from contextlib import asynccontextmanager from fastapi import FastAPI, WebSocket, WebSocketDisconnect, UploadFile, File from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse from fastapi.staticfiles import StaticFiles from fastapi.responses import FileResponse import asyncio import logging import os import traceback import argparse import uvicorn import numpy as np import tempfile from core import WhisperLiveKit from audio_processor import AudioProcessor logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") logging.getLogger().setLevel(logging.WARNING) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) audio_processor = None @asynccontextmanager async def lifespan(app: FastAPI): global audio_processor kit = WhisperLiveKit(args) audio_processor = AudioProcessor() yield app = FastAPI(lifespan=lifespan) app.add_middleware( CORSMiddleware, allow_origins=["*"], # Allows all origins allow_credentials=True, allow_methods=["*"], # Allows all methods allow_headers=["*"], # Allows all headers ) # Mount static files app.mount("/static", StaticFiles(directory="static"), name="static") @app.get("/") async def read_root(): return FileResponse("static/index.html") @app.get("/health") async def health_check(): return JSONResponse({"status": "healthy"}) @app.post("/detect-language") async def detect_language(file: UploadFile = File(...)): try: # Use a temporary directory for saving the uploaded file with tempfile.NamedTemporaryFile(delete=False) as temp_file: file_path = temp_file.name contents = await file.read() temp_file.write(contents) # Use the audio processor for language detection if audio_processor: # Detect language using the audio processor detected_lang, confidence, probs = await audio_processor.detect_language(file_path) # Clean up - remove the temporary file os.remove(file_path) return JSONResponse({ "language": detected_lang, "confidence": float(confidence), "probabilities": {lang: float(prob) for lang, prob in probs.items()} }) else: return JSONResponse( {"error": "Audio processor not initialized"}, status_code=500 ) except Exception as e: logger.error(f"Error in language detection: {e}") logger.error(f"Traceback: {traceback.format_exc()}") # Clean up in case of error if 'file_path' in locals() and os.path.exists(file_path): os.remove(file_path) return JSONResponse( {"error": str(e)}, status_code=500 ) async def handle_websocket_results(websocket, results_generator): """Consumes results from the audio processor and sends them via WebSocket.""" try: async for response in results_generator: try: logger.debug(f"Sending response: {response}") if isinstance(response, dict): # Ensure the response has a consistent format if 'buffer_transcription' in response: await websocket.send_json({ 'buffer_transcription': response['buffer_transcription'] }) elif 'full_transcription' in response: await websocket.send_json({ 'full_transcription': response['full_transcription'] }) else: await websocket.send_json(response) else: # If response is not a dict, wrap it in a text field await websocket.send_json({"text": str(response)}) except Exception as e: logger.error(f"Error sending message: {e}") logger.error(f"Traceback: {traceback.format_exc()}") raise except Exception as e: logger.warning(f"Error in WebSocket results handler: {e}") logger.warning(f"Traceback: {traceback.format_exc()}") @app.websocket("/asr") async def websocket_endpoint(websocket: WebSocket): logger.info("New WebSocket connection request") websocket_task = None try: await websocket.accept() logger.info("WebSocket connection accepted") if not audio_processor: raise RuntimeError("Audio processor not initialized") results_generator = await audio_processor.create_tasks() websocket_task = asyncio.create_task(handle_websocket_results(websocket, results_generator)) while True: try: message = await websocket.receive_bytes() logger.debug(f"Received audio chunk of size: {len(message)}") await audio_processor.process_audio(message) except WebSocketDisconnect: logger.info("WebSocket connection closed") break except Exception as e: logger.error(f"Error processing WebSocket message: {e}") logger.error(f"Traceback: {traceback.format_exc()}") break except Exception as e: logger.error(f"Error in WebSocket endpoint: {e}") logger.error(f"Traceback: {traceback.format_exc()}") finally: if websocket_task: websocket_task.cancel() try: await websocket_task except asyncio.CancelledError: pass if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to run the server on") parser.add_argument("--port", type=int, default=8000, help="Port to run the server on") parser.add_argument("--model", type=str, default="base", help="Whisper model to use") parser.add_argument("--backend", type=str, default="faster-whisper", help="Backend to use") parser.add_argument("--task", type=str, default="transcribe", help="Task to perform") args = parser.parse_args() print(args) uvicorn.run(app, host=args.host, port=args.port)