Spaces:
Paused
Paused
#!/usr/bin/env python3 | |
import sys | |
import numpy as np | |
import librosa | |
from functools import lru_cache | |
import time | |
import logging | |
from .backends import FasterWhisperASR, MLXWhisper, WhisperTimestampedASR, OpenaiApiASR | |
from .online_asr import OnlineASRProcessor, VACOnlineASRProcessor | |
logger = logging.getLogger(__name__) | |
WHISPER_LANG_CODES = "af,am,ar,as,az,ba,be,bg,bn,bo,br,bs,ca,cs,cy,da,de,el,en,es,et,eu,fa,fi,fo,fr,gl,gu,ha,haw,he,hi,hr,ht,hu,hy,id,is,it,ja,jw,ka,kk,km,kn,ko,la,lb,ln,lo,lt,lv,mg,mi,mk,ml,mn,mr,ms,mt,my,ne,nl,nn,no,oc,pa,pl,ps,pt,ro,ru,sa,sd,si,sk,sl,sn,so,sq,sr,su,sv,sw,ta,te,tg,th,tk,tl,tr,tt,uk,ur,uz,vi,yi,yo,zh".split( | |
"," | |
) | |
def create_tokenizer(lan): | |
"""returns an object that has split function that works like the one of MosesTokenizer""" | |
assert ( | |
lan in WHISPER_LANG_CODES | |
), "language must be Whisper's supported lang code: " + " ".join(WHISPER_LANG_CODES) | |
if lan == "uk": | |
import tokenize_uk | |
class UkrainianTokenizer: | |
def split(self, text): | |
return tokenize_uk.tokenize_sents(text) | |
return UkrainianTokenizer() | |
# supported by fast-mosestokenizer | |
if ( | |
lan | |
in "as bn ca cs de el en es et fi fr ga gu hi hu is it kn lt lv ml mni mr nl or pa pl pt ro ru sk sl sv ta te yue zh".split() | |
): | |
from mosestokenizer import MosesSentenceSplitter | |
return MosesSentenceSplitter(lan) | |
# the following languages are in Whisper, but not in wtpsplit: | |
if ( | |
lan | |
in "as ba bo br bs fo haw hr ht jw lb ln lo mi nn oc sa sd sn so su sw tk tl tt".split() | |
): | |
logger.debug( | |
f"{lan} code is not supported by wtpsplit. Going to use None lang_code option." | |
) | |
lan = None | |
from wtpsplit import WtP | |
# downloads the model from huggingface on the first use | |
wtp = WtP("wtp-canine-s-12l-no-adapters") | |
class WtPtok: | |
def split(self, sent): | |
return wtp.split(sent, lang_code=lan) | |
return WtPtok() | |
def backend_factory(args): | |
backend = args.backend | |
if backend == "openai-api": | |
logger.debug("Using OpenAI API.") | |
asr = OpenaiApiASR(lan=args.lan) | |
else: | |
if backend == "faster-whisper": | |
asr_cls = FasterWhisperASR | |
elif backend == "mlx-whisper": | |
asr_cls = MLXWhisper | |
else: | |
asr_cls = WhisperTimestampedASR | |
# Only for FasterWhisperASR and WhisperTimestampedASR | |
size = args.model | |
t = time.time() | |
logger.info(f"Loading Whisper {size} model for language {args.lan}...") | |
asr = asr_cls( | |
modelsize=size, | |
lan=args.lan, | |
cache_dir=args.model_cache_dir, | |
model_dir=args.model_dir, | |
) | |
e = time.time() | |
logger.info(f"done. It took {round(e-t,2)} seconds.") | |
# Apply common configurations | |
if getattr(args, "vad", False): # Checks if VAD argument is present and True | |
logger.info("Setting VAD filter") | |
asr.use_vad() | |
language = args.lan | |
if args.task == "translate": | |
asr.set_translate_task() | |
tgt_language = "en" # Whisper translates into English | |
else: | |
tgt_language = language # Whisper transcribes in this language | |
# Create the tokenizer | |
if args.buffer_trimming == "sentence": | |
tokenizer = create_tokenizer(tgt_language) | |
else: | |
tokenizer = None | |
return asr, tokenizer | |
def online_factory(args, asr, tokenizer, logfile=sys.stderr): | |
if args.vac: | |
online = VACOnlineASRProcessor( | |
args.min_chunk_size, | |
asr, | |
tokenizer, | |
logfile=logfile, | |
buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec), | |
confidence_validation = args.confidence_validation | |
) | |
else: | |
online = OnlineASRProcessor( | |
asr, | |
tokenizer, | |
logfile=logfile, | |
buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec), | |
confidence_validation = args.confidence_validation | |
) | |
return online | |
def asr_factory(args, logfile=sys.stderr): | |
""" | |
Creates and configures an ASR and ASR Online instance based on the specified backend and arguments. | |
""" | |
asr, tokenizer = backend_factory(args) | |
online = online_factory(args, asr, tokenizer, logfile=logfile) | |
return asr, online | |
def warmup_asr(asr, warmup_file=None, timeout=5): | |
""" | |
Warmup the ASR model by transcribing a short audio file. | |
""" | |
import os | |
import tempfile | |
if warmup_file is None: | |
# Download JFK sample if not already present | |
jfk_url = "https://github.com/ggerganov/whisper.cpp/raw/master/samples/jfk.wav" | |
temp_dir = tempfile.gettempdir() | |
warmup_file = os.path.join(temp_dir, "whisper_warmup_jfk.wav") | |
if not os.path.exists(warmup_file): | |
logger.debug(f"Downloading warmup file from {jfk_url}") | |
print(f"Downloading warmup file from {jfk_url}") | |
import time | |
import urllib.request | |
import urllib.error | |
import socket | |
original_timeout = socket.getdefaulttimeout() | |
socket.setdefaulttimeout(timeout) | |
start_time = time.time() | |
try: | |
urllib.request.urlretrieve(jfk_url, warmup_file) | |
logger.debug(f"Download successful in {time.time() - start_time:.2f}s") | |
except (urllib.error.URLError, socket.timeout) as e: | |
logger.warning(f"Download failed: {e}. Proceeding without warmup.") | |
return False | |
finally: | |
socket.setdefaulttimeout(original_timeout) | |
elif not warmup_file: | |
return False | |
if not warmup_file or not os.path.exists(warmup_file) or os.path.getsize(warmup_file) == 0: | |
logger.warning(f"Warmup file {warmup_file} invalid or missing.") | |
return False | |
print(f"Warmping up Whisper with {warmup_file}") | |
try: | |
import librosa | |
audio, sr = librosa.load(warmup_file, sr=16000) | |
except Exception as e: | |
logger.warning(f"Failed to load audio file: {e}") | |
return False | |
# Process the audio | |
asr.transcribe(audio) | |
logger.info("Whisper is warmed up") | |