full_text = " ".join(token.text for token in tokens) | |
if self.tokenize: | |
try: | |
sentence_texts = self.tokenize(full_text) | |
except Exception as e: | |
# Some tokenizers (e.g., MosesSentenceSplitter) expect a list input. | |
try: | |
sentence_texts = self.tokenize([full_text]) | |
except Exception as e2: | |
raise ValueError("Tokenization failed") from e2 | |
else: | |
sentence_texts = [full_text] | |
sentences: List[Sentence] = [] | |
token_index = 0 | |
for sent_text in sentence_texts: | |
sent_text = sent_text.strip() | |
if not sent_text: | |
continue | |
sent_tokens = [] | |
accumulated = "" | |
# Accumulate tokens until roughly matching the length of the sentence text. | |
while token_index < len(tokens) and len(accumulated) < len(sent_text): | |
token = tokens[token_index] | |
accumulated = (accumulated + " " + token.text).strip() if accumulated else token.text | |
sent_tokens.append(token) | |
token_index += 1 | |
if sent_tokens: | |
sentence = Sentence( | |
start=sent_tokens[0].start, | |
end=sent_tokens[-1].end, | |
text=" ".join(t.text for t in sent_tokens), | |
) | |
sentences.append(sentence) | |
return sentences | |
def finish(self) -> Transcript: | |
""" | |
Flush the remaining transcript when processing ends. | |
""" | |
remaining_tokens = self.transcript_buffer.buffer | |
final_transcript = self.concatenate_tokens(remaining_tokens) | |
logger.debug(f"Final non-committed transcript: {final_transcript}") | |
self.buffer_time_offset += len(self.audio_buffer) / self.SAMPLING_RATE | |
return final_transcript | |
def concatenate_tokens( | |
self, | |
tokens: List[ASRToken], | |
sep: Optional[str] = None, | |
offset: float = 0 | |
) -> Transcript: | |
sep = sep if sep is not None else self.asr.sep | |
text = sep.join(token.text for token in tokens) | |
probability = sum(token.probability for token in tokens if token.probability) / len(tokens) if tokens else None | |
if tokens: | |
start = offset + tokens[0].start | |
end = offset + tokens[-1].end | |
else: | |
start = None | |
end = None | |
return Transcript(start, end, text, probability=probability) | |
class VACOnlineASRProcessor: | |
""" | |
Wraps an OnlineASRProcessor with a Voice Activity Controller (VAC). | |
It receives small chunks of audio, applies VAD (e.g. with Silero), | |
and when the system detects a pause in speech (or end of an utterance) | |
it finalizes the utterance immediately. | |
""" | |
SAMPLING_RATE = 16000 | |
def __init__(self, online_chunk_size: float, *args, **kwargs): | |
self.online_chunk_size = online_chunk_size | |
self.online = OnlineASRProcessor(*args, **kwargs) | |
# Load a VAD model (e.g. Silero VAD) | |
import torch | |
model, _ = torch.hub.load(repo_or_dir="snakers4/silero-vad", model="silero_vad") | |
from silero_vad_iterator import FixedVADIterator | |
self.vac = FixedVADIterator(model) | |
self.logfile = self.online.logfile | |
self.init() | |
def init(self): | |
self.online.init() | |
self.vac.reset_states() | |
self.current_online_chunk_buffer_size = 0 | |
self.is_currently_final = False | |
self.status: Optional[str] = None # "voice" or "nonvoice" | |
self.audio_buffer = np.array([], dtype=np.float32) | |
self.buffer_offset = 0 # in frames | |
def clear_buffer(self): | |
self.buffer_offset += len(self.audio_buffer) | |
self.audio_buffer = np.array([], dtype=np.float32) | |
def insert_audio_chunk(self, audio: np.ndarray): | |
""" | |
Process an incoming small audio chunk: | |
- run VAD on the chunk, | |
- decide whether to send the audio to the online ASR processor immediately, | |
- and/or to mark the current utterance as finished. | |
""" | |
res = self.vac(audio) | |
self.audio_buffer = np.append(self.audio_buffer, audio) | |
if res is not None: | |
# VAD returned a result; adjust the frame number | |
frame = list(res.values())[0] - self.buffer_offset | |
if "start" in res and "end" not in res: | |
self.status = "voice" | |
send_audio = self.audio_buffer[frame:] | |
self.online.init(offset=(frame + self.buffer_offset) / self.SAMPLING_RATE) | |
self.online.insert_audio_chunk(send_audio) | |
self.current_online_chunk_buffer_size += len(send_audio) | |
self.clear_buffer() | |
elif "end" in res and "start" not in res: | |
self.status = "nonvoice" | |
send_audio = self.audio_buffer[:frame] | |
self.online.insert_audio_chunk(send_audio) | |
self.current_online_chunk_buffer_size += len(send_audio) | |
self.is_currently_final = True | |
self.clear_buffer() | |
else: | |
beg = res["start"] - self.buffer_offset | |
end = res["end"] - self.buffer_offset | |
self.status = "nonvoice" | |
send_audio = self.audio_buffer[beg:end] | |
self.online.init(offset=(beg + self.buffer_offset) / self.SAMPLING_RATE) | |
self.online.insert_audio_chunk(send_audio) | |
self.current_online_chunk_buffer_size += len(send_audio) | |
self.is_currently_final = True | |
self.clear_buffer() | |
else: | |
if self.status == "voice": | |
self.online.insert_audio_chunk(self.audio_buffer) | |
self.current_online_chunk_buffer_size += len(self.audio_buffer) | |
self.clear_buffer() | |
else: | |
# Keep 1 second worth of audio in case VAD later detects voice, | |
# but trim to avoid unbounded memory usage. | |
self.buffer_offset += max(0, len(self.audio_buffer) - self.SAMPLING_RATE) | |
self.audio_buffer = self.audio_buffer[-self.SAMPLING_RATE:] | |
def process_iter(self) -> Transcript: | |
""" | |
Depending on the VAD status and the amount of accumulated audio, | |
process the current audio chunk. | |
""" | |
if self.is_currently_final: | |
return self.finish() | |
elif self.current_online_chunk_buffer_size > self.SAMPLING_RATE * self.online_chunk_size: | |
self.current_online_chunk_buffer_size = 0 | |
return self.online.process_iter() | |
else: | |
logger.debug("No online update, only VAD") | |
return Transcript(None, None, "") | |
def finish(self) -> Transcript: | |
"""Finish processing by flushing any remaining text.""" | |
result = self.online.finish() | |
self.current_online_chunk_buffer_size = 0 | |
self.is_currently_final = False | |
return result | |
def get_buffer(self): | |
""" | |
Get the unvalidated buffer in string format. | |
""" | |
return self.online.concatenate_tokens(self.online.transcript_buffer.buffer).text | |