Spaces:
Paused
Paused
fix language detection
Browse files- main.py +18 -16
- whisper_streaming_custom/backends.py +78 -1
main.py
CHANGED
@@ -17,21 +17,19 @@ import tempfile
|
|
17 |
|
18 |
from core import WhisperLiveKit
|
19 |
from audio_processor import AudioProcessor
|
20 |
-
from language_detector import LanguageDetector
|
21 |
|
22 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
23 |
logging.getLogger().setLevel(logging.WARNING)
|
24 |
logger = logging.getLogger(__name__)
|
25 |
logger.setLevel(logging.DEBUG)
|
26 |
|
27 |
-
|
28 |
-
language_detector = None
|
29 |
|
30 |
@asynccontextmanager
|
31 |
async def lifespan(app: FastAPI):
|
32 |
-
global
|
33 |
-
kit = WhisperLiveKit()
|
34 |
-
|
35 |
yield
|
36 |
|
37 |
app = FastAPI(lifespan=lifespan)
|
@@ -47,8 +45,6 @@ app.add_middleware(
|
|
47 |
# Mount static files
|
48 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
49 |
|
50 |
-
|
51 |
-
|
52 |
@app.get("/")
|
53 |
async def read_root():
|
54 |
return FileResponse("static/index.html")
|
@@ -66,9 +62,16 @@ async def detect_language(file: UploadFile = File(...)):
|
|
66 |
contents = await file.read()
|
67 |
temp_file.write(contents)
|
68 |
|
69 |
-
# Use the
|
70 |
-
if
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
# Clean up - remove the temporary file
|
74 |
os.remove(file_path)
|
@@ -80,7 +83,7 @@ async def detect_language(file: UploadFile = File(...)):
|
|
80 |
})
|
81 |
else:
|
82 |
return JSONResponse(
|
83 |
-
{"error": "
|
84 |
status_code=500
|
85 |
)
|
86 |
|
@@ -127,14 +130,15 @@ async def handle_websocket_results(websocket, results_generator):
|
|
127 |
@app.websocket("/asr")
|
128 |
async def websocket_endpoint(websocket: WebSocket):
|
129 |
logger.info("New WebSocket connection request")
|
130 |
-
audio_processor = None
|
131 |
websocket_task = None
|
132 |
|
133 |
try:
|
134 |
await websocket.accept()
|
135 |
logger.info("WebSocket connection accepted")
|
136 |
|
137 |
-
|
|
|
|
|
138 |
results_generator = await audio_processor.create_tasks()
|
139 |
websocket_task = asyncio.create_task(handle_websocket_results(websocket, results_generator))
|
140 |
|
@@ -155,8 +159,6 @@ async def websocket_endpoint(websocket: WebSocket):
|
|
155 |
logger.error(f"Error in WebSocket endpoint: {e}")
|
156 |
logger.error(f"Traceback: {traceback.format_exc()}")
|
157 |
finally:
|
158 |
-
if audio_processor:
|
159 |
-
await audio_processor.cleanup()
|
160 |
if websocket_task:
|
161 |
websocket_task.cancel()
|
162 |
try:
|
|
|
17 |
|
18 |
from core import WhisperLiveKit
|
19 |
from audio_processor import AudioProcessor
|
|
|
20 |
|
21 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
22 |
logging.getLogger().setLevel(logging.WARNING)
|
23 |
logger = logging.getLogger(__name__)
|
24 |
logger.setLevel(logging.DEBUG)
|
25 |
|
26 |
+
audio_processor = None
|
|
|
27 |
|
28 |
@asynccontextmanager
|
29 |
async def lifespan(app: FastAPI):
|
30 |
+
global audio_processor
|
31 |
+
kit = WhisperLiveKit(args=args)
|
32 |
+
audio_processor = AudioProcessor()
|
33 |
yield
|
34 |
|
35 |
app = FastAPI(lifespan=lifespan)
|
|
|
45 |
# Mount static files
|
46 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
