Apex-X commited on
Commit
ab55cf6
1 Parent(s): e6f4c09

Update predictor.py

Browse files
Files changed (1) hide show
  1. predictor.py +31 -10
predictor.py CHANGED
@@ -1,22 +1,43 @@
1
  import threading
2
  import numpy
 
3
  from PIL import Image
 
4
 
5
  from roop.typing import Frame
6
 
7
- # Define any other necessary variables or constants here
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  def predict_frame(target_frame: Frame) -> bool:
10
- # Modify this function as needed for your specific use case, without NSFW prediction
11
- # For example, you can implement custom image analysis or processing here
12
- return False
 
 
 
13
 
14
  def predict_image(target_path: str) -> bool:
15
- # Modify this function as needed for your specific use case, without NSFW prediction
16
- # For example, you can check the image based on your application's requirements
17
- return False
18
 
19
  def predict_video(target_path: str) -> bool:
20
- # Modify this function as needed for your specific use case, without NSFW prediction
21
- # For example, you can analyze video frames for other purposes
22
- return False
 
1
  import threading
2
  import numpy
3
+ import opennsfw2
4
  from PIL import Image
5
+ from keras import Model
6
 
7
  from roop.typing import Frame
8
 
9
+ PREDICTOR = None
10
+ THREAD_LOCK = threading.Lock()
11
+ MAX_PROBABILITY = 0.85
12
+
13
+
14
+ def get_predictor() -> Model:
15
+ global PREDICTOR
16
+
17
+ with THREAD_LOCK:
18
+ if PREDICTOR is None:
19
+ PREDICTOR = opennsfw2.make_open_nsfw_model()
20
+ return PREDICTOR
21
+
22
+
23
+ def clear_predictor() -> None:
24
+ global PREDICTOR
25
+
26
+ PREDICTOR = None
27
+
28
 
29
  def predict_frame(target_frame: Frame) -> bool:
30
+ image = Image.fromarray(target_frame)
31
+ image = opennsfw2.preprocess_image(image, opennsfw2.Preprocessing.YAHOO)
32
+ views = numpy.expand_dims(image, axis=0)
33
+ _, probability = get_predictor().predict(views)[0]
34
+ return probability > MAX_PROBABILITY
35
+
36
 
37
  def predict_image(target_path: str) -> bool:
38
+ return opennsfw2.predict_image(target_path) > MAX_PROBABILITY
39
+
 
40
 
41
  def predict_video(target_path: str) -> bool:
42
+ _, probabilities = opennsfw2.predict_video_frames(video_path=target_path, frame_interval=100)
43
+ return any(probability > MAX_PROBABILITY for probability in probabilities)