47 |
|
|
|
|
|
48 |
@app.get("/")
|
49 |
async def read_root():
|
50 |
return FileResponse("static/index.html")
|
|
|
62 |
contents = await file.read()
|
63 |
temp_file.write(contents)
|
64 |
|
65 |
+
# Use the audio processor for language detection
|
66 |
+
if audio_processor:
|
67 |
+
# Load audio using librosa
|
68 |
+
audio, sr = librosa.load(file_path, sr=16000)
|
69 |
+
|
70 |
+
# Convert to format expected by Whisper
|
71 |
+
audio = (audio * 32768).astype(np.int16)
|
72 |
+
|
73 |
+
# Detect language
|
74 |
+
detected_lang, confidence, probs = audio_processor.detect_language(audio)
|
75 |
|
76 |
# Clean up - remove the temporary file
|
77 |
os.remove(file_path)
|
|
|
83 |
})
|
84 |
else:
|
85 |
return JSONResponse(
|
86 |
+
{"error": "Audio processor not initialized"},
|
87 |
status_code=500
|
88 |
)
|
89 |
|
|
|
130 |
@app.websocket("/asr")
|
131 |
async def websocket_endpoint(websocket: WebSocket):
|
132 |
logger.info("New WebSocket connection request")
|
|
|
133 |
websocket_task = None
|
134 |
|
135 |
try:
|
136 |
await websocket.accept()
|
137 |
logger.info("WebSocket connection accepted")
|
138 |
|
139 |
+
if not audio_processor:
|
140 |
+
raise RuntimeError("Audio processor not initialized")
|
141 |
+
|
142 |
results_generator = await audio_processor.create_tasks()
|
143 |
websocket_task = asyncio.create_task(handle_websocket_results(websocket, results_generator))
|
144 |
|
|
|
159 |
logger.error(f"Error in WebSocket endpoint: {e}")
|
160 |
logger.error(f"Traceback: {traceback.format_exc()}")
|
161 |
finally:
|
|
|
|
|
162 |
if websocket_task:
|
163 |
websocket_task.cancel()
|
164 |
try:
|
whisper_streaming_custom/backends.py
CHANGED
@@ -89,6 +89,42 @@ class WhisperTimestampedASR(ASRBase):
|
|
89 |
def set_translate_task(self):
|
90 |
self.transcribe_kargs["task"] = "translate"
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
class FasterWhisperASR(ASRBase):
|
94 |
"""Uses faster-whisper as the backend."""
|
@@ -147,6 +183,41 @@ class FasterWhisperASR(ASRBase):
|
|
147 |
def set_translate_task(self):
|
148 |
self.transcribe_kargs["task"] = "translate"
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
class MLXWhisper(ASRBase):
|
152 |
"""
|
@@ -225,6 +296,9 @@ class MLXWhisper(ASRBase):
|
|
225 |
|
226 |
def set_translate_task(self):
|
227 |
self.transcribe_kargs["task"] = "translate"
|
|
|
|
|
|
|
228 |
|
229 |
|
230 |
class OpenaiApiASR(ASRBase):
|
@@ -292,4 +366,7 @@ class OpenaiApiASR(ASRBase):
|
|
292 |
self.use_vad_opt = True
|
293 |
|
294 |
def set_translate_task(self):
|
295 |
-
self.task = "translate"
|
|
|
|
|
|
|
|
89 |
def set_translate_task(self):
|
90 |
self.transcribe_kargs["task"] = "translate"
|
91 |
|
92 |
+
def detect_language(self, audio):
|
93 |
+
import whisper
|
94 |
+
"""
|
95 |
+
Detect the language of the audio using Whisper's language detection.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
audio (np.ndarray): Audio data as numpy array
|
99 |
+
|
100 |
+
Returns:
|
101 |
+
tuple: (detected_language, confidence, probabilities)
|
102 |
+
- detected_language (str): The detected language code
|
103 |
+
- confidence (float): Confidence score for the detected language
|
104 |
+
- probabilities (dict): Dictionary of language probabilities
|
105 |
+
"""
|
106 |
+
try:
|
107 |
+
# Ensure audio is in the correct format
|
108 |
+
if not isinstance(audio, np.ndarray):
|
109 |
+
audio = np.array(audio)
|
110 |
+
|
111 |
+
# Pad or trim audio to the correct length
|
112 |
+
audio = whisper.pad_or_trim(audio)
|
113 |
+
|
114 |
+
# Create mel spectrogram with correct dimensions
|
115 |
+
mel = whisper.log_mel_spectrogram(audio, n_mels=128).to(self.model.device)
|
116 |
+
|
117 |
+
# Detect language
|
118 |
+
_, probs = self.model.detect_language(mel)
|
119 |
+
detected_lang = max(probs, key=probs.get)
|
120 |
+
confidence = probs[detected_lang]
|
121 |
+
|
122 |
+
return detected_lang, confidence, probs
|
123 |
+
|
124 |
+
except Exception as e:
|
125 |
+
logger.error(f"Error in language detection: {e}")
|
126 |
+
raise
|
127 |
+
|
128 |
|
129 |
class FasterWhisperASR(ASRBase):
|
130 |
"""Uses faster-whisper as the backend."""
|
|
|
183 |
def set_translate_task(self):
|
184 |
self.transcribe_kargs["task"] = "translate"
|
185 |
|
186 |
+
def detect_language(self, audio):
|
187 |
+
"""
|
188 |
+
Detect the language of the audio using faster-whisper's language detection.
|
189 |
+
|
190 |
+
Args:
|
191 |
+
audio (np.ndarray): Audio data as numpy array
|
192 |
+
|
193 |
+
Returns:
|
194 |
+
tuple: (detected_language, confidence, probabilities)
|
195 |
+
- detected_language (str): The detected language code
|
196 |
+
- confidence (float): Confidence score for the detected language
|
197 |
+
- probabilities (dict): Dictionary of language probabilities
|
198 |
+
"""
|
199 |
+
try:
|
200 |
+
# Ensure audio is in the correct format
|
201 |
+
if not isinstance(audio, np.ndarray):
|
202 |
+
audio = np.array(audio)
|
203 |
+
|
204 |
+
# Use faster-whisper's detect_language method
|
205 |
+
language, language_probability, all_language_probs = self.model.detect_language(
|
206 |
+
audio=audio,
|
207 |
+
vad_filter=False, # Disable VAD for language detection
|
208 |
+
language_detection_segments=1, # Use single segment for detection
|
209 |
+
language_detection_threshold=0.5 # Default threshold
|
210 |
+
)
|
211 |
+
|
212 |
+
# Convert list of tuples to dictionary for consistent return format
|
213 |
+
probs = {lang: prob for lang, prob in all_language_probs}
|
214 |
+
|
215 |
+
return language, language_probability, probs
|
216 |
+
|
217 |
+
except Exception as e:
|
218 |
+
logger.error(f"Error in language detection: {e}")
|
219 |
+
raise
|
220 |
+
|
221 |
|
222 |
class MLXWhisper(ASRBase):
|
223 |
"""
|
|
|
296 |
|
297 |
def set_translate_task(self):
|
298 |
self.transcribe_kargs["task"] = "translate"
|
299 |
+
|
300 |
+
def detect_language(self, audio):
|
301 |
+
raise NotImplementedError("MLX Whisper does not support language detection.")
|
302 |
|
303 |
|
304 |
class OpenaiApiASR(ASRBase):
|
|
|
366 |
self.use_vad_opt = True
|
367 |
|
368 |
def set_translate_task(self):
|
369 |
+
self.task = "translate"
|
370 |
+
|
371 |
+
def detect_language(self, audio):
|
372 |
+
raise NotImplementedError("MLX Whisper does not support language detection.")
|